|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
from kornia.geometry import warp_affine
|
|
import torch.nn.functional as F
|
|
|
|
def resize_n_crop(image, M, dsize=112):
|
|
|
|
|
|
return warp_affine(image, M, dsize=(dsize, dsize), align_corners=True)
|
|
|
|
|
|
class PerceptualLoss(nn.Module):
|
|
def __init__(self, recog_net, input_size=112):
|
|
super(PerceptualLoss, self).__init__()
|
|
self.recog_net = recog_net
|
|
self.preprocess = lambda x: 2 * x - 1
|
|
self.input_size=input_size
|
|
def forward(imageA, imageB, M):
|
|
"""
|
|
1 - cosine distance
|
|
Parameters:
|
|
imageA --torch.tensor (B, 3, H, W), range (0, 1) , RGB order
|
|
imageB --same as imageA
|
|
"""
|
|
|
|
imageA = self.preprocess(resize_n_crop(imageA, M, self.input_size))
|
|
imageB = self.preprocess(resize_n_crop(imageB, M, self.input_size))
|
|
|
|
|
|
self.recog_net.eval()
|
|
|
|
id_featureA = F.normalize(self.recog_net(imageA), dim=-1, p=2)
|
|
id_featureB = F.normalize(self.recog_net(imageB), dim=-1, p=2)
|
|
cosine_d = torch.sum(id_featureA * id_featureB, dim=-1)
|
|
|
|
return torch.sum(1 - cosine_d) / cosine_d.shape[0]
|
|
|
|
def perceptual_loss(id_featureA, id_featureB):
|
|
cosine_d = torch.sum(id_featureA * id_featureB, dim=-1)
|
|
|
|
return torch.sum(1 - cosine_d) / cosine_d.shape[0]
|
|
|
|
|
|
def photo_loss(imageA, imageB, mask, eps=1e-6):
|
|
"""
|
|
l2 norm (with sqrt, to ensure backward stabililty, use eps, otherwise Nan may occur)
|
|
Parameters:
|
|
imageA --torch.tensor (B, 3, H, W), range (0, 1), RGB order
|
|
imageB --same as imageA
|
|
"""
|
|
loss = torch.sqrt(eps + torch.sum((imageA - imageB) ** 2, dim=1, keepdims=True)) * mask
|
|
loss = torch.sum(loss) / torch.max(torch.sum(mask), torch.tensor(1.0).to(mask.device))
|
|
return loss
|
|
|
|
def landmark_loss(predict_lm, gt_lm, weight=None):
|
|
"""
|
|
weighted mse loss
|
|
Parameters:
|
|
predict_lm --torch.tensor (B, 68, 2)
|
|
gt_lm --torch.tensor (B, 68, 2)
|
|
weight --numpy.array (1, 68)
|
|
"""
|
|
if not weight:
|
|
weight = np.ones([68])
|
|
weight[28:31] = 20
|
|
weight[-8:] = 20
|
|
weight = np.expand_dims(weight, 0)
|
|
weight = torch.tensor(weight).to(predict_lm.device)
|
|
loss = torch.sum((predict_lm - gt_lm)**2, dim=-1) * weight
|
|
loss = torch.sum(loss) / (predict_lm.shape[0] * predict_lm.shape[1])
|
|
return loss
|
|
|
|
|
|
|
|
def reg_loss(coeffs_dict, opt=None):
|
|
"""
|
|
l2 norm without the sqrt, from yu's implementation (mse)
|
|
tf.nn.l2_loss https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss
|
|
Parameters:
|
|
coeffs_dict -- a dict of torch.tensors , keys: id, exp, tex, angle, gamma, trans
|
|
|
|
"""
|
|
|
|
if opt:
|
|
w_id, w_exp, w_tex = opt.w_id, opt.w_exp, opt.w_tex
|
|
else:
|
|
w_id, w_exp, w_tex = 1, 1, 1, 1
|
|
creg_loss = w_id * torch.sum(coeffs_dict['id'] ** 2) + \
|
|
w_exp * torch.sum(coeffs_dict['exp'] ** 2) + \
|
|
w_tex * torch.sum(coeffs_dict['tex'] ** 2)
|
|
creg_loss = creg_loss / coeffs_dict['id'].shape[0]
|
|
|
|
|
|
gamma = coeffs_dict['gamma'].reshape([-1, 3, 9])
|
|
gamma_mean = torch.mean(gamma, dim=1, keepdims=True)
|
|
gamma_loss = torch.mean((gamma - gamma_mean) ** 2)
|
|
|
|
return creg_loss, gamma_loss
|
|
|
|
def reflectance_loss(texture, mask):
|
|
"""
|
|
minimize texture variance (mse), albedo regularization to ensure an uniform skin albedo
|
|
Parameters:
|
|
texture --torch.tensor, (B, N, 3)
|
|
mask --torch.tensor, (N), 1 or 0
|
|
|
|
"""
|
|
mask = mask.reshape([1, mask.shape[0], 1])
|
|
texture_mean = torch.sum(mask * texture, dim=1, keepdims=True) / torch.sum(mask)
|
|
loss = torch.sum(((texture - texture_mean) * mask)**2) / (texture.shape[0] * torch.sum(mask))
|
|
return loss
|
|
|
|
|