|
import os
|
|
import numpy as np
|
|
from PIL import Image
|
|
from skimage import io, img_as_float32, transform
|
|
import torch
|
|
import scipy.io as scio
|
|
|
|
def get_facerender_data(coeff_path, pic_path, first_coeff_path, audio_path,
|
|
batch_size, input_yaw_list=None, input_pitch_list=None, input_roll_list=None,
|
|
expression_scale=1.0, still_mode = False, preprocess='crop', size = 256):
|
|
|
|
semantic_radius = 13
|
|
video_name = os.path.splitext(os.path.split(coeff_path)[-1])[0]
|
|
txt_path = os.path.splitext(coeff_path)[0]
|
|
|
|
data={}
|
|
|
|
img1 = Image.open(pic_path)
|
|
source_image = np.array(img1)
|
|
source_image = img_as_float32(source_image)
|
|
source_image = transform.resize(source_image, (size, size, 3))
|
|
source_image = source_image.transpose((2, 0, 1))
|
|
source_image_ts = torch.FloatTensor(source_image).unsqueeze(0)
|
|
source_image_ts = source_image_ts.repeat(batch_size, 1, 1, 1)
|
|
data['source_image'] = source_image_ts
|
|
|
|
source_semantics_dict = scio.loadmat(first_coeff_path)
|
|
generated_dict = scio.loadmat(coeff_path)
|
|
|
|
if 'full' not in preprocess.lower():
|
|
source_semantics = source_semantics_dict['coeff_3dmm'][:1,:70]
|
|
generated_3dmm = generated_dict['coeff_3dmm'][:,:70]
|
|
|
|
else:
|
|
source_semantics = source_semantics_dict['coeff_3dmm'][:1,:73]
|
|
generated_3dmm = generated_dict['coeff_3dmm'][:,:70]
|
|
|
|
source_semantics_new = transform_semantic_1(source_semantics, semantic_radius)
|
|
source_semantics_ts = torch.FloatTensor(source_semantics_new).unsqueeze(0)
|
|
source_semantics_ts = source_semantics_ts.repeat(batch_size, 1, 1)
|
|
data['source_semantics'] = source_semantics_ts
|
|
|
|
|
|
generated_3dmm[:, :64] = generated_3dmm[:, :64] * expression_scale
|
|
|
|
if 'full' in preprocess.lower():
|
|
generated_3dmm = np.concatenate([generated_3dmm, np.repeat(source_semantics[:,70:], generated_3dmm.shape[0], axis=0)], axis=1)
|
|
|
|
if still_mode:
|
|
generated_3dmm[:, 64:] = np.repeat(source_semantics[:, 64:], generated_3dmm.shape[0], axis=0)
|
|
|
|
with open(txt_path+'.txt', 'w') as f:
|
|
for coeff in generated_3dmm:
|
|
for i in coeff:
|
|
f.write(str(i)[:7] + ' '+'\t')
|
|
f.write('\n')
|
|
|
|
target_semantics_list = []
|
|
frame_num = generated_3dmm.shape[0]
|
|
data['frame_num'] = frame_num
|
|
for frame_idx in range(frame_num):
|
|
target_semantics = transform_semantic_target(generated_3dmm, frame_idx, semantic_radius)
|
|
target_semantics_list.append(target_semantics)
|
|
|
|
remainder = frame_num%batch_size
|
|
if remainder!=0:
|
|
for _ in range(batch_size-remainder):
|
|
target_semantics_list.append(target_semantics)
|
|
|
|
target_semantics_np = np.array(target_semantics_list)
|
|
target_semantics_np = target_semantics_np.reshape(batch_size, -1, target_semantics_np.shape[-2], target_semantics_np.shape[-1])
|
|
data['target_semantics_list'] = torch.FloatTensor(target_semantics_np)
|
|
data['video_name'] = video_name
|
|
data['audio_path'] = audio_path
|
|
|
|
if input_yaw_list is not None:
|
|
yaw_c_seq = gen_camera_pose(input_yaw_list, frame_num, batch_size)
|
|
data['yaw_c_seq'] = torch.FloatTensor(yaw_c_seq)
|
|
if input_pitch_list is not None:
|
|
pitch_c_seq = gen_camera_pose(input_pitch_list, frame_num, batch_size)
|
|
data['pitch_c_seq'] = torch.FloatTensor(pitch_c_seq)
|
|
if input_roll_list is not None:
|
|
roll_c_seq = gen_camera_pose(input_roll_list, frame_num, batch_size)
|
|
data['roll_c_seq'] = torch.FloatTensor(roll_c_seq)
|
|
|
|
return data
|
|
|
|
def transform_semantic_1(semantic, semantic_radius):
|
|
semantic_list = [semantic for i in range(0, semantic_radius*2+1)]
|
|
coeff_3dmm = np.concatenate(semantic_list, 0)
|
|
return coeff_3dmm.transpose(1,0)
|
|
|
|
def transform_semantic_target(coeff_3dmm, frame_index, semantic_radius):
|
|
num_frames = coeff_3dmm.shape[0]
|
|
seq = list(range(frame_index- semantic_radius, frame_index + semantic_radius+1))
|
|
index = [ min(max(item, 0), num_frames-1) for item in seq ]
|
|
coeff_3dmm_g = coeff_3dmm[index, :]
|
|
return coeff_3dmm_g.transpose(1,0)
|
|
|
|
def gen_camera_pose(camera_degree_list, frame_num, batch_size):
|
|
|
|
new_degree_list = []
|
|
if len(camera_degree_list) == 1:
|
|
for _ in range(frame_num):
|
|
new_degree_list.append(camera_degree_list[0])
|
|
remainder = frame_num%batch_size
|
|
if remainder!=0:
|
|
for _ in range(batch_size-remainder):
|
|
new_degree_list.append(new_degree_list[-1])
|
|
new_degree_np = np.array(new_degree_list).reshape(batch_size, -1)
|
|
return new_degree_np
|
|
|
|
degree_sum = 0.
|
|
for i, degree in enumerate(camera_degree_list[1:]):
|
|
degree_sum += abs(degree-camera_degree_list[i])
|
|
|
|
degree_per_frame = degree_sum/(frame_num-1)
|
|
for i, degree in enumerate(camera_degree_list[1:]):
|
|
degree_last = camera_degree_list[i]
|
|
degree_step = degree_per_frame * abs(degree-degree_last)/(degree-degree_last)
|
|
new_degree_list = new_degree_list + list(np.arange(degree_last, degree, degree_step))
|
|
if len(new_degree_list) > frame_num:
|
|
new_degree_list = new_degree_list[:frame_num]
|
|
elif len(new_degree_list) < frame_num:
|
|
for _ in range(frame_num-len(new_degree_list)):
|
|
new_degree_list.append(new_degree_list[-1])
|
|
print(len(new_degree_list))
|
|
print(frame_num)
|
|
|
|
remainder = frame_num%batch_size
|
|
if remainder!=0:
|
|
for _ in range(batch_size-remainder):
|
|
new_degree_list.append(new_degree_list[-1])
|
|
new_degree_np = np.array(new_degree_list).reshape(batch_size, -1)
|
|
return new_degree_np
|
|
|
|
|