Mithul commited on
Commit
ca764eb
·
1 Parent(s): d6ab2ca

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 267.17 +/- 18.47
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f552e6d0d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f552e6d0dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f552e6d0e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f552e6d0ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f552e6d0f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f552e6d6040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f552e6d60d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f552e6d6160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f552e6d61f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f552e6d6280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f552e6d6310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f552e6d4090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672352883179506004, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNJDjw8ano+jLe6veqamr6FLk89EmJWvAAAAAAAAAAArUkzvj6NhT/1Y8q9IkIKv0exhr4em3Y9AAAAAAAAAABm7ku7rhmgukNSbjOCt8av38kgumoLyrMAAIA/AACAP4AQ7T0O9wc/ly+UvUrIur7/xqo9ogoJPAAAAAAAAAAAAHH8vFA9Oj+K/iU9BIPnvkJwoDyG5k88AAAAAAAAAABzPoM94oGKPxLJxT1R0hC//KSqPVz1rT0AAAAAAAAAAJojq7xsW6s/wz1svtp6/b5+mKO8p70lvgAAAAAAAAAAM7GnPOHgiLrAyBw4SQbIMlTfXzpiTDW3AACAPwAAgD971ae+HWwiP1ZrTz5VVMS+N2vVvcLmDT4AAAAAAAAAAABypjxuy4M96jgvvnqcZ74e8w693j+ZPAAAAAAAAAAAzXqvPeOqNj8muUo9H5IIvwoynz3ICT09AAAAAAAAAABaA5699sBUujdjzLkJVtO1joSeOzaT6zgAAAAAAAAAACBKAD6CPLc/+xMGP4qbc755+hA+mm2RPgAAAAAAAAAAFqWBvo7wqz9GEw6/itoOvwvo1L6yXey9AAAAAAAAAADAiAO+MgiWP9zrAb9aXiG/u7xvvjsCuL4AAAAAAAAAAObdpr321C66MAnGumN6VLaaAFw79inmOQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbjKqDGMMcUCUhpRSlIwBbJRL5YwBdJRHQJ1haPwNLDh1fZQoaAZoCWgPQwjKbfse9dFyQJSGlFKUaBVL4WgWR0CdYnc5Ke05dX2UKGgGaAloD0MIdPBMaFIucUCUhpRSlGgVTScBaBZHQJ1ih0xM3611fZQoaAZoCWgPQwgRpiiXxk1wQJSGlFKUaBVNGAFoFkdAnWKQXhwVCXV9lChoBmgJaA9DCP0RhgHLnnFAlIaUUpRoFUvnaBZHQJ1jhp/PPcB1fZQoaAZoCWgPQwjUf9b8uBxyQJSGlFKUaBVL6mgWR0CdY7wsXizcdX2UKGgGaAloD0MIttYXCS2UcECUhpRSlGgVTRABaBZHQJ1klCTlkpZ1fZQoaAZoCWgPQwjTo6mezHRwQJSGlFKUaBVL+WgWR0CdZLol2NeddX2UKGgGaAloD0MIda4oJUREc0CUhpRSlGgVS9VoFkdAnWUA6hg3LnV9lChoBmgJaA9DCFgDlIaauXNAlIaUUpRoFU0LAWgWR0CdZSamXPZ7dX2UKGgGaAloD0MI1jVaDjQBckCUhpRSlGgVS85oFkdAnWU8L0BfbHV9lChoBmgJaA9DCJqUgm5v6HJAlIaUUpRoFUvIaBZHQJ1lU0DU3GZ1fZQoaAZoCWgPQwjZ6JyfIlhyQJSGlFKUaBVNgQFoFkdAnWV4phF3IXV9lChoBmgJaA9DCOFGyhZJj3JAlIaUUpRoFUvnaBZHQJ1lgaP0Zm91fZQoaAZoCWgPQwgb17/rM8s4QJSGlFKUaBVLtmgWR0CdZZ4AS39adX2UKGgGaAloD0MIq3XicvyLcECUhpRSlGgVS/VoFkdAnWeUmY0EYHV9lChoBmgJaA9DCEnyXN/HDHFAlIaUUpRoFUvWaBZHQJ1n29Zid8R1fZQoaAZoCWgPQwjZzYx+tOdxQJSGlFKUaBVL2mgWR0CdaAgfU4JedX2UKGgGaAloD0MIga/o1mtTUECUhpRSlGgVS5VoFkdAnWltdNWU8nV9lChoBmgJaA9DCHpvDAGALXFAlIaUUpRoFUvkaBZHQJ1pjAEdNnJ1fZQoaAZoCWgPQwidSZuqu3lyQJSGlFKUaBVNFgFoFkdAnWmurdWQwXV9lChoBmgJaA9DCNUkeENat3FAlIaUUpRoFU0BAWgWR0CdahPJaJQ+dX2UKGgGaAloD0MI29/ZHn0scUCUhpRSlGgVS+VoFkdAnWpojOcDsHV9lChoBmgJaA9DCDXwoxr2Um5AlIaUUpRoFUvQaBZHQJ1qcAQxveh1fZQoaAZoCWgPQwifWKfK99ZwQJSGlFKUaBVL4mgWR0Cdangx8D0UdX2UKGgGaAloD0MI6YGPwYo8bkCUhpRSlGgVS9FoFkdAnWqMTewcHXV9lChoBmgJaA9DCHsQAvIl025AlIaUUpRoFUviaBZHQJ1q/ORkmQd1fZQoaAZoCWgPQwhDVUylH8pvQJSGlFKUaBVL8GgWR0Cdav5B1LamdX2UKGgGaAloD0MIWp9yTBaPc0CUhpRSlGgVS/hoFkdAnWug2VE/jnV9lChoBmgJaA9DCG9nX3kQDHFAlIaUUpRoFU0BAWgWR0Cda8sYEW69dX2UKGgGaAloD0MI3jmUoeo/c0CUhpRSlGgVS/VoFkdAnW4JhKDkEXV9lChoBmgJaA9DCL5PVaFBR3FAlIaUUpRoFUvQaBZHQJ2BQ6T4cm11fZQoaAZoCWgPQwggm+RHPBpxQJSGlFKUaBVL1WgWR0CdgUkU9IPLdX2UKGgGaAloD0MIUmABTBnGU0CUhpRSlGgVS7NoFkdAnYFYaLn9vXV9lChoBmgJaA9DCAppjUEnrXFAlIaUUpRoFU0fAWgWR0CdgW938n/ldX2UKGgGaAloD0MIJgFqahnScECUhpRSlGgVS9ZoFkdAnYGVM7EHdHV9lChoBmgJaA9DCAaf5uRFyWxAlIaUUpRoFUveaBZHQJ2CnUd7v5R1fZQoaAZoCWgPQwgUIuAQqqlvQJSGlFKUaBVLymgWR0Cdgr6Y3Ns4dX2UKGgGaAloD0MIuKzCZgB1b0CUhpRSlGgVS/doFkdAnYL7WiDdxnV9lChoBmgJaA9DCGSRJt6Bq29AlIaUUpRoFUvraBZHQJ2DGUUwi7l1fZQoaAZoCWgPQwhxdmuZzI1yQJSGlFKUaBVL5WgWR0Cdg5AWzniedX2UKGgGaAloD0MI9rNYiqSxcECUhpRSlGgVS89oFkdAnYPKz3RG+nV9lChoBmgJaA9DCH/5ZMXwiXJAlIaUUpRoFU0OAWgWR0Cdg/850bLmdX2UKGgGaAloD0MINXo1QGlxcECUhpRSlGgVS95oFkdAnYRphF3IMnV9lChoBmgJaA9DCEUuOIP/J3BAlIaUUpRoFUvJaBZHQJ2HMSxqwhZ1fZQoaAZoCWgPQwjOxkrM8zJxQJSGlFKUaBVL62gWR0Cdh4Kk2xY8dX2UKGgGaAloD0MIf2snSgILcUCUhpRSlGgVS9poFkdAnYeWvOhTO3V9lChoBmgJaA9DCAtfX+tSq3FAlIaUUpRoFUvtaBZHQJ2IIb2lEZ11fZQoaAZoCWgPQwhl4ICWbhpyQJSGlFKUaBVL/WgWR0CdiKXlbNbDdX2UKGgGaAloD0MIa5p3nKKub0CUhpRSlGgVS9BoFkdAnYjHmV7hN3V9lChoBmgJaA9DCCl1yThGtXFAlIaUUpRoFUv+aBZHQJ2I73QD3dt1fZQoaAZoCWgPQwiD+MCOv2NwQJSGlFKUaBVL22gWR0CdiPyaNMoMdX2UKGgGaAloD0MI6UfDKfOobkCUhpRSlGgVS9NoFkdAnYkz238XN3V9lChoBmgJaA9DCCmwAKYMiFlAlIaUUpRoFU3oA2gWR0CdiVN70Fr3dX2UKGgGaAloD0MIPStpxTeScUCUhpRSlGgVS8poFkdAnYlcTrVvuXV9lChoBmgJaA9DCHam0HlNTnFAlIaUUpRoFUvpaBZHQJ2Jmc9W6sh1fZQoaAZoCWgPQwiD+StkLtxwQJSGlFKUaBVLy2gWR0CdibHPNVzZdX2UKGgGaAloD0MIibFMv8R1b0CUhpRSlGgVS9doFkdAnYnMNUfgaXV9lChoBmgJaA9DCBAIdCZte29AlIaUUpRoFUv7aBZHQJ2K/1VYISl1fZQoaAZoCWgPQwiLUdfae/BtQJSGlFKUaBVL1WgWR0CdjMS2H+IedX2UKGgGaAloD0MIPUhPkcP7ckCUhpRSlGgVS+xoFkdAnY1/LcKw6nV9lChoBmgJaA9DCPmDgeee/3JAlIaUUpRoFUvLaBZHQJ2N9mh/RVp1fZQoaAZoCWgPQwi1iv7QzNBuQJSGlFKUaBVL2mgWR0CdjhMKCxu9dX2UKGgGaAloD0MILAyR09cIbkCUhpRSlGgVTRABaBZHQJ2ON8Ti84B1fZQoaAZoCWgPQwhvn1VmSoJzQJSGlFKUaBVL82gWR0CdjkXpnpSrdX2UKGgGaAloD0MIFceBV0vCcECUhpRSlGgVS9FoFkdAnY5cdgfEGnV9lChoBmgJaA9DCP0VMlfGHHBAlIaUUpRoFUvVaBZHQJ2OkCgbp/x1fZQoaAZoCWgPQwgVjiCVImZyQJSGlFKUaBVL7WgWR0CdjqdwNsnBdX2UKGgGaAloD0MITUpBt5dnc0CUhpRSlGgVS+1oFkdAnY8h1cMVlHV9lChoBmgJaA9DCOeNk8I8VnJAlIaUUpRoFU0GAWgWR0Cdj1UKArhBdX2UKGgGaAloD0MIUIvBw/R2cUCUhpRSlGgVS+9oFkdAnY9zDn/1hHV9lChoBmgJaA9DCEhrDDohuW5AlIaUUpRoFUvtaBZHQJ2Pgg5imVJ1fZQoaAZoCWgPQwjfNlMhnoxxQJSGlFKUaBVLymgWR0CdkCmmLtNSdX2UKGgGaAloD0MIaYzWURWLcUCUhpRSlGgVTQ0BaBZHQJ2QWaTfR/p1fZQoaAZoCWgPQwgWwf9W8jZyQJSGlFKUaBVL52gWR0Cdkn/47A+IdX2UKGgGaAloD0MIblFmgwwKcUCUhpRSlGgVS8loFkdAnZLO5jH4oXV9lChoBmgJaA9DCHh8e9cgJHFAlIaUUpRoFUv2aBZHQJ2TrKB/Zuh1fZQoaAZoCWgPQwiIvruVpXlwQJSGlFKUaBVL5mgWR0Cdk/pkwvg4dX2UKGgGaAloD0MIqgzjbpDqbkCUhpRSlGgVS9doFkdAnZQE0SAYpHV9lChoBmgJaA9DCKJgxhTsZHJAlIaUUpRoFUvgaBZHQJ2UJ2IO6NF1fZQoaAZoCWgPQwjeVnptdjJwQJSGlFKUaBVL6mgWR0CdlC+x4Y78dX2UKGgGaAloD0MIa9PYXotaZkCUhpRSlGgVTegDaBZHQJ2Ud7XxvvV1fZQoaAZoCWgPQwjeAZ60MPlyQJSGlFKUaBVL1WgWR0CdlLOlwcYJdX2UKGgGaAloD0MIYsCSq1iKckCUhpRSlGgVS+poFkdAnZT6VY6nznV9lChoBmgJaA9DCBDmdi+3B3JAlIaUUpRoFUvuaBZHQJ2VZF6Rhc91fZQoaAZoCWgPQwiQMXctId5xQJSGlFKUaBVL+WgWR0CdlbERradudX2UKGgGaAloD0MI2QkvwWlhcECUhpRSlGgVS+hoFkdAnZYn+AEt/XV9lChoBmgJaA9DCJ6ymq4nH3BAlIaUUpRoFUv1aBZHQJ2WQXenAIp1fZQoaAZoCWgPQwiXH7jKE1lxQJSGlFKUaBVL3mgWR0CdmBVMmF8HdX2UKGgGaAloD0MImrD9ZAzJcUCUhpRSlGgVS9BoFkdAnZjbJKaodnV9lChoBmgJaA9DCCIa3UGsHnJAlIaUUpRoFUvzaBZHQJ2ZB6OYIB11fZQoaAZoCWgPQwjjbDoCODBuQJSGlFKUaBVL12gWR0CdmV3g1m8NdX2UKGgGaAloD0MIyXVTyuurb0CUhpRSlGgVS+FoFkdAnZmq68QI2XV9lChoBmgJaA9DCGd9yjHZMm1AlIaUUpRoFUvoaBZHQJ2Z/LvCuU51fZQoaAZoCWgPQwg7ONibmAtxQJSGlFKUaBVL7WgWR0CdmiV/tpmFdX2UKGgGaAloD0MIzzEge/3PcUCUhpRSlGgVS99oFkdAnZpXB55Z83V9lChoBmgJaA9DCJPJqZ0h13FAlIaUUpRoFUv3aBZHQJ2aqiVSn+B1fZQoaAZoCWgPQwg2Bp0Q+j5yQJSGlFKUaBVL1WgWR0Cdmyf51vETdX2UKGgGaAloD0MIRE5fz5eccUCUhpRSlGgVS/RoFkdAnZsoBaLXMHV9lChoBmgJaA9DCC2VtyPcJ3FAlIaUUpRoFUvxaBZHQJ2beyX2M851ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:851a76c4fd46521cf8077a788354e2d9de2146d9c48fec0c5ced66186222dacd
3
+ size 146595
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f552e6d0d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f552e6d0dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f552e6d0e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f552e6d0ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f552e6d0f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f552e6d6040>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f552e6d60d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f552e6d6160>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f552e6d61f0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f552e6d6280>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f552e6d6310>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f552e6d4090>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 2015232,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672352883179506004,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNJDjw8ano+jLe6veqamr6FLk89EmJWvAAAAAAAAAAArUkzvj6NhT/1Y8q9IkIKv0exhr4em3Y9AAAAAAAAAABm7ku7rhmgukNSbjOCt8av38kgumoLyrMAAIA/AACAP4AQ7T0O9wc/ly+UvUrIur7/xqo9ogoJPAAAAAAAAAAAAHH8vFA9Oj+K/iU9BIPnvkJwoDyG5k88AAAAAAAAAABzPoM94oGKPxLJxT1R0hC//KSqPVz1rT0AAAAAAAAAAJojq7xsW6s/wz1svtp6/b5+mKO8p70lvgAAAAAAAAAAM7GnPOHgiLrAyBw4SQbIMlTfXzpiTDW3AACAPwAAgD971ae+HWwiP1ZrTz5VVMS+N2vVvcLmDT4AAAAAAAAAAABypjxuy4M96jgvvnqcZ74e8w693j+ZPAAAAAAAAAAAzXqvPeOqNj8muUo9H5IIvwoynz3ICT09AAAAAAAAAABaA5699sBUujdjzLkJVtO1joSeOzaT6zgAAAAAAAAAACBKAD6CPLc/+xMGP4qbc755+hA+mm2RPgAAAAAAAAAAFqWBvo7wqz9GEw6/itoOvwvo1L6yXey9AAAAAAAAAADAiAO+MgiWP9zrAb9aXiG/u7xvvjsCuL4AAAAAAAAAAObdpr321C66MAnGumN6VLaaAFw79inmOQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbjKqDGMMcUCUhpRSlIwBbJRL5YwBdJRHQJ1haPwNLDh1fZQoaAZoCWgPQwjKbfse9dFyQJSGlFKUaBVL4WgWR0CdYnc5Ke05dX2UKGgGaAloD0MIdPBMaFIucUCUhpRSlGgVTScBaBZHQJ1ih0xM3611fZQoaAZoCWgPQwgRpiiXxk1wQJSGlFKUaBVNGAFoFkdAnWKQXhwVCXV9lChoBmgJaA9DCP0RhgHLnnFAlIaUUpRoFUvnaBZHQJ1jhp/PPcB1fZQoaAZoCWgPQwjUf9b8uBxyQJSGlFKUaBVL6mgWR0CdY7wsXizcdX2UKGgGaAloD0MIttYXCS2UcECUhpRSlGgVTRABaBZHQJ1klCTlkpZ1fZQoaAZoCWgPQwjTo6mezHRwQJSGlFKUaBVL+WgWR0CdZLol2NeddX2UKGgGaAloD0MIda4oJUREc0CUhpRSlGgVS9VoFkdAnWUA6hg3LnV9lChoBmgJaA9DCFgDlIaauXNAlIaUUpRoFU0LAWgWR0CdZSamXPZ7dX2UKGgGaAloD0MI1jVaDjQBckCUhpRSlGgVS85oFkdAnWU8L0BfbHV9lChoBmgJaA9DCJqUgm5v6HJAlIaUUpRoFUvIaBZHQJ1lU0DU3GZ1fZQoaAZoCWgPQwjZ6JyfIlhyQJSGlFKUaBVNgQFoFkdAnWV4phF3IXV9lChoBmgJaA9DCOFGyhZJj3JAlIaUUpRoFUvnaBZHQJ1lgaP0Zm91fZQoaAZoCWgPQwgb17/rM8s4QJSGlFKUaBVLtmgWR0CdZZ4AS39adX2UKGgGaAloD0MIq3XicvyLcECUhpRSlGgVS/VoFkdAnWeUmY0EYHV9lChoBmgJaA9DCEnyXN/HDHFAlIaUUpRoFUvWaBZHQJ1n29Zid8R1fZQoaAZoCWgPQwjZzYx+tOdxQJSGlFKUaBVL2mgWR0CdaAgfU4JedX2UKGgGaAloD0MIga/o1mtTUECUhpRSlGgVS5VoFkdAnWltdNWU8nV9lChoBmgJaA9DCHpvDAGALXFAlIaUUpRoFUvkaBZHQJ1pjAEdNnJ1fZQoaAZoCWgPQwidSZuqu3lyQJSGlFKUaBVNFgFoFkdAnWmurdWQwXV9lChoBmgJaA9DCNUkeENat3FAlIaUUpRoFU0BAWgWR0CdahPJaJQ+dX2UKGgGaAloD0MI29/ZHn0scUCUhpRSlGgVS+VoFkdAnWpojOcDsHV9lChoBmgJaA9DCDXwoxr2Um5AlIaUUpRoFUvQaBZHQJ1qcAQxveh1fZQoaAZoCWgPQwifWKfK99ZwQJSGlFKUaBVL4mgWR0Cdangx8D0UdX2UKGgGaAloD0MI6YGPwYo8bkCUhpRSlGgVS9FoFkdAnWqMTewcHXV9lChoBmgJaA9DCHsQAvIl025AlIaUUpRoFUviaBZHQJ1q/ORkmQd1fZQoaAZoCWgPQwhDVUylH8pvQJSGlFKUaBVL8GgWR0Cdav5B1LamdX2UKGgGaAloD0MIWp9yTBaPc0CUhpRSlGgVS/hoFkdAnWug2VE/jnV9lChoBmgJaA9DCG9nX3kQDHFAlIaUUpRoFU0BAWgWR0Cda8sYEW69dX2UKGgGaAloD0MI3jmUoeo/c0CUhpRSlGgVS/VoFkdAnW4JhKDkEXV9lChoBmgJaA9DCL5PVaFBR3FAlIaUUpRoFUvQaBZHQJ2BQ6T4cm11fZQoaAZoCWgPQwggm+RHPBpxQJSGlFKUaBVL1WgWR0CdgUkU9IPLdX2UKGgGaAloD0MIUmABTBnGU0CUhpRSlGgVS7NoFkdAnYFYaLn9vXV9lChoBmgJaA9DCAppjUEnrXFAlIaUUpRoFU0fAWgWR0CdgW938n/ldX2UKGgGaAloD0MIJgFqahnScECUhpRSlGgVS9ZoFkdAnYGVM7EHdHV9lChoBmgJaA9DCAaf5uRFyWxAlIaUUpRoFUveaBZHQJ2CnUd7v5R1fZQoaAZoCWgPQwgUIuAQqqlvQJSGlFKUaBVLymgWR0Cdgr6Y3Ns4dX2UKGgGaAloD0MIuKzCZgB1b0CUhpRSlGgVS/doFkdAnYL7WiDdxnV9lChoBmgJaA9DCGSRJt6Bq29AlIaUUpRoFUvraBZHQJ2DGUUwi7l1fZQoaAZoCWgPQwhxdmuZzI1yQJSGlFKUaBVL5WgWR0Cdg5AWzniedX2UKGgGaAloD0MI9rNYiqSxcECUhpRSlGgVS89oFkdAnYPKz3RG+nV9lChoBmgJaA9DCH/5ZMXwiXJAlIaUUpRoFU0OAWgWR0Cdg/850bLmdX2UKGgGaAloD0MINXo1QGlxcECUhpRSlGgVS95oFkdAnYRphF3IMnV9lChoBmgJaA9DCEUuOIP/J3BAlIaUUpRoFUvJaBZHQJ2HMSxqwhZ1fZQoaAZoCWgPQwjOxkrM8zJxQJSGlFKUaBVL62gWR0Cdh4Kk2xY8dX2UKGgGaAloD0MIf2snSgILcUCUhpRSlGgVS9poFkdAnYeWvOhTO3V9lChoBmgJaA9DCAtfX+tSq3FAlIaUUpRoFUvtaBZHQJ2IIb2lEZ11fZQoaAZoCWgPQwhl4ICWbhpyQJSGlFKUaBVL/WgWR0CdiKXlbNbDdX2UKGgGaAloD0MIa5p3nKKub0CUhpRSlGgVS9BoFkdAnYjHmV7hN3V9lChoBmgJaA9DCCl1yThGtXFAlIaUUpRoFUv+aBZHQJ2I73QD3dt1fZQoaAZoCWgPQwiD+MCOv2NwQJSGlFKUaBVL22gWR0CdiPyaNMoMdX2UKGgGaAloD0MI6UfDKfOobkCUhpRSlGgVS9NoFkdAnYkz238XN3V9lChoBmgJaA9DCCmwAKYMiFlAlIaUUpRoFU3oA2gWR0CdiVN70Fr3dX2UKGgGaAloD0MIPStpxTeScUCUhpRSlGgVS8poFkdAnYlcTrVvuXV9lChoBmgJaA9DCHam0HlNTnFAlIaUUpRoFUvpaBZHQJ2Jmc9W6sh1fZQoaAZoCWgPQwiD+StkLtxwQJSGlFKUaBVLy2gWR0CdibHPNVzZdX2UKGgGaAloD0MIibFMv8R1b0CUhpRSlGgVS9doFkdAnYnMNUfgaXV9lChoBmgJaA9DCBAIdCZte29AlIaUUpRoFUv7aBZHQJ2K/1VYISl1fZQoaAZoCWgPQwiLUdfae/BtQJSGlFKUaBVL1WgWR0CdjMS2H+IedX2UKGgGaAloD0MIPUhPkcP7ckCUhpRSlGgVS+xoFkdAnY1/LcKw6nV9lChoBmgJaA9DCPmDgeee/3JAlIaUUpRoFUvLaBZHQJ2N9mh/RVp1fZQoaAZoCWgPQwi1iv7QzNBuQJSGlFKUaBVL2mgWR0CdjhMKCxu9dX2UKGgGaAloD0MILAyR09cIbkCUhpRSlGgVTRABaBZHQJ2ON8Ti84B1fZQoaAZoCWgPQwhvn1VmSoJzQJSGlFKUaBVL82gWR0CdjkXpnpSrdX2UKGgGaAloD0MIFceBV0vCcECUhpRSlGgVS9FoFkdAnY5cdgfEGnV9lChoBmgJaA9DCP0VMlfGHHBAlIaUUpRoFUvVaBZHQJ2OkCgbp/x1fZQoaAZoCWgPQwgVjiCVImZyQJSGlFKUaBVL7WgWR0CdjqdwNsnBdX2UKGgGaAloD0MITUpBt5dnc0CUhpRSlGgVS+1oFkdAnY8h1cMVlHV9lChoBmgJaA9DCOeNk8I8VnJAlIaUUpRoFU0GAWgWR0Cdj1UKArhBdX2UKGgGaAloD0MIUIvBw/R2cUCUhpRSlGgVS+9oFkdAnY9zDn/1hHV9lChoBmgJaA9DCEhrDDohuW5AlIaUUpRoFUvtaBZHQJ2Pgg5imVJ1fZQoaAZoCWgPQwjfNlMhnoxxQJSGlFKUaBVLymgWR0CdkCmmLtNSdX2UKGgGaAloD0MIaYzWURWLcUCUhpRSlGgVTQ0BaBZHQJ2QWaTfR/p1fZQoaAZoCWgPQwgWwf9W8jZyQJSGlFKUaBVL52gWR0Cdkn/47A+IdX2UKGgGaAloD0MIblFmgwwKcUCUhpRSlGgVS8loFkdAnZLO5jH4oXV9lChoBmgJaA9DCHh8e9cgJHFAlIaUUpRoFUv2aBZHQJ2TrKB/Zuh1fZQoaAZoCWgPQwiIvruVpXlwQJSGlFKUaBVL5mgWR0Cdk/pkwvg4dX2UKGgGaAloD0MIqgzjbpDqbkCUhpRSlGgVS9doFkdAnZQE0SAYpHV9lChoBmgJaA9DCKJgxhTsZHJAlIaUUpRoFUvgaBZHQJ2UJ2IO6NF1fZQoaAZoCWgPQwjeVnptdjJwQJSGlFKUaBVL6mgWR0CdlC+x4Y78dX2UKGgGaAloD0MIa9PYXotaZkCUhpRSlGgVTegDaBZHQJ2Ud7XxvvV1fZQoaAZoCWgPQwjeAZ60MPlyQJSGlFKUaBVL1WgWR0CdlLOlwcYJdX2UKGgGaAloD0MIYsCSq1iKckCUhpRSlGgVS+poFkdAnZT6VY6nznV9lChoBmgJaA9DCBDmdi+3B3JAlIaUUpRoFUvuaBZHQJ2VZF6Rhc91fZQoaAZoCWgPQwiQMXctId5xQJSGlFKUaBVL+WgWR0CdlbERradudX2UKGgGaAloD0MI2QkvwWlhcECUhpRSlGgVS+hoFkdAnZYn+AEt/XV9lChoBmgJaA9DCJ6ymq4nH3BAlIaUUpRoFUv1aBZHQJ2WQXenAIp1fZQoaAZoCWgPQwiXH7jKE1lxQJSGlFKUaBVL3mgWR0CdmBVMmF8HdX2UKGgGaAloD0MImrD9ZAzJcUCUhpRSlGgVS9BoFkdAnZjbJKaodnV9lChoBmgJaA9DCCIa3UGsHnJAlIaUUpRoFUvzaBZHQJ2ZB6OYIB11fZQoaAZoCWgPQwjjbDoCODBuQJSGlFKUaBVL12gWR0CdmV3g1m8NdX2UKGgGaAloD0MIyXVTyuurb0CUhpRSlGgVS+FoFkdAnZmq68QI2XV9lChoBmgJaA9DCGd9yjHZMm1AlIaUUpRoFUvoaBZHQJ2Z/LvCuU51fZQoaAZoCWgPQwg7ONibmAtxQJSGlFKUaBVL7WgWR0CdmiV/tpmFdX2UKGgGaAloD0MIzzEge/3PcUCUhpRSlGgVS99oFkdAnZpXB55Z83V9lChoBmgJaA9DCJPJqZ0h13FAlIaUUpRoFUv3aBZHQJ2aqiVSn+B1fZQoaAZoCWgPQwg2Bp0Q+j5yQJSGlFKUaBVL1WgWR0Cdmyf51vETdX2UKGgGaAloD0MIRE5fz5eccUCUhpRSlGgVS/RoFkdAnZsoBaLXMHV9lChoBmgJaA9DCC2VtyPcJ3FAlIaUUpRoFUvxaBZHQJ2beyX2M851ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 492,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a9777c9a36d3f37107795d3cd830606dacf37ad0046663e8b150ff62b11f027
3
+ size 87545
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f6671f7f1f9b9ea11aa52c2fd71a098ff2eecaca9e8f7096e4561c58445d426
3
+ size 43073
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: False
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (212 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 267.1709995053829, "std_reward": 18.46821695268033, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-29T23:55:50.747365"}