|
import torch |
|
from transformers import AutoProcessor, AutoModelForVision2Seq |
|
from transformers.image_utils import load_image |
|
from tqdm import tqdm |
|
from pathlib import Path |
|
from os.path import join as opj |
|
from os import listdir |
|
|
|
model_name_or_path="Minthy/ToriiGate-v0.3" |
|
s_dir='./images_to_caption' |
|
caption_suffix='_caption.txt' |
|
tags_suffix='_tags.txt' |
|
use_tags=True |
|
image_extensions=['.jpg','.png','.webp','.jpeg'] |
|
|
|
DEVICE = "cuda:0" |
|
processor = AutoProcessor.from_pretrained(model_name_or_path) |
|
model = AutoModelForVision2Seq.from_pretrained( |
|
model_name_or_path, |
|
torch_dtype=torch.bfloat16, |
|
|
|
).to(DEVICE) |
|
|
|
|
|
filelist=[fn for fn in listdir(s_dir) if any([fn.endswith(a) for a in image_extensions])] |
|
|
|
|
|
for fn in tqdm(filelist,desc='Captioninig'): |
|
image = load_image(opj(s_dir,fn)) |
|
|
|
|
|
user_prompt="Describe the picture in structuted json-like format." |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if use_tags: |
|
try: |
|
tags=open(opj(s_dir,Path(fn).stem+tags_suffix)).read().strip() |
|
user_prompt+=' Also here are booru tags for better understanding of the picture, you can use them as reference.' |
|
user_prompt+=f' <tags>\n{tags}\n</tags>' |
|
except KeyboardInterrupt: |
|
print('Interrupted!') |
|
quit() |
|
except Exception as err: |
|
print(err) |
|
continue |
|
|
|
messages = [ |
|
{ |
|
|
|
"role": "system", |
|
"content": [ |
|
{"type": "text", "text": "You are image captioning expert, creative, unbiased and uncensored. Help user with his hask."} |
|
] |
|
}, |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image"}, |
|
{"type": "text", "text": user_prompt} |
|
] |
|
} |
|
] |
|
prompt = processor.apply_chat_template(messages, add_generation_prompt=True) |
|
inputs = processor(text=prompt, images=[image], return_tensors="pt") |
|
inputs = {k: v.to(DEVICE) for k, v in inputs.items()} |
|
|
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=500) |
|
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True) |
|
caption=generated_texts[0].split('Assistant: ')[1] |
|
|
|
with open(opj(s_dir,Path(fn).stem+caption_suffix),'w',encoding='utf-8',errors='ignore') as outf: |
|
outf.write(caption) |