|
import cv2
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
def calculate_points(heatmaps):
|
|
|
|
B, N, H, W = heatmaps.shape
|
|
HW = H * W
|
|
BN_range = np.arange(B * N)
|
|
|
|
heatline = heatmaps.reshape(B, N, HW)
|
|
indexes = np.argmax(heatline, axis=2)
|
|
|
|
preds = np.stack((indexes % W, indexes // W), axis=2)
|
|
preds = preds.astype(np.float, copy=False)
|
|
|
|
inr = indexes.ravel()
|
|
|
|
heatline = heatline.reshape(B * N, HW)
|
|
x_up = heatline[BN_range, inr + 1]
|
|
x_down = heatline[BN_range, inr - 1]
|
|
|
|
|
|
if any((inr + W) >= 4096):
|
|
y_up = heatline[BN_range, 4095]
|
|
else:
|
|
y_up = heatline[BN_range, inr + W]
|
|
if any((inr - W) <= 0):
|
|
y_down = heatline[BN_range, 0]
|
|
else:
|
|
y_down = heatline[BN_range, inr - W]
|
|
|
|
think_diff = np.sign(np.stack((x_up - x_down, y_up - y_down), axis=1))
|
|
think_diff *= .25
|
|
|
|
preds += think_diff.reshape(B, N, 2)
|
|
preds += .5
|
|
return preds
|
|
|
|
|
|
class AddCoordsTh(nn.Module):
|
|
|
|
def __init__(self, x_dim=64, y_dim=64, with_r=False, with_boundary=False):
|
|
super(AddCoordsTh, self).__init__()
|
|
self.x_dim = x_dim
|
|
self.y_dim = y_dim
|
|
self.with_r = with_r
|
|
self.with_boundary = with_boundary
|
|
|
|
def forward(self, input_tensor, heatmap=None):
|
|
"""
|
|
input_tensor: (batch, c, x_dim, y_dim)
|
|
"""
|
|
batch_size_tensor = input_tensor.shape[0]
|
|
|
|
xx_ones = torch.ones([1, self.y_dim], dtype=torch.int32, device=input_tensor.device)
|
|
xx_ones = xx_ones.unsqueeze(-1)
|
|
|
|
xx_range = torch.arange(self.x_dim, dtype=torch.int32, device=input_tensor.device).unsqueeze(0)
|
|
xx_range = xx_range.unsqueeze(1)
|
|
|
|
xx_channel = torch.matmul(xx_ones.float(), xx_range.float())
|
|
xx_channel = xx_channel.unsqueeze(-1)
|
|
|
|
yy_ones = torch.ones([1, self.x_dim], dtype=torch.int32, device=input_tensor.device)
|
|
yy_ones = yy_ones.unsqueeze(1)
|
|
|
|
yy_range = torch.arange(self.y_dim, dtype=torch.int32, device=input_tensor.device).unsqueeze(0)
|
|
yy_range = yy_range.unsqueeze(-1)
|
|
|
|
yy_channel = torch.matmul(yy_range.float(), yy_ones.float())
|
|
yy_channel = yy_channel.unsqueeze(-1)
|
|
|
|
xx_channel = xx_channel.permute(0, 3, 2, 1)
|
|
yy_channel = yy_channel.permute(0, 3, 2, 1)
|
|
|
|
xx_channel = xx_channel / (self.x_dim - 1)
|
|
yy_channel = yy_channel / (self.y_dim - 1)
|
|
|
|
xx_channel = xx_channel * 2 - 1
|
|
yy_channel = yy_channel * 2 - 1
|
|
|
|
xx_channel = xx_channel.repeat(batch_size_tensor, 1, 1, 1)
|
|
yy_channel = yy_channel.repeat(batch_size_tensor, 1, 1, 1)
|
|
|
|
if self.with_boundary and heatmap is not None:
|
|
boundary_channel = torch.clamp(heatmap[:, -1:, :, :], 0.0, 1.0)
|
|
|
|
zero_tensor = torch.zeros_like(xx_channel)
|
|
xx_boundary_channel = torch.where(boundary_channel > 0.05, xx_channel, zero_tensor)
|
|
yy_boundary_channel = torch.where(boundary_channel > 0.05, yy_channel, zero_tensor)
|
|
if self.with_boundary and heatmap is not None:
|
|
xx_boundary_channel = xx_boundary_channel.to(input_tensor.device)
|
|
yy_boundary_channel = yy_boundary_channel.to(input_tensor.device)
|
|
ret = torch.cat([input_tensor, xx_channel, yy_channel], dim=1)
|
|
|
|
if self.with_r:
|
|
rr = torch.sqrt(torch.pow(xx_channel, 2) + torch.pow(yy_channel, 2))
|
|
rr = rr / torch.max(rr)
|
|
ret = torch.cat([ret, rr], dim=1)
|
|
|
|
if self.with_boundary and heatmap is not None:
|
|
ret = torch.cat([ret, xx_boundary_channel, yy_boundary_channel], dim=1)
|
|
return ret
|
|
|
|
|
|
class CoordConvTh(nn.Module):
|
|
"""CoordConv layer as in the paper."""
|
|
|
|
def __init__(self, x_dim, y_dim, with_r, with_boundary, in_channels, first_one=False, *args, **kwargs):
|
|
super(CoordConvTh, self).__init__()
|
|
self.addcoords = AddCoordsTh(x_dim=x_dim, y_dim=y_dim, with_r=with_r, with_boundary=with_boundary)
|
|
in_channels += 2
|
|
if with_r:
|
|
in_channels += 1
|
|
if with_boundary and not first_one:
|
|
in_channels += 2
|
|
self.conv = nn.Conv2d(in_channels=in_channels, *args, **kwargs)
|
|
|
|
def forward(self, input_tensor, heatmap=None):
|
|
ret = self.addcoords(input_tensor, heatmap)
|
|
last_channel = ret[:, -2:, :, :]
|
|
ret = self.conv(ret)
|
|
return ret, last_channel
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False, dilation=1):
|
|
'3x3 convolution with padding'
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=strd, padding=padding, bias=bias, dilation=dilation)
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
|
super(BasicBlock, self).__init__()
|
|
self.conv1 = conv3x3(inplanes, planes, stride)
|
|
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.conv2 = conv3x3(planes, planes)
|
|
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class ConvBlock(nn.Module):
|
|
|
|
def __init__(self, in_planes, out_planes):
|
|
super(ConvBlock, self).__init__()
|
|
self.bn1 = nn.BatchNorm2d(in_planes)
|
|
self.conv1 = conv3x3(in_planes, int(out_planes / 2))
|
|
self.bn2 = nn.BatchNorm2d(int(out_planes / 2))
|
|
self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4), padding=1, dilation=1)
|
|
self.bn3 = nn.BatchNorm2d(int(out_planes / 4))
|
|
self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4), padding=1, dilation=1)
|
|
|
|
if in_planes != out_planes:
|
|
self.downsample = nn.Sequential(
|
|
nn.BatchNorm2d(in_planes),
|
|
nn.ReLU(True),
|
|
nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, bias=False),
|
|
)
|
|
else:
|
|
self.downsample = None
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out1 = self.bn1(x)
|
|
out1 = F.relu(out1, True)
|
|
out1 = self.conv1(out1)
|
|
|
|
out2 = self.bn2(out1)
|
|
out2 = F.relu(out2, True)
|
|
out2 = self.conv2(out2)
|
|
|
|
out3 = self.bn3(out2)
|
|
out3 = F.relu(out3, True)
|
|
out3 = self.conv3(out3)
|
|
|
|
out3 = torch.cat((out1, out2, out3), 1)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(residual)
|
|
|
|
out3 += residual
|
|
|
|
return out3
|
|
|
|
|
|
class HourGlass(nn.Module):
|
|
|
|
def __init__(self, num_modules, depth, num_features, first_one=False):
|
|
super(HourGlass, self).__init__()
|
|
self.num_modules = num_modules
|
|
self.depth = depth
|
|
self.features = num_features
|
|
self.coordconv = CoordConvTh(
|
|
x_dim=64,
|
|
y_dim=64,
|
|
with_r=True,
|
|
with_boundary=True,
|
|
in_channels=256,
|
|
first_one=first_one,
|
|
out_channels=256,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0)
|
|
self._generate_network(self.depth)
|
|
|
|
def _generate_network(self, level):
|
|
self.add_module('b1_' + str(level), ConvBlock(256, 256))
|
|
|
|
self.add_module('b2_' + str(level), ConvBlock(256, 256))
|
|
|
|
if level > 1:
|
|
self._generate_network(level - 1)
|
|
else:
|
|
self.add_module('b2_plus_' + str(level), ConvBlock(256, 256))
|
|
|
|
self.add_module('b3_' + str(level), ConvBlock(256, 256))
|
|
|
|
def _forward(self, level, inp):
|
|
|
|
up1 = inp
|
|
up1 = self._modules['b1_' + str(level)](up1)
|
|
|
|
|
|
low1 = F.avg_pool2d(inp, 2, stride=2)
|
|
low1 = self._modules['b2_' + str(level)](low1)
|
|
|
|
if level > 1:
|
|
low2 = self._forward(level - 1, low1)
|
|
else:
|
|
low2 = low1
|
|
low2 = self._modules['b2_plus_' + str(level)](low2)
|
|
|
|
low3 = low2
|
|
low3 = self._modules['b3_' + str(level)](low3)
|
|
|
|
up2 = F.interpolate(low3, scale_factor=2, mode='nearest')
|
|
|
|
return up1 + up2
|
|
|
|
def forward(self, x, heatmap):
|
|
x, last_channel = self.coordconv(x, heatmap)
|
|
return self._forward(self.depth, x), last_channel
|
|
|
|
|
|
class FAN(nn.Module):
|
|
|
|
def __init__(self, num_modules=1, end_relu=False, gray_scale=False, num_landmarks=68, device='cuda'):
|
|
super(FAN, self).__init__()
|
|
self.device = device
|
|
self.num_modules = num_modules
|
|
self.gray_scale = gray_scale
|
|
self.end_relu = end_relu
|
|
self.num_landmarks = num_landmarks
|
|
|
|
|
|
if self.gray_scale:
|
|
self.conv1 = CoordConvTh(
|
|
x_dim=256,
|
|
y_dim=256,
|
|
with_r=True,
|
|
with_boundary=False,
|
|
in_channels=3,
|
|
out_channels=64,
|
|
kernel_size=7,
|
|
stride=2,
|
|
padding=3)
|
|
else:
|
|
self.conv1 = CoordConvTh(
|
|
x_dim=256,
|
|
y_dim=256,
|
|
with_r=True,
|
|
with_boundary=False,
|
|
in_channels=3,
|
|
out_channels=64,
|
|
kernel_size=7,
|
|
stride=2,
|
|
padding=3)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.conv2 = ConvBlock(64, 128)
|
|
self.conv3 = ConvBlock(128, 128)
|
|
self.conv4 = ConvBlock(128, 256)
|
|
|
|
|
|
for hg_module in range(self.num_modules):
|
|
if hg_module == 0:
|
|
first_one = True
|
|
else:
|
|
first_one = False
|
|
self.add_module('m' + str(hg_module), HourGlass(1, 4, 256, first_one))
|
|
self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256))
|
|
self.add_module('conv_last' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
|
|
self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256))
|
|
self.add_module('l' + str(hg_module), nn.Conv2d(256, num_landmarks + 1, kernel_size=1, stride=1, padding=0))
|
|
|
|
if hg_module < self.num_modules - 1:
|
|
self.add_module('bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
|
|
self.add_module('al' + str(hg_module),
|
|
nn.Conv2d(num_landmarks + 1, 256, kernel_size=1, stride=1, padding=0))
|
|
|
|
def forward(self, x):
|
|
x, _ = self.conv1(x)
|
|
x = F.relu(self.bn1(x), True)
|
|
|
|
x = F.avg_pool2d(self.conv2(x), 2, stride=2)
|
|
x = self.conv3(x)
|
|
x = self.conv4(x)
|
|
|
|
previous = x
|
|
|
|
outputs = []
|
|
boundary_channels = []
|
|
tmp_out = None
|
|
for i in range(self.num_modules):
|
|
hg, boundary_channel = self._modules['m' + str(i)](previous, tmp_out)
|
|
|
|
ll = hg
|
|
ll = self._modules['top_m_' + str(i)](ll)
|
|
|
|
ll = F.relu(self._modules['bn_end' + str(i)](self._modules['conv_last' + str(i)](ll)), True)
|
|
|
|
|
|
tmp_out = self._modules['l' + str(i)](ll)
|
|
if self.end_relu:
|
|
tmp_out = F.relu(tmp_out)
|
|
outputs.append(tmp_out)
|
|
boundary_channels.append(boundary_channel)
|
|
|
|
if i < self.num_modules - 1:
|
|
ll = self._modules['bl' + str(i)](ll)
|
|
tmp_out_ = self._modules['al' + str(i)](tmp_out)
|
|
previous = previous + ll + tmp_out_
|
|
|
|
return outputs, boundary_channels
|
|
|
|
def get_landmarks(self, img):
|
|
H, W, _ = img.shape
|
|
offset = W / 64, H / 64, 0, 0
|
|
|
|
img = cv2.resize(img, (256, 256))
|
|
inp = img[..., ::-1]
|
|
inp = torch.from_numpy(np.ascontiguousarray(inp.transpose((2, 0, 1)))).float()
|
|
inp = inp.to(self.device)
|
|
inp.div_(255.0).unsqueeze_(0)
|
|
|
|
outputs, _ = self.forward(inp)
|
|
out = outputs[-1][:, :-1, :, :]
|
|
heatmaps = out.detach().cpu().numpy()
|
|
|
|
pred = calculate_points(heatmaps).reshape(-1, 2)
|
|
|
|
pred *= offset[:2]
|
|
pred += offset[-2:]
|
|
|
|
return pred
|
|
|