Updates
Browse files- .ipynb_checkpoints/README-checkpoint.md +77 -0
- .ipynb_checkpoints/eval-checkpoint.py +137 -0
- README.md +2 -0
- eval.py +137 -0
- log_mozilla-foundation_common_voice_7_0_ha_test_predictions.txt +298 -0
- log_mozilla-foundation_common_voice_7_0_ha_test_targets.txt +298 -0
- mozilla-foundation_common_voice_7_0_ha_test_eval_results.txt +2 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ha
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- mozilla-foundation/common_voice_8_0
|
8 |
+
- generated_from_trainer
|
9 |
+
- "ha"
|
10 |
+
- "robust-speech-event"
|
11 |
+
datasets:
|
12 |
+
- common_voice
|
13 |
+
model-index:
|
14 |
+
- name: ''
|
15 |
+
results: []
|
16 |
+
---
|
17 |
+
|
18 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
19 |
+
should probably proofread and complete it, then remove this comment. -->
|
20 |
+
|
21 |
+
#
|
22 |
+
|
23 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HA dataset.
|
24 |
+
It achieves the following results on the evaluation set:
|
25 |
+
- Loss: 0.4925
|
26 |
+
- Wer: 0.5714
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 7.5e-05
|
46 |
+
- train_batch_size: 8
|
47 |
+
- eval_batch_size: 8
|
48 |
+
- seed: 42
|
49 |
+
- gradient_accumulation_steps: 4
|
50 |
+
- total_train_batch_size: 32
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_steps: 2000
|
54 |
+
- num_epochs: 80.0
|
55 |
+
- mixed_precision_training: Native AMP
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
61 |
+
| 3.1674 | 8.33 | 500 | 3.0295 | 1.0 |
|
62 |
+
| 2.6987 | 16.66 | 1000 | 2.6878 | 1.0 |
|
63 |
+
| 1.3454 | 24.99 | 1500 | 0.6814 | 0.6981 |
|
64 |
+
| 1.1227 | 33.33 | 2000 | 0.5791 | 0.6513 |
|
65 |
+
| 0.9972 | 41.66 | 2500 | 0.5235 | 0.5718 |
|
66 |
+
| 0.9123 | 49.99 | 3000 | 0.5104 | 0.5633 |
|
67 |
+
| 0.836 | 58.33 | 3500 | 0.4927 | 0.5580 |
|
68 |
+
| 0.7725 | 66.66 | 4000 | 0.5078 | 0.5779 |
|
69 |
+
| 0.7297 | 74.99 | 4500 | 0.4939 | 0.5737 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.17.0.dev0
|
75 |
+
- Pytorch 1.10.2+cu113
|
76 |
+
- Datasets 1.18.4.dev0
|
77 |
+
- Tokenizers 0.11.0
|
.ipynb_checkpoints/eval-checkpoint.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import re
|
4 |
+
from typing import Dict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
8 |
+
|
9 |
+
from transformers import AutoFeatureExtractor, pipeline
|
10 |
+
|
11 |
+
|
12 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
13 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
14 |
+
|
15 |
+
log_outputs = args.log_outputs
|
16 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
17 |
+
|
18 |
+
# load metric
|
19 |
+
wer = load_metric("wer")
|
20 |
+
cer = load_metric("cer")
|
21 |
+
|
22 |
+
# compute metrics
|
23 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
24 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
25 |
+
|
26 |
+
# print & log results
|
27 |
+
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
28 |
+
print(result_str)
|
29 |
+
|
30 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
31 |
+
f.write(result_str)
|
32 |
+
|
33 |
+
# log all results in text file. Possibly interesting for analysis
|
34 |
+
if log_outputs is not None:
|
35 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
36 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
37 |
+
|
38 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
39 |
+
|
40 |
+
# mapping function to write output
|
41 |
+
def write_to_file(batch, i):
|
42 |
+
p.write(f"{i}" + "\n")
|
43 |
+
p.write(batch["prediction"] + "\n")
|
44 |
+
t.write(f"{i}" + "\n")
|
45 |
+
t.write(batch["target"] + "\n")
|
46 |
+
|
47 |
+
result.map(write_to_file, with_indices=True)
|
48 |
+
|
49 |
+
|
50 |
+
def normalize_text(text: str) -> str:
|
51 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
52 |
+
|
53 |
+
chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
54 |
+
|
55 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
56 |
+
|
57 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
58 |
+
# note that order is important here!
|
59 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
60 |
+
|
61 |
+
for t in token_sequences_to_ignore:
|
62 |
+
text = " ".join(text.split(t))
|
63 |
+
|
64 |
+
return text
|
65 |
+
|
66 |
+
|
67 |
+
def main(args):
|
68 |
+
# load dataset
|
69 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
70 |
+
|
71 |
+
# for testing: only process the first two examples as a test
|
72 |
+
# dataset = dataset.select(range(10))
|
73 |
+
|
74 |
+
# load processor
|
75 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
76 |
+
sampling_rate = feature_extractor.sampling_rate
|
77 |
+
|
78 |
+
# resample audio
|
79 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
80 |
+
|
81 |
+
# load eval pipeline
|
82 |
+
if args.device is None:
|
83 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
84 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
85 |
+
|
86 |
+
# map function to decode audio
|
87 |
+
def map_to_pred(batch):
|
88 |
+
prediction = asr(
|
89 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
90 |
+
)
|
91 |
+
|
92 |
+
batch["prediction"] = prediction["text"]
|
93 |
+
batch["target"] = normalize_text(batch["sentence"])
|
94 |
+
return batch
|
95 |
+
|
96 |
+
# run inference on all examples
|
97 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
98 |
+
|
99 |
+
# compute and log_results
|
100 |
+
# do not change function below
|
101 |
+
log_results(result, args)
|
102 |
+
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
parser = argparse.ArgumentParser()
|
106 |
+
|
107 |
+
parser.add_argument(
|
108 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
109 |
+
)
|
110 |
+
parser.add_argument(
|
111 |
+
"--dataset",
|
112 |
+
type=str,
|
113 |
+
required=True,
|
114 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
115 |
+
)
|
116 |
+
parser.add_argument(
|
117 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
118 |
+
)
|
119 |
+
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
120 |
+
parser.add_argument(
|
121 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
122 |
+
)
|
123 |
+
parser.add_argument(
|
124 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
125 |
+
)
|
126 |
+
parser.add_argument(
|
127 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
128 |
+
)
|
129 |
+
parser.add_argument(
|
130 |
+
"--device",
|
131 |
+
type=int,
|
132 |
+
default=None,
|
133 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
134 |
+
)
|
135 |
+
args = parser.parse_args()
|
136 |
+
|
137 |
+
main(args)
|
README.md
CHANGED
@@ -6,6 +6,8 @@ tags:
|
|
6 |
- automatic-speech-recognition
|
7 |
- mozilla-foundation/common_voice_8_0
|
8 |
- generated_from_trainer
|
|
|
|
|
9 |
datasets:
|
10 |
- common_voice
|
11 |
model-index:
|
|
|
6 |
- automatic-speech-recognition
|
7 |
- mozilla-foundation/common_voice_8_0
|
8 |
- generated_from_trainer
|
9 |
+
- "ha"
|
10 |
+
- "robust-speech-event"
|
11 |
datasets:
|
12 |
- common_voice
|
13 |
model-index:
|
eval.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import re
|
4 |
+
from typing import Dict
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
8 |
+
|
9 |
+
from transformers import AutoFeatureExtractor, pipeline
|
10 |
+
|
11 |
+
|
12 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
13 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
14 |
+
|
15 |
+
log_outputs = args.log_outputs
|
16 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
17 |
+
|
18 |
+
# load metric
|
19 |
+
wer = load_metric("wer")
|
20 |
+
cer = load_metric("cer")
|
21 |
+
|
22 |
+
# compute metrics
|
23 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
24 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
25 |
+
|
26 |
+
# print & log results
|
27 |
+
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
28 |
+
print(result_str)
|
29 |
+
|
30 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
31 |
+
f.write(result_str)
|
32 |
+
|
33 |
+
# log all results in text file. Possibly interesting for analysis
|
34 |
+
if log_outputs is not None:
|
35 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
36 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
37 |
+
|
38 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
39 |
+
|
40 |
+
# mapping function to write output
|
41 |
+
def write_to_file(batch, i):
|
42 |
+
p.write(f"{i}" + "\n")
|
43 |
+
p.write(batch["prediction"] + "\n")
|
44 |
+
t.write(f"{i}" + "\n")
|
45 |
+
t.write(batch["target"] + "\n")
|
46 |
+
|
47 |
+
result.map(write_to_file, with_indices=True)
|
48 |
+
|
49 |
+
|
50 |
+
def normalize_text(text: str) -> str:
|
51 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
52 |
+
|
53 |
+
chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
54 |
+
|
55 |
+
text = re.sub(chars_to_ignore_regex, "", text.lower())
|
56 |
+
|
57 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
58 |
+
# note that order is important here!
|
59 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
60 |
+
|
61 |
+
for t in token_sequences_to_ignore:
|
62 |
+
text = " ".join(text.split(t))
|
63 |
+
|
64 |
+
return text
|
65 |
+
|
66 |
+
|
67 |
+
def main(args):
|
68 |
+
# load dataset
|
69 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
70 |
+
|
71 |
+
# for testing: only process the first two examples as a test
|
72 |
+
# dataset = dataset.select(range(10))
|
73 |
+
|
74 |
+
# load processor
|
75 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
76 |
+
sampling_rate = feature_extractor.sampling_rate
|
77 |
+
|
78 |
+
# resample audio
|
79 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
80 |
+
|
81 |
+
# load eval pipeline
|
82 |
+
if args.device is None:
|
83 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
84 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
85 |
+
|
86 |
+
# map function to decode audio
|
87 |
+
def map_to_pred(batch):
|
88 |
+
prediction = asr(
|
89 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
90 |
+
)
|
91 |
+
|
92 |
+
batch["prediction"] = prediction["text"]
|
93 |
+
batch["target"] = normalize_text(batch["sentence"])
|
94 |
+
return batch
|
95 |
+
|
96 |
+
# run inference on all examples
|
97 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
98 |
+
|
99 |
+
# compute and log_results
|
100 |
+
# do not change function below
|
101 |
+
log_results(result, args)
|
102 |
+
|
103 |
+
|
104 |
+
if __name__ == "__main__":
|
105 |
+
parser = argparse.ArgumentParser()
|
106 |
+
|
107 |
+
parser.add_argument(
|
108 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
109 |
+
)
|
110 |
+
parser.add_argument(
|
111 |
+
"--dataset",
|
112 |
+
type=str,
|
113 |
+
required=True,
|
114 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
115 |
+
)
|
116 |
+
parser.add_argument(
|
117 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
118 |
+
)
|
119 |
+
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
120 |
+
parser.add_argument(
|
121 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
122 |
+
)
|
123 |
+
parser.add_argument(
|
124 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
125 |
+
)
|
126 |
+
parser.add_argument(
|
127 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
128 |
+
)
|
129 |
+
parser.add_argument(
|
130 |
+
"--device",
|
131 |
+
type=int,
|
132 |
+
default=None,
|
133 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
134 |
+
)
|
135 |
+
args = parser.parse_args()
|
136 |
+
|
137 |
+
main(args)
|
log_mozilla-foundation_common_voice_7_0_ha_test_predictions.txt
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
0
|
2 |
+
kacin haɗe ye ke da kyautar
|
3 |
+
1
|
4 |
+
yalzu waɗabiu ar matasa ra sunya tkanyu fata rauta
|
5 |
+
2
|
6 |
+
za ta iya jin ciwo inan tayi haka
|
7 |
+
3
|
8 |
+
shn bawane abuda za su yi ranarjin mua
|
9 |
+
4
|
10 |
+
ganyan yaki da suk bushe suna iyu a sama ruwa
|
11 |
+
5
|
12 |
+
ba wanda ya san yusuf tsohon muƙaryaci ne
|
13 |
+
6
|
14 |
+
na ji da din ha ɗuwa da kai mustapha
|
15 |
+
7
|
16 |
+
ya kuna wuter tun ka finya higackin kogon
|
17 |
+
8
|
18 |
+
menene sunan kan
|
19 |
+
9
|
20 |
+
da yau zan kirata
|
21 |
+
10
|
22 |
+
zuwa gobar safe yarinyar ta kammala
|
23 |
+
11
|
24 |
+
ina maban aure shi ba
|
25 |
+
12
|
26 |
+
habibu ya nuna bai san kasan cewa nan
|
27 |
+
13
|
28 |
+
aban farin cik akwai tsara rbutunim samun gamkafi
|
29 |
+
14
|
30 |
+
ban taba kiran shi da wawa ba
|
31 |
+
15
|
32 |
+
ban san yadda ake kamun kefi ba
|
33 |
+
16
|
34 |
+
an kama matashin ne da hanno cikin wanirkici
|
35 |
+
17
|
36 |
+
ina zama a wani ƙaramin ƙauye kiloyit hamsun tsekaninsu da birnii
|
37 |
+
18
|
38 |
+
jalal ya rubu ta labari mai tashin hankali da ke da ƙarshe mai furin ciki
|
39 |
+
19
|
40 |
+
zan buƙaci kuɗi fee da haga
|
41 |
+
20
|
42 |
+
ina ayaki cikin aboka ni kuma ina rayowa cikin littafi
|
43 |
+
21
|
44 |
+
muna huta wa tsirara a cikin ya shimai ɗume
|
45 |
+
22
|
46 |
+
bana tsammanin jami na da tabbaci abin da laditu ki sanyi
|
47 |
+
23
|
48 |
+
an haranta ma ɗalibai shan taba a farfe jir makarantar
|
49 |
+
24
|
50 |
+
thia fade are a jaridocewa lafi ne na san zuca
|
51 |
+
25
|
52 |
+
shibana san banyi zain dadacewa
|
53 |
+
26
|
54 |
+
wajen ya yi kacikaca
|
55 |
+
27
|
56 |
+
twannan uzare bekina barin aicewa
|
57 |
+
28
|
58 |
+
sun dage sa sun yi tafiya zuwa ƙasar betnancikin kwanaki shi da kacall
|
59 |
+
29
|
60 |
+
kamar be faruba
|
61 |
+
30
|
62 |
+
marsirs hina ya finaka girma
|
63 |
+
31
|
64 |
+
ya yi koƙarno na shijarime ne bayo an yagar kuwad she
|
65 |
+
32
|
66 |
+
tu lokacin da sabe ta watu mijintya shiga cikin zurfin tunani
|
67 |
+
33
|
68 |
+
kungiyar haɗaka da kan farin sum amince da sabon kungila
|
69 |
+
34
|
70 |
+
ka kula da wannan labarin
|
71 |
+
35
|
72 |
+
ko akwai ciwa sosa kirjin kuna ɓangare hagu
|
73 |
+
36
|
74 |
+
abin na da ban tsoro
|
75 |
+
37
|
76 |
+
saide shagon be da wani girma sosai
|
77 |
+
38
|
78 |
+
ki tabbatar ba gitutar ra kankiwa
|
79 |
+
39
|
80 |
+
za mu iya ba tare da taimakon ibrahimba
|
81 |
+
40
|
82 |
+
aliyu ba ta ya tan tamar samun muta ne dewa bi haka
|
83 |
+
41
|
84 |
+
iran ki yi sau ɗaya tu ka ki ƙaraye
|
85 |
+
42
|
86 |
+
hadizu am ba ƙuwa ce a garnan ko ba haka ba
|
87 |
+
43
|
88 |
+
jarumin ya mata a kanki masoyiya tasa raunya ta
|
89 |
+
44
|
90 |
+
na so rarren zama tsawon yade shida mesa da cutun
|
91 |
+
45
|
92 |
+
nayi na son ya abo zuwa tsaker doniya
|
93 |
+
46
|
94 |
+
kuma kunce wannan matsin lambane a girjenku
|
95 |
+
47
|
96 |
+
loletai rawa tare da gris
|
97 |
+
48
|
98 |
+
amin cewa adaye mashe me sirrin haƙurnta
|
99 |
+
49
|
100 |
+
ina turami isha ku dajumainazargi
|
101 |
+
50
|
102 |
+
bayan kwaseshekaurugoma suna kaswanjin haɗan gwiwa sun yanke ukunshin rabawa
|
103 |
+
51
|
104 |
+
kan fanumo ana talarci tallace me shekara shekara na yan dubu milyan
|
105 |
+
52
|
106 |
+
abokina na son ya amsa laifi
|
107 |
+
53
|
108 |
+
fasan banbanci sakanin silba da gongane
|
109 |
+
54
|
110 |
+
rana tana bayaddazafi da haske da yawa
|
111 |
+
55
|
112 |
+
yusus ya faɗawa lare yadda suku haɗo da hassan
|
113 |
+
56
|
114 |
+
ƙwas lokuton gudin sira dara yakan bar mutun ba komai
|
115 |
+
57
|
116 |
+
aliyu ya daɗe yan yin wannan aiki
|
117 |
+
58
|
118 |
+
akwai mamaki a ce bai san labarin ba
|
119 |
+
59
|
120 |
+
linda t gano ishakune mutu minda yayi mata fiaɗe
|
121 |
+
60
|
122 |
+
yau ina fama da ciwon kirji
|
123 |
+
61
|
124 |
+
fana karattun nwa san kwi kwayogame da tallafin karato na musa man
|
125 |
+
62
|
126 |
+
an bukatar ɗalibai suyi aikin saa ɗayaga alƙuma a cowone sate
|
127 |
+
63
|
128 |
+
ya jirwon saman ya a fuskarsan
|
129 |
+
64
|
130 |
+
zazzaɓin ya fara kwanaki biyu da sukauce
|
131 |
+
65
|
132 |
+
mutuka za me
|
133 |
+
66
|
134 |
+
kozei ya shakwya k kuma ya haukace
|
135 |
+
67
|
136 |
+
hbibu asabe hassan da ishenduk suna magana da faransanci
|
137 |
+
68
|
138 |
+
ba na jin jauro zai jeba ki ruwa yao
|
139 |
+
69
|
140 |
+
ƙoso lala tjjerin makamae
|
141 |
+
70
|
142 |
+
ba kwa buƙatur shirya wani muhi min jawabi
|
143 |
+
71
|
144 |
+
abdullai na ɗe daga cikin man malaƙan wanna gini
|
145 |
+
72
|
146 |
+
haki ƙa binccin gize hrfar da ɗame ilo
|
147 |
+
73
|
148 |
+
ƙarin daya gaba zu iya iso waje na ba ya fara fushi
|
149 |
+
74
|
150 |
+
e ina fama da ciwo cikin kirji na sosai
|
151 |
+
75
|
152 |
+
ynzu dama ce mai kyaut hukunta ishku game da abinda ya aikata
|
153 |
+
76
|
154 |
+
ki bari mustapha ya sai make wannan
|
155 |
+
77
|
156 |
+
bana tsammanin jauro da lamina da wahalar shaani
|
157 |
+
78
|
158 |
+
bayin sati ɗaya abdullahi ya gundi ramutane
|
159 |
+
79
|
160 |
+
zan tambe ya shigobe
|
161 |
+
80
|
162 |
+
dafatin alat alaya farentmakarai
|
163 |
+
81
|
164 |
+
lokacin da ya kai mata hari tana neman makullin cikin jakarta
|
165 |
+
82
|
166 |
+
shin kun jila barin mu
|
167 |
+
83
|
168 |
+
gamaskiya bane da wata alama
|
169 |
+
84
|
170 |
+
na yi tunanin zan same coacen
|
171 |
+
85
|
172 |
+
ha yaƙin yana shaƙeta
|
173 |
+
86
|
174 |
+
kaɗan shakofi ina tunanin yana da daɗi
|
175 |
+
87
|
176 |
+
ina bukaton ku bai yana min wani abu
|
177 |
+
88
|
178 |
+
yin haka zai fidaɗi ko ma kuka gani
|
179 |
+
89
|
180 |
+
nima na ji
|
181 |
+
90
|
182 |
+
aliyu na tsoron yin magana dane ko ba haka ba
|
183 |
+
91
|
184 |
+
kamar bitrus ya gaji sosai
|
185 |
+
92
|
186 |
+
zan so idan hakan bai faru ba
|
187 |
+
93
|
188 |
+
na damuƙorai da wannan za sin kirjin
|
189 |
+
94
|
190 |
+
kina sanyi da kayan
|
191 |
+
95
|
192 |
+
an gudanar da fatin ban kwana jiya sabida mrjons
|
193 |
+
96
|
194 |
+
yabutun uskrin me chkuleti bayan cin abinci
|
195 |
+
97
|
196 |
+
ina tsoron kada kucutar da alyu
|
197 |
+
98
|
198 |
+
sunsayena cikin kananan kware
|
199 |
+
99
|
200 |
+
ina collontunsaye lokacin dana ke zauni a borcon ina shan kofi
|
201 |
+
100
|
202 |
+
babangida ya isalendon tare da wasu gungun masana
|
203 |
+
101
|
204 |
+
ibrahim ya ce ya yi sammani hauwatu ta yi mamake
|
205 |
+
102
|
206 |
+
an ce na seyoke ka hanyar dowowa ta daga ofis
|
207 |
+
103
|
208 |
+
ya mubun soros da ya ga caton macijin
|
209 |
+
104
|
210 |
+
abdullahi ya sancewa zai iya yin haka ɗikkyau
|
211 |
+
105
|
212 |
+
na gagi kuma ina jin yanwa kuma haka kowa ye kerje
|
213 |
+
106
|
214 |
+
zan komo kansa
|
215 |
+
107
|
216 |
+
amurka zatu fice dagayarjejeniyar fris
|
217 |
+
108
|
218 |
+
ina tunanin ya kamatu na faɗawa alik wajen da naji
|
219 |
+
109
|
220 |
+
habibu ya iya wakan
|
221 |
+
110
|
222 |
+
na yi da riyaso saaarda ciwon ciki
|
223 |
+
111
|
224 |
+
na san hayenzu yina cin
|
225 |
+
112
|
226 |
+
ina nin zafi a kirgi
|
227 |
+
113
|
228 |
+
baburiga ka fi amma hukumomii da ban da ban suna ƙoƙarin samoriga kafin
|
229 |
+
114
|
230 |
+
babangida ya ƙwre a wasan tenis
|
231 |
+
115
|
232 |
+
ibrahim ya ce bya tunanin ko akwai wanda zi iya haka
|
233 |
+
116
|
234 |
+
zukuma kuna da zazzaɓi yanzu
|
235 |
+
117
|
236 |
+
ka gaida min da matarka
|
237 |
+
118
|
238 |
+
birus ya fara farin ciki bayan yahar ba ƙwallin a ragarsa
|
239 |
+
119
|
240 |
+
akwai buƙatar ƙarabin cike
|
241 |
+
120
|
242 |
+
ban san hassan da mai muna ba su da lafiya ba
|
243 |
+
121
|
244 |
+
zah a ƙara buƙatar gwaji nin gaba
|
245 |
+
122
|
246 |
+
na gaji kasuwancin daga ma haishina
|
247 |
+
123
|
248 |
+
gina zafi a tsakkiyar kirjina
|
249 |
+
124
|
250 |
+
kana sun ka zauna
|
251 |
+
125
|
252 |
+
ba wn da ya damu dani
|
253 |
+
126
|
254 |
+
gogulda ama zan sun aiwatar da ƙuntetawa iri ɗaya
|
255 |
+
127
|
256 |
+
gaskiyane ckin alunman amurkacewa na mijine shugaban gida
|
257 |
+
128
|
258 |
+
mai wannan gidan gia baya taɓauseyar da gia a kan bashh
|
259 |
+
129
|
260 |
+
ishaku bai damu da lare ba
|
261 |
+
130
|
262 |
+
muna da abun mamaki
|
263 |
+
131
|
264 |
+
na so yardadirshe
|
265 |
+
132
|
266 |
+
makon jeyawani yara ba godiyar sa ga aikinm
|
267 |
+
133
|
268 |
+
kirani bayan ku yi maganarsu
|
269 |
+
134
|
270 |
+
kamar jauro na jin tsoron wani azu
|
271 |
+
135
|
272 |
+
ina bukatar wanda zun yi maganar shi
|
273 |
+
136
|
274 |
+
ibrahim ya fara kooruwa ckin azaba
|
275 |
+
137
|
276 |
+
muna da gig dobeye da rijir a gidan rawa
|
277 |
+
138
|
278 |
+
shi gbanrawa shi ne samu bubi
|
279 |
+
139
|
280 |
+
jauroya ce na sun wancin do huka sa bashi
|
281 |
+
140
|
282 |
+
ka can gargidan yarine za tu i ba da karye ba
|
283 |
+
141
|
284 |
+
ina son jif karsawancin kasashin waje a nin gaba
|
285 |
+
142
|
286 |
+
bun guda hakan jiya
|
287 |
+
143
|
288 |
+
ban san yisuf yina baci ba
|
289 |
+
144
|
290 |
+
ya kudai diskirfi go cnoss
|
291 |
+
145
|
292 |
+
yaushe kyasayawa ganka babur
|
293 |
+
146
|
294 |
+
bitrusa yana yawan tufiyan
|
295 |
+
147
|
296 |
+
abdullahii be biyani kamar yaddae alƙawari ba
|
297 |
+
148
|
298 |
+
ni wayayye ne
|
log_mozilla-foundation_common_voice_7_0_ha_test_targets.txt
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
0
|
2 |
+
katin haɗe yake da kyautar
|
3 |
+
1
|
4 |
+
ya zama ɗabi'ar matasa sanya takalmin fatarauta
|
5 |
+
2
|
6 |
+
za ta iya jin ciwo idan ta yi haka
|
7 |
+
3
|
8 |
+
shin ba wani abu da za su yi ranar juma'a
|
9 |
+
4
|
10 |
+
ganyayyaki da suka bushe suna iyo a saman ruwa
|
11 |
+
5
|
12 |
+
ba wanda ya san yusuf tsohon maƙaryaci ne
|
13 |
+
6
|
14 |
+
na ji daɗin haɗuwa da kai mustapha
|
15 |
+
7
|
16 |
+
ya kunna wutan tun kafin ya shiga cikin kogon
|
17 |
+
8
|
18 |
+
menene sunanka
|
19 |
+
9
|
20 |
+
da yau zan kira ta
|
21 |
+
10
|
22 |
+
zuwa gobe da safe yarinyar ta kammala
|
23 |
+
11
|
24 |
+
ina ma ban aure shi ba
|
25 |
+
12
|
26 |
+
habibu ya nuna bai son kasancewa anan
|
27 |
+
13
|
28 |
+
abin farin akwai tsarin rubutu na musamman ga makafi
|
29 |
+
14
|
30 |
+
ban taba kiran shi da wawa ba
|
31 |
+
15
|
32 |
+
ban san yadda ake kamun kifi ba
|
33 |
+
16
|
34 |
+
an kama matashin ne da hannu cikin wani rikici
|
35 |
+
17
|
36 |
+
ina zama a wani ƙaramin ƙauye kilo mita hamsin tsakaninsu da birni
|
37 |
+
18
|
38 |
+
jalal ya rubuta labari mai tashin hankali da ke da ƙarshe mai farin ciki
|
39 |
+
19
|
40 |
+
zan buƙaci kuɗi fiye da haka
|
41 |
+
20
|
42 |
+
ina aiki cikin abokanai kuma ina rayuwa cikin littafai
|
43 |
+
21
|
44 |
+
muna hutawa tsirara a cikin yashi mai dumi
|
45 |
+
22
|
46 |
+
ba na tsammanin jami na da tabbacin abinda laditu ke son yi
|
47 |
+
23
|
48 |
+
an haramta wa ɗalibai shan taba a farfajiyar makarantar
|
49 |
+
24
|
50 |
+
an fada a jaridun cewar laifi ne na son zuciya
|
51 |
+
25
|
52 |
+
na san ban yi zaɓin da ya dace ba
|
53 |
+
26
|
54 |
+
wajen ya yi kacakaca
|
55 |
+
27
|
56 |
+
wannan uzirin bai kai na barin aiki ba
|
57 |
+
28
|
58 |
+
sun dage sai sun yi tafiya zuwa ƙarshen ƙasar vietnam cikin kwanaki shida kacal
|
59 |
+
29
|
60 |
+
kamar bai faru ba
|
61 |
+
30
|
62 |
+
mercedes na ya fi naka girma
|
63 |
+
31
|
64 |
+
ya yi ƙoƙarin nuna shi jarumi ne bayan an yi garkuwa da shi
|
65 |
+
32
|
66 |
+
tun lokacin da asabe ta mutu mijinta ya shiga cikin zurfin tunani
|
67 |
+
33
|
68 |
+
kungiyar haɗaka da kamfanin sun amince da sabon kwangila
|
69 |
+
34
|
70 |
+
ka kula da wannan labarin
|
71 |
+
35
|
72 |
+
ko akwai ciwo sosai a kirjin ku na bangaren hagu
|
73 |
+
36
|
74 |
+
abin na da ban tsoro
|
75 |
+
37
|
76 |
+
sai dai shagon bai da wani girma sosai
|
77 |
+
38
|
78 |
+
ki tabbatar ba ki cutar da kanki ba
|
79 |
+
39
|
80 |
+
za mu iya ba tare da taimakon ibrahims ba
|
81 |
+
40
|
82 |
+
aliyu ba ta yi tantamar samun mutane da yawa ba haka
|
83 |
+
41
|
84 |
+
idan kin yi sau ɗaya to kar ki ƙara yi
|
85 |
+
42
|
86 |
+
hadizaam bakuwa ce a garin nan ko ba haka ba
|
87 |
+
43
|
88 |
+
jarumin ya mutu akan ki masoyiyata sarauniya ta
|
89 |
+
44
|
90 |
+
na so wuraren zama tsawon yadi shida nesa da kotun
|
91 |
+
45
|
92 |
+
nauyi na sanya abu zuwa tsakiyar duniya
|
93 |
+
46
|
94 |
+
kuma kun ce wannan matsin lamba ne a kirjin ku
|
95 |
+
47
|
96 |
+
lola ta yi rawa tare da grace
|
97 |
+
48
|
98 |
+
amincewa da yanayi shi ne sirrin haƙurinta
|
99 |
+
49
|
100 |
+
ina tunanin ishaku da jummai na zargi
|
101 |
+
50
|
102 |
+
bayan kwashe shekaru goma suna kasuwancin hadin gwiwa sun yanke hukuncin rabawa
|
103 |
+
51
|
104 |
+
kamfaninmu yana tallacetallace na shekarashekara na yen dubu miliyan
|
105 |
+
52
|
106 |
+
abokina na son ya amsa laifi
|
107 |
+
53
|
108 |
+
ka san banbanci tsakanin silba da gwangwani
|
109 |
+
54
|
110 |
+
rana tana bayar da zafi da haske da yawa
|
111 |
+
55
|
112 |
+
yusuf ya fadawa lare yadda suka hadu da hassan
|
113 |
+
56
|
114 |
+
wasu lokutan gudun tsira da rai ya kan bar mutum ba komai
|
115 |
+
57
|
116 |
+
aliyu ya daɗe yana yin wannan aiki
|
117 |
+
58
|
118 |
+
akwai mamaki a ce bai san labarin ba
|
119 |
+
59
|
120 |
+
linda ta gano ishaku ne mutumin da ya yi mata fyaɗe
|
121 |
+
60
|
122 |
+
yau ina fama da ciwon kirji
|
123 |
+
61
|
124 |
+
tana karatun wasan kwaikwayo game da tallafin karatu na musamman
|
125 |
+
62
|
126 |
+
ana buƙatar ɗalibai su yi aikin sa'a ɗaya ga alʻumma a kowane sati
|
127 |
+
63
|
128 |
+
ya ji ruwan saman ya a fuskarsa
|
129 |
+
64
|
130 |
+
zazzabin ya fara kwanaki biyu da suka wuce
|
131 |
+
65
|
132 |
+
mutu ƙazami
|
133 |
+
66
|
134 |
+
ko dai ya sha ƙwya ko kuma ya haukace
|
135 |
+
67
|
136 |
+
habibu asabe hassan da aishaam duk suna magana da faransanci
|
137 |
+
68
|
138 |
+
bana jin jauro zai je bakin ruwa yau
|
139 |
+
69
|
140 |
+
otolalata jerin makamai
|
141 |
+
70
|
142 |
+
ba kwa buƙatar shirya wani muhimmini jawabi
|
143 |
+
71
|
144 |
+
abdullahi na daya daga cikin mamallakan wannan ginin
|
145 |
+
72
|
146 |
+
haƙiƙa bincikenka zai haifar da ɗa mai ido
|
147 |
+
73
|
148 |
+
karen da yaga ba zai iya iso wajena ba ya fara haushi
|
149 |
+
74
|
150 |
+
eh ina fama da ciwo cikin kirji na sosai
|
151 |
+
75
|
152 |
+
yanzu dama ce mai kyau ta hukunta ishaku game da abinda ya aikata
|
153 |
+
76
|
154 |
+
ki bari mustapha ya sai miki wannan
|
155 |
+
77
|
156 |
+
bana tsammanin jauro da lami na da wahalar sha'ani
|
157 |
+
78
|
158 |
+
bayan sati ɗaya abdullahi ya gundiri mutane
|
159 |
+
79
|
160 |
+
zan tambaye shi gobe
|
161 |
+
80
|
162 |
+
da fatan allah ta'ala ya faranta maka rai
|
163 |
+
81
|
164 |
+
lokacin da ya kai mata hari tana neman makullan cikin jakarta
|
165 |
+
82
|
166 |
+
shin kun ji labarin mu
|
167 |
+
83
|
168 |
+
gaskiya bani da wata alama
|
169 |
+
84
|
170 |
+
na yi tunani zan same ku a can
|
171 |
+
85
|
172 |
+
hayaƙin yana shaƙe ta
|
173 |
+
86
|
174 |
+
ka ɗan sha kofi ina tunanin yana da daɗi
|
175 |
+
87
|
176 |
+
ina bukatan ku bayyana min wani abu
|
177 |
+
88
|
178 |
+
yin haka zai fi dadi ko me kuka gani
|
179 |
+
89
|
180 |
+
ni ma na ji
|
181 |
+
90
|
182 |
+
aliyu na tsoron yin magana dani ko ba haka
|
183 |
+
91
|
184 |
+
kamar bitrus ya gaji sosai
|
185 |
+
92
|
186 |
+
zan so idan hakan bai faru ba
|
187 |
+
93
|
188 |
+
na damu kwarai da wannan zafin kirji
|
189 |
+
94
|
190 |
+
kina sanye da kaya
|
191 |
+
95
|
192 |
+
an gudanar da fatin bankwana jiya sabida mr jones
|
193 |
+
96
|
194 |
+
ya batun askirim me cakuletin bayan cin abinci
|
195 |
+
97
|
196 |
+
ina tsoron kada ku cutar da aliyu
|
197 |
+
98
|
198 |
+
tsuntsaye na cin ƙananan ƙwari
|
199 |
+
99
|
200 |
+
ina kallon tsuntsayen lokacin da na ke zaune a balcony ina shan kofi
|
201 |
+
100
|
202 |
+
babangida ya isa landan tare da wasu gungun masana
|
203 |
+
101
|
204 |
+
ibrahim ya ce ya yi tsammanin hauwatu ta yi mamaki
|
205 |
+
102
|
206 |
+
an ce na siyo kek a kan hanyar dawowata daga ofis
|
207 |
+
103
|
208 |
+
ya mugun tsorata da ya ga ƙaton macijin
|
209 |
+
104
|
210 |
+
abdullahi ya san cewa zai iya yin hakan da kyau
|
211 |
+
105
|
212 |
+
na gaji kuma ina jin yinwa kuma haka kowa yake ji
|
213 |
+
106
|
214 |
+
zan komo kansa
|
215 |
+
107
|
216 |
+
amurka za ta fice daga yarjejeniyar paris
|
217 |
+
108
|
218 |
+
ina tunanin ya kamata na fadawa aliko wajen da naje
|
219 |
+
109
|
220 |
+
habibu ya iya waƙa
|
221 |
+
110
|
222 |
+
na yi dariya sosai har da ciwon ciki
|
223 |
+
111
|
224 |
+
na san har yanzu yana can
|
225 |
+
112
|
226 |
+
yana min zafi a kirji
|
227 |
+
113
|
228 |
+
babu rigakafi amma hukumomi dabamdabam suna kokarin samo rigakafin
|
229 |
+
114
|
230 |
+
babangida ya kware a wasan tennis
|
231 |
+
115
|
232 |
+
ibrahim ya ce baya tunanin ko akwai wanda zai iya haka
|
233 |
+
116
|
234 |
+
kuma kuna da zazzaɓi yanzu
|
235 |
+
117
|
236 |
+
ka gaida min da matarka
|
237 |
+
118
|
238 |
+
bitrus ya fara farin ciki bayan ya harba ƙwallon a ragar sa
|
239 |
+
119
|
240 |
+
akwai buƙatar ƙara bincike
|
241 |
+
120
|
242 |
+
ban san hassan da maimuna ba su da lafiya ba
|
243 |
+
121
|
244 |
+
za a ƙara buƙatar gwaji nan gaba
|
245 |
+
122
|
246 |
+
na gaji kasuwancin daga mahaifina
|
247 |
+
123
|
248 |
+
yana zafi a tsakiyar kirji na
|
249 |
+
124
|
250 |
+
kana son ka zauna
|
251 |
+
125
|
252 |
+
ba wanda ya damu da ni
|
253 |
+
126
|
254 |
+
google da amazon sun aiwatar da ƙuntatawa iri daya
|
255 |
+
127
|
256 |
+
gaskiya ne a cikin al'umman amurka cewa namiji ne shugaban gida
|
257 |
+
128
|
258 |
+
mai wannan gidan giya baya taba sayar da giya akan bashi
|
259 |
+
129
|
260 |
+
ishaku bai damu da lare ba
|
261 |
+
130
|
262 |
+
muna da abin mamaki
|
263 |
+
131
|
264 |
+
na so yarda da shi
|
265 |
+
132
|
266 |
+
makon jiya wani ya raba godiyar sa ga aikin mu
|
267 |
+
133
|
268 |
+
kira ni bayan kun yi magana da su
|
269 |
+
134
|
270 |
+
kamar jauro na jin tsoron wani abu
|
271 |
+
135
|
272 |
+
ina bukatar wanda zan yi magana da shi
|
273 |
+
136
|
274 |
+
ibrahimu ya fara kururuwa cikin azaba
|
275 |
+
137
|
276 |
+
muna da gig gobe da daddare a gidan rawa
|
277 |
+
138
|
278 |
+
cigaban rayuwa shi ne samun buɗi
|
279 |
+
139
|
280 |
+
jauro ya ce yana son wancan don haka na bashi
|
281 |
+
140
|
282 |
+
katangar gidan yarin ba za ta iya bada kariya
|
283 |
+
141
|
284 |
+
ina so in shiga kasuwancin kasashen waje a nan gaba
|
285 |
+
142
|
286 |
+
mun gwada hakan jiya
|
287 |
+
143
|
288 |
+
ban san yusuf yana bacci ba
|
289 |
+
144
|
290 |
+
ya fi dai da suka rufe bakunan su
|
291 |
+
145
|
292 |
+
yaushe ka sayawa kanka babur
|
293 |
+
146
|
294 |
+
bitrusa yana yawan tafiya
|
295 |
+
147
|
296 |
+
abdullahi bai biya ni kamar yadda ya yi alkawari ba
|
297 |
+
148
|
298 |
+
ni wayyaye ne
|
mozilla-foundation_common_voice_7_0_ha_test_eval_results.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
WER: 0.5106928999144568
|
2 |
+
CER: 0.13631704817218995
|