|
import re |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
import pandas.util._test_decorators as td |
|
|
|
from pandas import ( |
|
DataFrame, |
|
Index, |
|
MultiIndex, |
|
Series, |
|
_testing as tm, |
|
concat, |
|
option_context, |
|
) |
|
|
|
|
|
@pytest.mark.parametrize("other", [None, Series, Index]) |
|
def test_str_cat_name(index_or_series, other): |
|
|
|
box = index_or_series |
|
values = ["a", "b"] |
|
if other: |
|
other = other(values) |
|
else: |
|
other = values |
|
result = box(values, name="name").str.cat(other, sep=",") |
|
assert result.name == "name" |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))] |
|
) |
|
def test_str_cat(index_or_series, infer_string): |
|
with option_context("future.infer_string", infer_string): |
|
box = index_or_series |
|
|
|
|
|
s = box(["a", "a", "b", "b", "c", np.nan]) |
|
|
|
|
|
result = s.str.cat() |
|
expected = "aabbc" |
|
assert result == expected |
|
|
|
result = s.str.cat(na_rep="-") |
|
expected = "aabbc-" |
|
assert result == expected |
|
|
|
result = s.str.cat(sep="_", na_rep="NA") |
|
expected = "a_a_b_b_c_NA" |
|
assert result == expected |
|
|
|
t = np.array(["a", np.nan, "b", "d", "foo", np.nan], dtype=object) |
|
expected = box(["aa", "a-", "bb", "bd", "cfoo", "--"]) |
|
|
|
|
|
result = s.str.cat(t, na_rep="-") |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
result = s.str.cat(list(t), na_rep="-") |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
rgx = r"If `others` contains arrays or lists \(or other list-likes.*" |
|
z = Series(["1", "2", "3"]) |
|
|
|
with pytest.raises(ValueError, match=rgx): |
|
s.str.cat(z.values) |
|
|
|
with pytest.raises(ValueError, match=rgx): |
|
s.str.cat(list(z)) |
|
|
|
|
|
def test_str_cat_raises_intuitive_error(index_or_series): |
|
|
|
box = index_or_series |
|
s = box(["a", "b", "c", "d"]) |
|
message = "Did you mean to supply a `sep` keyword?" |
|
with pytest.raises(ValueError, match=message): |
|
s.str.cat("|") |
|
with pytest.raises(ValueError, match=message): |
|
s.str.cat(" ") |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))] |
|
) |
|
@pytest.mark.parametrize("sep", ["", None]) |
|
@pytest.mark.parametrize("dtype_target", ["object", "category"]) |
|
@pytest.mark.parametrize("dtype_caller", ["object", "category"]) |
|
def test_str_cat_categorical( |
|
index_or_series, dtype_caller, dtype_target, sep, infer_string |
|
): |
|
box = index_or_series |
|
|
|
with option_context("future.infer_string", infer_string): |
|
s = Index(["a", "a", "b", "a"], dtype=dtype_caller) |
|
s = s if box == Index else Series(s, index=s, dtype=s.dtype) |
|
t = Index(["b", "a", "b", "c"], dtype=dtype_target) |
|
|
|
expected = Index( |
|
["ab", "aa", "bb", "ac"], dtype=object if dtype_caller == "object" else None |
|
) |
|
expected = ( |
|
expected |
|
if box == Index |
|
else Series( |
|
expected, index=Index(s, dtype=dtype_caller), dtype=expected.dtype |
|
) |
|
) |
|
|
|
|
|
result = s.str.cat(t.values, sep=sep) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
t = Series(t.values, index=Index(s, dtype=dtype_caller)) |
|
result = s.str.cat(t, sep=sep) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
result = s.str.cat(t.values, sep=sep) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
t = Series(t.values, index=t.values) |
|
expected = Index( |
|
["aa", "aa", "bb", "bb", "aa"], |
|
dtype=object if dtype_caller == "object" else None, |
|
) |
|
dtype = object if dtype_caller == "object" else s.dtype.categories.dtype |
|
expected = ( |
|
expected |
|
if box == Index |
|
else Series( |
|
expected, |
|
index=Index(expected.str[:1], dtype=dtype), |
|
dtype=expected.dtype, |
|
) |
|
) |
|
|
|
result = s.str.cat(t, sep=sep) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"data", |
|
[[1, 2, 3], [0.1, 0.2, 0.3], [1, 2, "b"]], |
|
ids=["integers", "floats", "mixed"], |
|
) |
|
|
|
@pytest.mark.parametrize( |
|
"box", |
|
[Series, Index, list, lambda x: np.array(x, dtype=object)], |
|
ids=["Series", "Index", "list", "np.array"], |
|
) |
|
def test_str_cat_wrong_dtype_raises(box, data): |
|
|
|
s = Series(["a", "b", "c"]) |
|
t = box(data) |
|
|
|
msg = "Concatenation requires list-likes containing only strings.*" |
|
with pytest.raises(TypeError, match=msg): |
|
|
|
s.str.cat(t, join="outer", na_rep="-") |
|
|
|
|
|
def test_str_cat_mixed_inputs(index_or_series): |
|
box = index_or_series |
|
s = Index(["a", "b", "c", "d"]) |
|
s = s if box == Index else Series(s, index=s) |
|
|
|
t = Series(["A", "B", "C", "D"], index=s.values) |
|
d = concat([t, Series(s, index=s)], axis=1) |
|
|
|
expected = Index(["aAa", "bBb", "cCc", "dDd"]) |
|
expected = expected if box == Index else Series(expected.values, index=s.values) |
|
|
|
|
|
result = s.str.cat(d) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
result = s.str.cat(d.values) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
result = s.str.cat([t, s]) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
result = s.str.cat([t, s.values]) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
t.index = ["b", "c", "d", "a"] |
|
expected = box(["aDa", "bAb", "cBc", "dCd"]) |
|
expected = expected if box == Index else Series(expected.values, index=s.values) |
|
result = s.str.cat([t, s]) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
result = s.str.cat([t, s.values]) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
d.index = ["b", "c", "d", "a"] |
|
expected = box(["aDd", "bAa", "cBb", "dCc"]) |
|
expected = expected if box == Index else Series(expected.values, index=s.values) |
|
result = s.str.cat(d) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
rgx = r"If `others` contains arrays or lists \(or other list-likes.*" |
|
z = Series(["1", "2", "3"]) |
|
e = concat([z, z], axis=1) |
|
|
|
|
|
with pytest.raises(ValueError, match=rgx): |
|
s.str.cat(e.values) |
|
|
|
|
|
with pytest.raises(ValueError, match=rgx): |
|
s.str.cat([z.values, s.values]) |
|
|
|
|
|
with pytest.raises(ValueError, match=rgx): |
|
s.str.cat([z.values, s]) |
|
|
|
|
|
rgx = "others must be Series, Index, DataFrame,.*" |
|
|
|
u = Series(["a", np.nan, "c", None]) |
|
|
|
|
|
with pytest.raises(TypeError, match=rgx): |
|
s.str.cat([u, "u"]) |
|
|
|
|
|
with pytest.raises(TypeError, match=rgx): |
|
s.str.cat([u, d]) |
|
|
|
|
|
with pytest.raises(TypeError, match=rgx): |
|
s.str.cat([u, d.values]) |
|
|
|
|
|
with pytest.raises(TypeError, match=rgx): |
|
s.str.cat([u, [u, d]]) |
|
|
|
|
|
|
|
with pytest.raises(TypeError, match=rgx): |
|
s.str.cat(set(u)) |
|
|
|
|
|
|
|
with pytest.raises(TypeError, match=rgx): |
|
s.str.cat([u, set(u)]) |
|
|
|
|
|
with pytest.raises(TypeError, match=rgx): |
|
s.str.cat(1) |
|
|
|
|
|
with pytest.raises(TypeError, match=rgx): |
|
s.str.cat(iter([t.values, list(s)])) |
|
|
|
|
|
@pytest.mark.parametrize("join", ["left", "outer", "inner", "right"]) |
|
def test_str_cat_align_indexed(index_or_series, join): |
|
|
|
box = index_or_series |
|
|
|
s = Series(["a", "b", "c", "d"], index=["a", "b", "c", "d"]) |
|
t = Series(["D", "A", "E", "B"], index=["d", "a", "e", "b"]) |
|
sa, ta = s.align(t, join=join) |
|
|
|
expected = sa.str.cat(ta, na_rep="-") |
|
|
|
if box == Index: |
|
s = Index(s) |
|
sa = Index(sa) |
|
expected = Index(expected) |
|
|
|
result = s.str.cat(t, join=join, na_rep="-") |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize("join", ["left", "outer", "inner", "right"]) |
|
def test_str_cat_align_mixed_inputs(join): |
|
s = Series(["a", "b", "c", "d"]) |
|
t = Series(["d", "a", "e", "b"], index=[3, 0, 4, 1]) |
|
d = concat([t, t], axis=1) |
|
|
|
expected_outer = Series(["aaa", "bbb", "c--", "ddd", "-ee"]) |
|
expected = expected_outer.loc[s.index.join(t.index, how=join)] |
|
|
|
|
|
result = s.str.cat([t, t], join=join, na_rep="-") |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
result = s.str.cat(d, join=join, na_rep="-") |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
u = np.array(["A", "B", "C", "D"]) |
|
expected_outer = Series(["aaA", "bbB", "c-C", "ddD", "-e-"]) |
|
|
|
rhs_idx = ( |
|
t.index.intersection(s.index) |
|
if join == "inner" |
|
else t.index.union(s.index) |
|
if join == "outer" |
|
else t.index.append(s.index.difference(t.index)) |
|
) |
|
|
|
expected = expected_outer.loc[s.index.join(rhs_idx, how=join)] |
|
result = s.str.cat([t, u], join=join, na_rep="-") |
|
tm.assert_series_equal(result, expected) |
|
|
|
with pytest.raises(TypeError, match="others must be Series,.*"): |
|
|
|
s.str.cat([t, list(u)], join=join) |
|
|
|
|
|
rgx = r"If `others` contains arrays or lists \(or other list-likes.*" |
|
z = Series(["1", "2", "3"]).values |
|
|
|
|
|
with pytest.raises(ValueError, match=rgx): |
|
s.str.cat(z, join=join) |
|
|
|
|
|
with pytest.raises(ValueError, match=rgx): |
|
s.str.cat([t, z], join=join) |
|
|
|
|
|
def test_str_cat_all_na(index_or_series, index_or_series2): |
|
|
|
box = index_or_series |
|
other = index_or_series2 |
|
|
|
|
|
s = Index(["a", "b", "c", "d"]) |
|
s = s if box == Index else Series(s, index=s) |
|
t = other([np.nan] * 4, dtype=object) |
|
|
|
t = t if other == Index else Series(t, index=s) |
|
|
|
|
|
if box == Series: |
|
expected = Series([np.nan] * 4, index=s.index, dtype=s.dtype) |
|
else: |
|
|
|
expected = Index([np.nan] * 4, dtype=object) |
|
result = s.str.cat(t, join="left") |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
if other == Series: |
|
expected = Series([np.nan] * 4, dtype=object, index=t.index) |
|
result = t.str.cat(s, join="left") |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_str_cat_special_cases(): |
|
s = Series(["a", "b", "c", "d"]) |
|
t = Series(["d", "a", "e", "b"], index=[3, 0, 4, 1]) |
|
|
|
|
|
expected = Series(["aaa", "bbb", "c-c", "ddd", "-e-"]) |
|
result = s.str.cat(iter([t, s.values]), join="outer", na_rep="-") |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
expected = Series(["aa-", "d-d"], index=[0, 3]) |
|
result = s.str.cat([t.loc[[0]], t.loc[[3]]], join="right", na_rep="-") |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_cat_on_filtered_index(): |
|
df = DataFrame( |
|
index=MultiIndex.from_product( |
|
[[2011, 2012], [1, 2, 3]], names=["year", "month"] |
|
) |
|
) |
|
|
|
df = df.reset_index() |
|
df = df[df.month > 1] |
|
|
|
str_year = df.year.astype("str") |
|
str_month = df.month.astype("str") |
|
str_both = str_year.str.cat(str_month, sep=" ") |
|
|
|
assert str_both.loc[1] == "2011 2" |
|
|
|
str_multiple = str_year.str.cat([str_month, str_month], sep=" ") |
|
|
|
assert str_multiple.loc[1] == "2011 2 2" |
|
|
|
|
|
@pytest.mark.parametrize("klass", [tuple, list, np.array, Series, Index]) |
|
def test_cat_different_classes(klass): |
|
|
|
s = Series(["a", "b", "c"]) |
|
result = s.str.cat(klass(["x", "y", "z"])) |
|
expected = Series(["ax", "by", "cz"]) |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
def test_cat_on_series_dot_str(): |
|
|
|
ps = Series(["AbC", "de", "FGHI", "j", "kLLLm"]) |
|
|
|
message = re.escape( |
|
"others must be Series, Index, DataFrame, np.ndarray " |
|
"or list-like (either containing only strings or " |
|
"containing only objects of type Series/Index/" |
|
"np.ndarray[1-dim])" |
|
) |
|
with pytest.raises(TypeError, match=message): |
|
ps.str.cat(others=ps.str) |
|
|