MiuN2k3 commited on
Commit
622b6e1
1 Parent(s): 88d98e9

Training in progress, epoch 1

Browse files
Files changed (4) hide show
  1. README.md +71 -0
  2. config.json +39 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: microsoft/infoxlm-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: vp-infoxlm-base-dsc
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # vp-infoxlm-base-dsc
20
+
21
+ This model is a fine-tuned version of [microsoft/infoxlm-base](https://huggingface.co/microsoft/infoxlm-base) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.4642
24
+ - Accuracy: 0.8251
25
+ - F1: 0.8249
26
+ - Precision: 0.8259
27
+ - Recall: 0.8251
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 1e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 16
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_ratio: 0.05
53
+ - num_epochs: 5
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
59
+ | 0.9971 | 1.0 | 1590 | 0.8708 | 0.5664 | 0.5565 | 0.6042 | 0.5664 |
60
+ | 0.7175 | 2.0 | 3180 | 0.5943 | 0.7631 | 0.7626 | 0.7713 | 0.7631 |
61
+ | 0.5942 | 3.0 | 4770 | 0.5007 | 0.8069 | 0.8069 | 0.8075 | 0.8069 |
62
+ | 0.4981 | 4.0 | 6360 | 0.4676 | 0.8188 | 0.8182 | 0.8218 | 0.8188 |
63
+ | 0.4669 | 5.0 | 7950 | 0.4642 | 0.8251 | 0.8249 | 0.8259 | 0.8251 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.44.2
69
+ - Pytorch 2.4.0
70
+ - Datasets 3.0.0
71
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/infoxlm-large",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 4096,
20
+ "label2id": {
21
+ "LABEL_0": 0,
22
+ "LABEL_1": 1,
23
+ "LABEL_2": 2
24
+ },
25
+ "layer_norm_eps": 1e-05,
26
+ "max_position_embeddings": 514,
27
+ "model_type": "xlm-roberta",
28
+ "num_attention_heads": 16,
29
+ "num_hidden_layers": 24,
30
+ "output_past": true,
31
+ "pad_token_id": 1,
32
+ "position_embedding_type": "absolute",
33
+ "problem_type": "single_label_classification",
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.44.2",
36
+ "type_vocab_size": 1,
37
+ "use_cache": true,
38
+ "vocab_size": 250002
39
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a935f954d2adf656bfc316a9d7b67e020fa85c6055310ab9053b3165777eebfc
3
+ size 2239622772
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9914f3605e7e18ebbd7a3a96fbda8beff025a3ab3b28bbdbc58a7322a77b5b93
3
+ size 5176