Mir-2002 commited on
Commit
f238989
·
verified ·
1 Parent(s): efecfda

Delete handler.py

Browse files
Files changed (1) hide show
  1. handler.py +0 -112
handler.py DELETED
@@ -1,112 +0,0 @@
1
- from typing import Any, Dict, List
2
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
- import torch
4
- import os
5
-
6
- MAX_INPUT_LENGTH = 256
7
- MAX_OUTPUT_LENGTH = 128
8
-
9
- class EndpointHandler:
10
- def __init__(self, model_dir: str = "", num_threads: int | None = None, generation_config: Dict[str, Any] | None = None, **kwargs: Any) -> None:
11
- # Set environment hints for CPU efficiency
12
- os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
13
-
14
- # Configure torch threading for CPU
15
- if num_threads:
16
- try:
17
- torch.set_num_threads(num_threads)
18
- torch.set_num_interop_threads(max(1, num_threads // 2))
19
- except Exception:
20
- pass
21
- os.environ.setdefault("OMP_NUM_THREADS", str(num_threads))
22
- os.environ.setdefault("MKL_NUM_THREADS", str(num_threads))
23
-
24
- self.device = "cpu" # Force CPU usage
25
-
26
- # Load tokenizer & model with CPU-friendly settings
27
- self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
28
- self.model = AutoModelForSeq2SeqLM.from_pretrained(model_dir, low_cpu_mem_usage=True)
29
- self.model.eval()
30
- self.model.to(self.device)
31
-
32
- # Optional bfloat16 cast on CPU (beneficial on Sapphire Rapids/oneDNN)
33
- self._use_bf16 = False
34
- if os.getenv("ENABLE_BF16", "1") == "1":
35
- try:
36
- self.model = self.model.to(dtype=torch.bfloat16)
37
- self._use_bf16 = True
38
- except Exception:
39
- self._use_bf16 = False
40
-
41
- # Determine a safe pad token id
42
- pad_id = self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id
43
-
44
- # Default fast generation config (greedy) overridable by caller
45
- default_gen = {
46
- "max_length": MAX_OUTPUT_LENGTH,
47
- "num_beams": 1, # Greedy for CPU speed
48
- "do_sample": False,
49
- "no_repeat_ngram_size": 3,
50
- "early_stopping": True,
51
- "use_cache": True,
52
- "pad_token_id": pad_id,
53
- }
54
- if generation_config:
55
- default_gen.update(generation_config)
56
- self.generation_args = default_gen
57
-
58
- def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
59
- inputs = data.get("inputs")
60
- if not inputs:
61
- raise ValueError("No 'inputs' found in the request data.")
62
-
63
- if isinstance(inputs, str):
64
- inputs = [inputs]
65
-
66
- # Allow per-request overrides under 'parameters'
67
- per_request_params = data.get("parameters") or {}
68
- # Unpack nested generate_parameters dict if provided
69
- if isinstance(per_request_params.get("generate_parameters"), dict):
70
- nested = per_request_params.pop("generate_parameters")
71
- per_request_params.update(nested)
72
- # Extract decode-only params
73
- decode_params = {}
74
- if "clean_up_tokenization_spaces" in per_request_params:
75
- decode_params["clean_up_tokenization_spaces"] = per_request_params.pop("clean_up_tokenization_spaces")
76
-
77
- # Filter only supported generation args to avoid warnings
78
- allowed = set(self.model.generation_config.to_dict().keys()) | {
79
- "max_length","min_length","max_new_tokens","num_beams","num_return_sequences","temperature","top_k","top_p",
80
- "repetition_penalty","length_penalty","early_stopping","do_sample","no_repeat_ngram_size","use_cache",
81
- "pad_token_id","eos_token_id","bos_token_id","decoder_start_token_id","num_beam_groups","diversity_penalty",
82
- "penalty_alpha","typical_p","return_dict_in_generate","output_scores","output_attentions","output_hidden_states"
83
- }
84
- # Important: don't pass attention_mask via kwargs since we pass it explicitly
85
- per_request_params.pop("attention_mask", None)
86
- filtered_params = {k: v for k, v in per_request_params.items() if k in allowed}
87
- gen_args = {**self.generation_args, **filtered_params}
88
-
89
- tokenized_inputs = self.tokenizer(
90
- inputs,
91
- max_length=MAX_INPUT_LENGTH,
92
- padding=True,
93
- truncation=True,
94
- return_tensors="pt"
95
- ).to(self.device)
96
-
97
- try:
98
- with torch.inference_mode():
99
- outputs = self.model.generate(
100
- tokenized_inputs["input_ids"],
101
- attention_mask=tokenized_inputs["attention_mask"],
102
- **gen_args
103
- )
104
- decoded_outputs = self.tokenizer.batch_decode(
105
- outputs,
106
- skip_special_tokens=True,
107
- **decode_params
108
- )
109
- results = [{"generated_text": text} for text in decoded_outputs]
110
- return results
111
- except Exception as e:
112
- return [{"generated_text": f"Error: {str(e)}"}]