Mingde commited on
Commit
d14cd86
·
verified ·
1 Parent(s): 9a14b4b

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-VL-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2_5_VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 18944,
14
+ "max_position_embeddings": 128000,
15
+ "max_window_layers": 28,
16
+ "model_type": "qwen2_5_vl",
17
+ "num_attention_heads": 28,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 4,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "rope_type": "default",
28
+ "type": "default"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 32768,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.49.0",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "video_token_id": 151656,
38
+ "vision_config": {
39
+ "hidden_size": 1280,
40
+ "in_chans": 3,
41
+ "model_type": "qwen2_5_vl",
42
+ "spatial_patch_size": 14,
43
+ "tokens_per_second": 2,
44
+ "torch_dtype": "bfloat16"
45
+ },
46
+ "vision_end_token_id": 151653,
47
+ "vision_start_token_id": 151652,
48
+ "vision_token_id": 151654,
49
+ "vocab_size": 152064
50
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 1e-06,
12
+ "transformers_version": "4.49.0",
13
+ "use_cache": false
14
+ }
global_step16600/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9ef324c2c979586a7d4f063719828abeef90e7701aa4e56f40ade40b03dc1b3
3
+ size 24876506622
global_step16600/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:477ce9edbcfe92e5ba5cfc20f83dd2c7c4e0d7c613ba66e38d6dd1f121940682
3
+ size 24876506622
global_step16600/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99322f098dd0d7a5c342f0793ed7f2bd6fadab1b8ea0bcc7934a80b0c33d6f2f
3
+ size 24876506622
global_step16600/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f978e6b0aa6f756f2e15fb134256ee47c9562ec3ced77b296c724603bfaca29f
3
+ size 24876506622
global_step16600/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8227e26313dd7493d05cd190349f6a014d62a9e688e34e328d4fd45c04b9143
3
+ size 349379
global_step16600/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5883f587fc42384feba6e2579330c32ebf7fd1760093729b4ea1c6b62c15c19
3
+ size 349379
global_step16600/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c72f20cd9ea04f57d0db49fcbb5934b6b81d8746dd2ade16b5d309f79428676d
3
+ size 349379
global_step16600/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8b24c97c387a51038e5624de7bd9b4c7237a9683c85f797184b1e39a5f13727
3
+ size 349379
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step16600
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:494f097c22386b852466561fe3dfe8d93f7f1327aeaf85a4ab53ea7314a27eea
3
+ size 4968243304
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17529dc8b957806697a4f3a13508f746a89e11f8762cb1379b4c98a6f85cc079
3
+ size 4991495816
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2492385c5d7338c70bb2350efbd320024e1569b26c2a574c1c1edc752a343705
3
+ size 4932751040
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79d3e4ece7e8d49a1ccaeb7ac7c95edf636a36e8466648390112203f41d9c65f
3
+ size 1691924384
model.safetensors.index.json ADDED
@@ -0,0 +1,736 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16584333312
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00004-of-00004.safetensors",
345
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
346
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
347
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
348
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
349
+ "visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
350
+ "visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
351
+ "visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
352
+ "visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
353
+ "visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
354
+ "visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
355
+ "visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
356
+ "visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
357
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
358
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
359
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
360
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
361
+ "visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
362
+ "visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
363
+ "visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
364
+ "visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
365
+ "visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
366
+ "visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
367
+ "visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
368
+ "visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
369
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
370
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
371
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
372
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
373
+ "visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
374
+ "visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
375
+ "visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
376
+ "visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
377
+ "visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
378
+ "visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
379
+ "visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
380
+ "visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
381
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
382
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
383
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
384
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
385
+ "visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
386
+ "visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
387
+ "visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
388
+ "visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
389
+ "visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
390
+ "visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
391
+ "visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
392
+ "visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
393
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
394
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
395
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
396
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
397
+ "visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
398
+ "visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
399
+ "visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
400
+ "visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
401
+ "visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
402
+ "visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
403
+ "visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
404
+ "visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
405
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
406
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
407
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
408
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
409
+ "visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
410
+ "visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
411
+ "visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
412
+ "visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
413
+ "visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
414
+ "visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
415
+ "visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
416
+ "visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
417
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
418
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
419
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
420
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
421
+ "visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
422
+ "visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
423
+ "visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
424
+ "visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
425
+ "visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
426
+ "visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
427
+ "visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
428
+ "visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
429
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
430
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
431
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
432
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
433
+ "visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
434
+ "visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
435
+ "visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
436
+ "visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
437
+ "visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
438
+ "visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
439
+ "visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
440
+ "visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
441
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
442
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
443
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
444
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
445
+ "visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
446
+ "visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
447
+ "visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
448
+ "visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
449
+ "visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
450
+ "visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
451
+ "visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
452
+ "visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
453
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
454
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
455
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
456
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
457
+ "visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
458
+ "visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
459
+ "visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
460
+ "visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
461
+ "visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
462
+ "visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
463
+ "visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
464
+ "visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
465
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
466
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
467
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
468
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
469
+ "visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
470
+ "visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
471
+ "visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
472
+ "visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
473
+ "visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
474
+ "visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
475
+ "visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
476
+ "visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
477
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
478
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
479
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
480
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
481
+ "visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
482
+ "visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
483
+ "visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
484
+ "visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
485
+ "visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
486
+ "visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
487
+ "visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
488
+ "visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
489
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
490
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
491
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
492
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
493
+ "visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
494
+ "visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
495
+ "visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
496
+ "visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
497
+ "visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
498
+ "visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
499
+ "visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
500
+ "visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
501
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
502
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
503
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
504
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
505
+ "visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
506
+ "visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
507
+ "visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
508
+ "visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
509
+ "visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
510
+ "visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
511
+ "visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
512
+ "visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
513
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
514
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
515
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
516
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
517
+ "visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
518
+ "visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
519
+ "visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
520
+ "visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
521
+ "visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
522
+ "visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
523
+ "visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
524
+ "visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
525
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
526
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
527
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
528
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
529
+ "visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
530
+ "visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
531
+ "visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
532
+ "visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
533
+ "visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
534
+ "visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
535
+ "visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
536
+ "visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
537
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
538
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
539
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
540
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
541
+ "visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
542
+ "visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
543
+ "visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
544
+ "visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
545
+ "visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
546
+ "visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
547
+ "visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
548
+ "visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
549
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
550
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
551
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
552
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
553
+ "visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
554
+ "visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
555
+ "visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
556
+ "visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
557
+ "visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
558
+ "visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
559
+ "visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
560
+ "visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
561
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
562
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
563
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
564
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
565
+ "visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
566
+ "visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
567
+ "visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
568
+ "visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
569
+ "visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
570
+ "visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
571
+ "visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
572
+ "visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
573
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
574
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
575
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
576
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
577
+ "visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
578
+ "visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
579
+ "visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
580
+ "visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
581
+ "visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
582
+ "visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
583
+ "visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
584
+ "visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
585
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
586
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
587
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
588
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
589
+ "visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
590
+ "visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
591
+ "visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
592
+ "visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
593
+ "visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
594
+ "visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
595
+ "visual.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
596
+ "visual.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
597
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
598
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
599
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
600
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
601
+ "visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
602
+ "visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
603
+ "visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
604
+ "visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
605
+ "visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
606
+ "visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
607
+ "visual.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
608
+ "visual.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
609
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
610
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
611
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
612
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
613
+ "visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
614
+ "visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
615
+ "visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
616
+ "visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
617
+ "visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
618
+ "visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
619
+ "visual.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
620
+ "visual.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
621
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
622
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
623
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
624
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
625
+ "visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
626
+ "visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
627
+ "visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
628
+ "visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
629
+ "visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
630
+ "visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
631
+ "visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
632
+ "visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
633
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
634
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
635
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
636
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
637
+ "visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
638
+ "visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
639
+ "visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
640
+ "visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
641
+ "visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
642
+ "visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
643
+ "visual.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
644
+ "visual.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
645
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
646
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
647
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
648
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
649
+ "visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
650
+ "visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
651
+ "visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
652
+ "visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
653
+ "visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
654
+ "visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
655
+ "visual.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
656
+ "visual.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
657
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
658
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
659
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
660
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
661
+ "visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
662
+ "visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
663
+ "visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
664
+ "visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
665
+ "visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
666
+ "visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
667
+ "visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
668
+ "visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
669
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
670
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
671
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
672
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
673
+ "visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
674
+ "visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
675
+ "visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
676
+ "visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
677
+ "visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
678
+ "visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
679
+ "visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
680
+ "visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
681
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
682
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
683
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
684
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
685
+ "visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
686
+ "visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
687
+ "visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
688
+ "visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
689
+ "visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
690
+ "visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
691
+ "visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
692
+ "visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
693
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
694
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
695
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
696
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
697
+ "visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
698
+ "visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
699
+ "visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
700
+ "visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
701
+ "visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
702
+ "visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
703
+ "visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
704
+ "visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
705
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
706
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
707
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
708
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
709
+ "visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
710
+ "visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
711
+ "visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
712
+ "visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
713
+ "visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
714
+ "visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
715
+ "visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
716
+ "visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
717
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
718
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
719
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
720
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
721
+ "visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
722
+ "visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
723
+ "visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
724
+ "visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
725
+ "visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
726
+ "visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
727
+ "visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
728
+ "visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
729
+ "visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
730
+ "visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
731
+ "visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
732
+ "visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
733
+ "visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
734
+ "visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
735
+ }
736
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7f82cb62ca6e66e93f49c561599bebd311b01e621205620efd382b1e08c6f25
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2a3ae9541f10e21ab06dc09b2810c8027015f109e8392b1f0eec6e2ad4c8144
3
+ size 14960
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6299cfb5cf3cb906b71d529be1bf07d46c29022542e6a7c0049d1ee11f46ef2
3
+ size 14960
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fad9fd4162eabb5d64baed68faea0d22af626d1c3e7fae1187aaed8ff37c8cbb
3
+ size 15024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3a4811c136ca130b5946f604e69d0e1cf762a0ead6ef641bf76f6bbe32fdde0
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "processor_class": "Qwen2_5_VLProcessor",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
trainer_state.json ADDED
@@ -0,0 +1,1417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 8.530250481695568,
5
+ "eval_steps": 500,
6
+ "global_step": 16600,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "clip_ratio": 0.0,
13
+ "completion_length": 27.6790625,
14
+ "epoch": 0.10276172125883108,
15
+ "grad_norm": 5.0809830592989,
16
+ "kl": 2.854698256850243,
17
+ "learning_rate": 9.897225077081192e-07,
18
+ "loss": 0.1145,
19
+ "reward": 0.7617031238693744,
20
+ "reward_std": 0.08005153443926247,
21
+ "rewards/iqa_reward_score": 0.7617031238693744,
22
+ "step": 200
23
+ },
24
+ {
25
+ "clip_ratio": 0.0,
26
+ "completion_length": 28.8296875,
27
+ "epoch": 0.20552344251766216,
28
+ "grad_norm": 9.623104019454459,
29
+ "kl": 0.835672607421875,
30
+ "learning_rate": 9.794450154162384e-07,
31
+ "loss": 0.0334,
32
+ "reward": 0.8317257825657726,
33
+ "reward_std": 0.05232097678628634,
34
+ "rewards/iqa_reward_score": 0.8317257825657726,
35
+ "step": 400
36
+ },
37
+ {
38
+ "clip_ratio": 0.0,
39
+ "completion_length": 28.5725,
40
+ "epoch": 0.25690430314707774,
41
+ "grad_norm": 13.777697334252704,
42
+ "kl": 1.6955078125,
43
+ "learning_rate": 9.74306269270298e-07,
44
+ "loss": 0.0678,
45
+ "reward": 0.8289125004410743,
46
+ "reward_std": 0.054873663182370365,
47
+ "rewards/iqa_reward_score": 0.8289125004410743,
48
+ "step": 500
49
+ },
50
+ {
51
+ "clip_ratio": 0.0,
52
+ "completion_length": 25.366875,
53
+ "epoch": 0.30828516377649323,
54
+ "grad_norm": 4.847558824602628,
55
+ "kl": 0.994892578125,
56
+ "learning_rate": 9.691675231243576e-07,
57
+ "loss": 0.0398,
58
+ "reward": 0.8202585917711258,
59
+ "reward_std": 0.07689082582248374,
60
+ "rewards/iqa_reward_score": 0.8202585917711258,
61
+ "step": 600
62
+ },
63
+ {
64
+ "clip_ratio": 0.0,
65
+ "completion_length": 28.56625,
66
+ "epoch": 0.4110468850353243,
67
+ "grad_norm": 4.395243940209246,
68
+ "kl": 0.655250244140625,
69
+ "learning_rate": 9.58890030832477e-07,
70
+ "loss": 0.0262,
71
+ "reward": 0.8299445299804211,
72
+ "reward_std": 0.06683978972781915,
73
+ "rewards/iqa_reward_score": 0.8299445299804211,
74
+ "step": 800
75
+ },
76
+ {
77
+ "clip_ratio": 0.0,
78
+ "completion_length": 28.8171875,
79
+ "epoch": 0.5138086062941555,
80
+ "grad_norm": 16.05160688969383,
81
+ "kl": 0.8154248046875,
82
+ "learning_rate": 9.486125385405961e-07,
83
+ "loss": 0.0326,
84
+ "reward": 0.8257433583214879,
85
+ "reward_std": 0.06838053988220054,
86
+ "rewards/iqa_reward_score": 0.8257433583214879,
87
+ "step": 1000
88
+ },
89
+ {
90
+ "clip_ratio": 0.0,
91
+ "completion_length": 28.175,
92
+ "epoch": 0.6165703275529865,
93
+ "grad_norm": 27.21633422585466,
94
+ "kl": 0.713743896484375,
95
+ "learning_rate": 9.383350462487153e-07,
96
+ "loss": 0.0286,
97
+ "reward": 0.8305933582037688,
98
+ "reward_std": 0.06543343772966181,
99
+ "rewards/iqa_reward_score": 0.8305933582037688,
100
+ "step": 1200
101
+ },
102
+ {
103
+ "clip_ratio": 0.0,
104
+ "completion_length": 27.2303125,
105
+ "epoch": 0.7193320488118176,
106
+ "grad_norm": 3.4545070827612996,
107
+ "kl": 0.751297607421875,
108
+ "learning_rate": 9.280575539568345e-07,
109
+ "loss": 0.03,
110
+ "reward": 0.8306282886117696,
111
+ "reward_std": 0.06594495058219764,
112
+ "rewards/iqa_reward_score": 0.8306282886117696,
113
+ "step": 1400
114
+ },
115
+ {
116
+ "clip_ratio": 0.0,
117
+ "completion_length": 28.125625,
118
+ "epoch": 0.7707129094412332,
119
+ "grad_norm": 7.5528485456603915,
120
+ "kl": 0.73730712890625,
121
+ "learning_rate": 9.229188078108942e-07,
122
+ "loss": 0.0295,
123
+ "reward": 0.8229234362393618,
124
+ "reward_std": 0.055542698715289586,
125
+ "rewards/iqa_reward_score": 0.8229234362393618,
126
+ "step": 1500
127
+ },
128
+ {
129
+ "clip_ratio": 0.0,
130
+ "completion_length": 28.258125,
131
+ "epoch": 0.8220937700706487,
132
+ "grad_norm": 23.45674070812895,
133
+ "kl": 0.69072021484375,
134
+ "learning_rate": 9.177800616649537e-07,
135
+ "loss": 0.0276,
136
+ "reward": 0.832437502220273,
137
+ "reward_std": 0.06442531289503677,
138
+ "rewards/iqa_reward_score": 0.832437502220273,
139
+ "step": 1600
140
+ },
141
+ {
142
+ "clip_ratio": 0.0,
143
+ "completion_length": 27.23,
144
+ "epoch": 0.9248554913294798,
145
+ "grad_norm": 12.52502343446259,
146
+ "kl": 0.839024658203125,
147
+ "learning_rate": 9.075025693730729e-07,
148
+ "loss": 0.0336,
149
+ "reward": 0.8224937494471669,
150
+ "reward_std": 0.08065707363217371,
151
+ "rewards/iqa_reward_score": 0.8224937494471669,
152
+ "step": 1800
153
+ },
154
+ {
155
+ "clip_ratio": 0.0,
156
+ "completion_length": 27.955625,
157
+ "epoch": 1.0277456647398844,
158
+ "grad_norm": 5.6579978426164885,
159
+ "kl": 0.96297119140625,
160
+ "learning_rate": 8.972250770811921e-07,
161
+ "loss": 0.0385,
162
+ "reward": 0.832288283109665,
163
+ "reward_std": 0.06895677681895904,
164
+ "rewards/iqa_reward_score": 0.832288283109665,
165
+ "step": 2000
166
+ },
167
+ {
168
+ "clip_ratio": 0.0,
169
+ "completion_length": 28.1115625,
170
+ "epoch": 1.1305073859987154,
171
+ "grad_norm": 12.39659796004838,
172
+ "kl": 0.695694580078125,
173
+ "learning_rate": 8.869475847893114e-07,
174
+ "loss": 0.0278,
175
+ "reward": 0.8560353901609778,
176
+ "reward_std": 0.06492814173863735,
177
+ "rewards/iqa_reward_score": 0.8560353901609778,
178
+ "step": 2200
179
+ },
180
+ {
181
+ "clip_ratio": 0.0,
182
+ "completion_length": 28.026875,
183
+ "epoch": 1.2332691072575466,
184
+ "grad_norm": 7.918243884203464,
185
+ "kl": 0.668778076171875,
186
+ "learning_rate": 8.766700924974306e-07,
187
+ "loss": 0.0268,
188
+ "reward": 0.8575455713272094,
189
+ "reward_std": 0.05481337786943186,
190
+ "rewards/iqa_reward_score": 0.8575455713272094,
191
+ "step": 2400
192
+ },
193
+ {
194
+ "clip_ratio": 0.0,
195
+ "completion_length": 28.2875,
196
+ "epoch": 1.284649967886962,
197
+ "grad_norm": 8.951939513541785,
198
+ "kl": 0.63311767578125,
199
+ "learning_rate": 8.715313463514901e-07,
200
+ "loss": 0.0253,
201
+ "reward": 0.8540877342224121,
202
+ "reward_std": 0.05867271815717686,
203
+ "rewards/iqa_reward_score": 0.8540877342224121,
204
+ "step": 2500
205
+ },
206
+ {
207
+ "clip_ratio": 0.0,
208
+ "completion_length": 28.24,
209
+ "epoch": 1.3360308285163778,
210
+ "grad_norm": 61.12484483215961,
211
+ "kl": 0.57617919921875,
212
+ "learning_rate": 8.663926002055498e-07,
213
+ "loss": 0.023,
214
+ "reward": 0.8668073464185,
215
+ "reward_std": 0.04293165822920855,
216
+ "rewards/iqa_reward_score": 0.8668073464185,
217
+ "step": 2600
218
+ },
219
+ {
220
+ "clip_ratio": 0.0,
221
+ "completion_length": 28.4415625,
222
+ "epoch": 1.4387925497752088,
223
+ "grad_norm": 9.595515127565994,
224
+ "kl": 0.912845458984375,
225
+ "learning_rate": 8.56115107913669e-07,
226
+ "loss": 0.0365,
227
+ "reward": 1.8409671924263238,
228
+ "reward_std": 0.10609373373445123,
229
+ "rewards/format_reward": 0.98,
230
+ "rewards/iqa_reward_score": 0.8609671889990568,
231
+ "step": 2800
232
+ },
233
+ {
234
+ "clip_ratio": 0.0,
235
+ "completion_length": 28.39375,
236
+ "epoch": 1.5415542710340397,
237
+ "grad_norm": 14.47016329543208,
238
+ "kl": 0.811949462890625,
239
+ "learning_rate": 8.458376156217882e-07,
240
+ "loss": 0.0325,
241
+ "reward": 1.8501656317710877,
242
+ "reward_std": 0.08619433440471766,
243
+ "rewards/format_reward": 0.9828125,
244
+ "rewards/iqa_reward_score": 0.8673531262949109,
245
+ "step": 3000
246
+ },
247
+ {
248
+ "clip_ratio": 0.0,
249
+ "completion_length": 28.2296875,
250
+ "epoch": 1.644315992292871,
251
+ "grad_norm": 38.07779098696265,
252
+ "kl": 0.782005615234375,
253
+ "learning_rate": 8.355601233299074e-07,
254
+ "loss": 0.0313,
255
+ "reward": 1.8367290687561035,
256
+ "reward_std": 0.10177788778877585,
257
+ "rewards/format_reward": 0.980625,
258
+ "rewards/iqa_reward_score": 0.8561040629819036,
259
+ "step": 3200
260
+ },
261
+ {
262
+ "clip_ratio": 0.0,
263
+ "completion_length": 28.8190625,
264
+ "epoch": 1.747077713551702,
265
+ "grad_norm": 7.776135628712392,
266
+ "kl": 0.9329833984375,
267
+ "learning_rate": 8.252826310380266e-07,
268
+ "loss": 0.0373,
269
+ "reward": 1.84249222189188,
270
+ "reward_std": 0.09717632832071103,
271
+ "rewards/format_reward": 0.98125,
272
+ "rewards/iqa_reward_score": 0.8612422209605575,
273
+ "step": 3400
274
+ },
275
+ {
276
+ "clip_ratio": 0.0,
277
+ "completion_length": 28.059375,
278
+ "epoch": 1.7984585741811174,
279
+ "grad_norm": 14.07929192854843,
280
+ "kl": 0.868226318359375,
281
+ "learning_rate": 8.201438848920863e-07,
282
+ "loss": 0.0347,
283
+ "reward": 1.837091253399849,
284
+ "reward_std": 0.08139224100508727,
285
+ "rewards/format_reward": 0.98875,
286
+ "rewards/iqa_reward_score": 0.8483412505686283,
287
+ "step": 3500
288
+ },
289
+ {
290
+ "clip_ratio": 0.0,
291
+ "completion_length": 27.99375,
292
+ "epoch": 1.8498394348105331,
293
+ "grad_norm": 11.735278559157656,
294
+ "kl": 0.7970263671875,
295
+ "learning_rate": 8.150051387461459e-07,
296
+ "loss": 0.0319,
297
+ "reward": 1.849564844816923,
298
+ "reward_std": 0.07906727260153275,
299
+ "rewards/format_reward": 0.9875,
300
+ "rewards/iqa_reward_score": 0.8620648480206728,
301
+ "step": 3600
302
+ },
303
+ {
304
+ "clip_ratio": 0.0,
305
+ "completion_length": 28.0225,
306
+ "epoch": 1.9526011560693641,
307
+ "grad_norm": 7.583634891952906,
308
+ "kl": 0.7811505126953125,
309
+ "learning_rate": 8.047276464542652e-07,
310
+ "loss": 0.0312,
311
+ "reward": 1.8461687500029802,
312
+ "reward_std": 0.08467546943458729,
313
+ "rewards/format_reward": 0.9859375,
314
+ "rewards/iqa_reward_score": 0.8602312506362796,
315
+ "step": 3800
316
+ },
317
+ {
318
+ "clip_ratio": 0.0,
319
+ "completion_length": 27.99625,
320
+ "epoch": 2.0554913294797688,
321
+ "grad_norm": 14.625364812925723,
322
+ "kl": 0.786697998046875,
323
+ "learning_rate": 7.944501541623844e-07,
324
+ "loss": 0.0315,
325
+ "reward": 1.8452205635607242,
326
+ "reward_std": 0.09883114330208627,
327
+ "rewards/format_reward": 0.980625,
328
+ "rewards/iqa_reward_score": 0.8645955645292998,
329
+ "step": 4000
330
+ },
331
+ {
332
+ "clip_ratio": 0.0,
333
+ "completion_length": 27.9753125,
334
+ "epoch": 2.1582530507385997,
335
+ "grad_norm": 33.54392125627147,
336
+ "kl": 0.760584716796875,
337
+ "learning_rate": 7.841726618705036e-07,
338
+ "loss": 0.0304,
339
+ "reward": 1.8701025630533694,
340
+ "reward_std": 0.08290246042713989,
341
+ "rewards/format_reward": 0.985,
342
+ "rewards/iqa_reward_score": 0.8851025623455644,
343
+ "step": 4200
344
+ },
345
+ {
346
+ "clip_ratio": 0.0,
347
+ "completion_length": 27.9215625,
348
+ "epoch": 2.2610147719974307,
349
+ "grad_norm": 47.05045527355845,
350
+ "kl": 0.8736767578125,
351
+ "learning_rate": 7.738951695786228e-07,
352
+ "loss": 0.0349,
353
+ "reward": 1.8553532859683037,
354
+ "reward_std": 0.10405993272172054,
355
+ "rewards/format_reward": 0.980625,
356
+ "rewards/iqa_reward_score": 0.8747282821312546,
357
+ "step": 4400
358
+ },
359
+ {
360
+ "clip_ratio": 0.0,
361
+ "completion_length": 28.350625,
362
+ "epoch": 2.3123956326268464,
363
+ "grad_norm": 17.410628447499427,
364
+ "kl": 0.89654296875,
365
+ "learning_rate": 7.687564234326824e-07,
366
+ "loss": 0.0359,
367
+ "reward": 1.8479799877107144,
368
+ "reward_std": 0.12358368890389101,
369
+ "rewards/format_reward": 0.976875,
370
+ "rewards/iqa_reward_score": 0.871104982867837,
371
+ "step": 4500
372
+ },
373
+ {
374
+ "clip_ratio": 0.0,
375
+ "completion_length": 28.386875,
376
+ "epoch": 2.363776493256262,
377
+ "grad_norm": 8.447575577812339,
378
+ "kl": 0.8929931640625,
379
+ "learning_rate": 7.63617677286742e-07,
380
+ "loss": 0.0357,
381
+ "reward": 1.8610911390185356,
382
+ "reward_std": 0.08579985730873886,
383
+ "rewards/format_reward": 0.985,
384
+ "rewards/iqa_reward_score": 0.8760911403596401,
385
+ "step": 4600
386
+ },
387
+ {
388
+ "clip_ratio": 0.0,
389
+ "completion_length": 28.0375,
390
+ "epoch": 2.466538214515093,
391
+ "grad_norm": 143.05962527749097,
392
+ "kl": 0.93417236328125,
393
+ "learning_rate": 7.533401849948612e-07,
394
+ "loss": 0.0374,
395
+ "reward": 1.8311420308053494,
396
+ "reward_std": 0.11677662628731923,
397
+ "rewards/format_reward": 0.9784375,
398
+ "rewards/iqa_reward_score": 0.8527045329660177,
399
+ "step": 4800
400
+ },
401
+ {
402
+ "clip_ratio": 0.0,
403
+ "completion_length": 28.01125,
404
+ "epoch": 2.569299935773924,
405
+ "grad_norm": 7.1542045396705,
406
+ "kl": 0.94165771484375,
407
+ "learning_rate": 7.430626927029804e-07,
408
+ "loss": 0.0377,
409
+ "reward": 1.8192646995186805,
410
+ "reward_std": 0.14661665820371128,
411
+ "rewards/format_reward": 0.9696875,
412
+ "rewards/iqa_reward_score": 0.8495772035047412,
413
+ "step": 5000
414
+ },
415
+ {
416
+ "clip_ratio": 0.0,
417
+ "completion_length": 28.18375,
418
+ "epoch": 2.6720616570327556,
419
+ "grad_norm": 6.8796582113899865,
420
+ "kl": 0.9063818359375,
421
+ "learning_rate": 7.327852004110997e-07,
422
+ "loss": 0.0363,
423
+ "reward": 1.8397980490326882,
424
+ "reward_std": 0.1039076264774485,
425
+ "rewards/format_reward": 0.97875,
426
+ "rewards/iqa_reward_score": 0.8610480467230082,
427
+ "step": 5200
428
+ },
429
+ {
430
+ "clip_ratio": 0.0,
431
+ "completion_length": 27.974375,
432
+ "epoch": 2.7748233782915865,
433
+ "grad_norm": 21.679690712318255,
434
+ "kl": 1.140872802734375,
435
+ "learning_rate": 7.225077081192189e-07,
436
+ "loss": 0.0456,
437
+ "reward": 1.843569800555706,
438
+ "reward_std": 0.10958875504176831,
439
+ "rewards/format_reward": 0.97875,
440
+ "rewards/iqa_reward_score": 0.8648197993636131,
441
+ "step": 5400
442
+ },
443
+ {
444
+ "clip_ratio": 0.0,
445
+ "completion_length": 27.874375,
446
+ "epoch": 2.826204238921002,
447
+ "grad_norm": 15.562815242952489,
448
+ "kl": 0.83869384765625,
449
+ "learning_rate": 7.173689619732784e-07,
450
+ "loss": 0.0335,
451
+ "reward": 1.8646468751132488,
452
+ "reward_std": 0.07459007016877876,
453
+ "rewards/format_reward": 0.989375,
454
+ "rewards/iqa_reward_score": 0.8752718791365623,
455
+ "step": 5500
456
+ },
457
+ {
458
+ "clip_ratio": 0.0,
459
+ "completion_length": 27.930625,
460
+ "epoch": 2.8775850995504175,
461
+ "grad_norm": 6.830195802437781,
462
+ "kl": 0.790654296875,
463
+ "learning_rate": 7.122302158273381e-07,
464
+ "loss": 0.0316,
465
+ "reward": 1.8246960963308811,
466
+ "reward_std": 0.14376337262161543,
467
+ "rewards/format_reward": 0.970625,
468
+ "rewards/iqa_reward_score": 0.8540710960328579,
469
+ "step": 5600
470
+ },
471
+ {
472
+ "clip_ratio": 0.0,
473
+ "completion_length": 28.023125,
474
+ "epoch": 2.9803468208092485,
475
+ "grad_norm": 14.937325884677351,
476
+ "kl": 0.72754638671875,
477
+ "learning_rate": 7.019527235354573e-07,
478
+ "loss": 0.0291,
479
+ "reward": 1.8573167976737022,
480
+ "reward_std": 0.07879514415035374,
481
+ "rewards/format_reward": 0.986875,
482
+ "rewards/iqa_reward_score": 0.8704417966306209,
483
+ "step": 5800
484
+ },
485
+ {
486
+ "clip_ratio": 0.0,
487
+ "completion_length": 27.8778125,
488
+ "epoch": 3.083236994219653,
489
+ "grad_norm": 20.657599431765522,
490
+ "kl": 0.769075927734375,
491
+ "learning_rate": 6.916752312435765e-07,
492
+ "loss": 0.0308,
493
+ "reward": 1.8757967218756675,
494
+ "reward_std": 0.07059297368963598,
495
+ "rewards/format_reward": 0.989375,
496
+ "rewards/iqa_reward_score": 0.8864217212796212,
497
+ "step": 6000
498
+ },
499
+ {
500
+ "clip_ratio": 0.0,
501
+ "completion_length": 28.2796875,
502
+ "epoch": 3.185998715478484,
503
+ "grad_norm": 78.23537527732513,
504
+ "kl": 0.89517333984375,
505
+ "learning_rate": 6.813977389516957e-07,
506
+ "loss": 0.0358,
507
+ "reward": 1.8553570313751697,
508
+ "reward_std": 0.09863820670958376,
509
+ "rewards/format_reward": 0.9796875,
510
+ "rewards/iqa_reward_score": 0.8756695335730911,
511
+ "step": 6200
512
+ },
513
+ {
514
+ "clip_ratio": 0.0,
515
+ "completion_length": 27.8103125,
516
+ "epoch": 3.2887604367373156,
517
+ "grad_norm": 17.956803144421166,
518
+ "kl": 0.8780908203125,
519
+ "learning_rate": 6.711202466598149e-07,
520
+ "loss": 0.0351,
521
+ "reward": 1.8629054698348044,
522
+ "reward_std": 0.0895115670125233,
523
+ "rewards/format_reward": 0.9828125,
524
+ "rewards/iqa_reward_score": 0.880092968903482,
525
+ "step": 6400
526
+ },
527
+ {
528
+ "clip_ratio": 0.0,
529
+ "completion_length": 28.025625,
530
+ "epoch": 3.340141297366731,
531
+ "grad_norm": 14.577257269858018,
532
+ "kl": 0.918896484375,
533
+ "learning_rate": 6.659815005138745e-07,
534
+ "loss": 0.0368,
535
+ "reward": 1.8509218773245812,
536
+ "reward_std": 0.128468633540906,
537
+ "rewards/format_reward": 0.97375,
538
+ "rewards/iqa_reward_score": 0.8771718776226044,
539
+ "step": 6500
540
+ },
541
+ {
542
+ "clip_ratio": 0.0,
543
+ "completion_length": 27.506875,
544
+ "epoch": 3.3915221579961465,
545
+ "grad_norm": 11.431877019480062,
546
+ "kl": 0.9472998046875,
547
+ "learning_rate": 6.608427543679342e-07,
548
+ "loss": 0.0379,
549
+ "reward": 1.857479686588049,
550
+ "reward_std": 0.1099585933983326,
551
+ "rewards/format_reward": 0.975625,
552
+ "rewards/iqa_reward_score": 0.8818546874821186,
553
+ "step": 6600
554
+ },
555
+ {
556
+ "clip_ratio": 0.0,
557
+ "completion_length": 27.7065625,
558
+ "epoch": 3.4942838792549775,
559
+ "grad_norm": 6.9566554996708,
560
+ "kl": 0.9450537109375,
561
+ "learning_rate": 6.505652620760534e-07,
562
+ "loss": 0.0378,
563
+ "reward": 1.870063279643655,
564
+ "reward_std": 0.08640069031709573,
565
+ "rewards/format_reward": 0.9828125,
566
+ "rewards/iqa_reward_score": 0.8872507839277387,
567
+ "step": 6800
568
+ },
569
+ {
570
+ "clip_ratio": 0.0,
571
+ "completion_length": 28.3125,
572
+ "epoch": 3.5970456005138085,
573
+ "grad_norm": 9.466798266539996,
574
+ "kl": 1.00124755859375,
575
+ "learning_rate": 6.402877697841727e-07,
576
+ "loss": 0.0401,
577
+ "reward": 1.8952510181069373,
578
+ "reward_std": 0.032708497148996686,
579
+ "rewards/format_reward": 1.0,
580
+ "rewards/iqa_reward_score": 0.8952510149776935,
581
+ "step": 7000
582
+ },
583
+ {
584
+ "clip_ratio": 0.0,
585
+ "completion_length": 28.36875,
586
+ "epoch": 3.6998073217726395,
587
+ "grad_norm": 2557.560579743778,
588
+ "kl": 1.13185791015625,
589
+ "learning_rate": 6.300102774922919e-07,
590
+ "loss": 0.0453,
591
+ "reward": 1.892985941618681,
592
+ "reward_std": 0.034503267100517404,
593
+ "rewards/format_reward": 0.999375,
594
+ "rewards/iqa_reward_score": 0.8936109407246113,
595
+ "step": 7200
596
+ },
597
+ {
598
+ "clip_ratio": 0.0,
599
+ "completion_length": 28.926875,
600
+ "epoch": 3.802569043031471,
601
+ "grad_norm": 10.085679643415842,
602
+ "kl": 1.2185986328125,
603
+ "learning_rate": 6.197327852004111e-07,
604
+ "loss": 0.0487,
605
+ "reward": 1.8877808587253093,
606
+ "reward_std": 0.04178271594835678,
607
+ "rewards/format_reward": 0.9965625,
608
+ "rewards/iqa_reward_score": 0.891218360774219,
609
+ "step": 7400
610
+ },
611
+ {
612
+ "clip_ratio": 0.0,
613
+ "completion_length": 30.4325,
614
+ "epoch": 3.853949903660886,
615
+ "grad_norm": 4.810497524915146,
616
+ "kl": 1.437158203125,
617
+ "learning_rate": 6.145940390544707e-07,
618
+ "loss": 0.0575,
619
+ "reward": 1.8972664028406143,
620
+ "reward_std": 0.04059907855524216,
621
+ "rewards/format_reward": 0.995625,
622
+ "rewards/iqa_reward_score": 0.9016414076089859,
623
+ "step": 7500
624
+ },
625
+ {
626
+ "clip_ratio": 0.0,
627
+ "completion_length": 29.053125,
628
+ "epoch": 3.905330764290302,
629
+ "grad_norm": 25.880547489302362,
630
+ "kl": 1.35017578125,
631
+ "learning_rate": 6.094552929085303e-07,
632
+ "loss": 0.054,
633
+ "reward": 1.8683781233429908,
634
+ "reward_std": 0.07233420302451123,
635
+ "rewards/format_reward": 0.98625,
636
+ "rewards/iqa_reward_score": 0.8821281273663044,
637
+ "step": 7600
638
+ },
639
+ {
640
+ "clip_ratio": 0.0,
641
+ "completion_length": 28.375,
642
+ "epoch": 4.008220937700706,
643
+ "grad_norm": 66.69984916070555,
644
+ "kl": 1.363798828125,
645
+ "learning_rate": 5.991778006166495e-07,
646
+ "loss": 0.0545,
647
+ "reward": 1.83771797016263,
648
+ "reward_std": 0.13687979618785903,
649
+ "rewards/format_reward": 0.97,
650
+ "rewards/iqa_reward_score": 0.8677179708704352,
651
+ "step": 7800
652
+ },
653
+ {
654
+ "clip_ratio": 0.0,
655
+ "completion_length": 28.53,
656
+ "epoch": 4.1109826589595375,
657
+ "grad_norm": 165.49295535810293,
658
+ "kl": 1.10419921875,
659
+ "learning_rate": 5.889003083247688e-07,
660
+ "loss": 0.0442,
661
+ "reward": 1.8460748683661223,
662
+ "reward_std": 0.1447469698698842,
663
+ "rewards/format_reward": 0.9675,
664
+ "rewards/iqa_reward_score": 0.8785748684033752,
665
+ "step": 8000
666
+ },
667
+ {
668
+ "clip_ratio": 0.0,
669
+ "completion_length": 29.9115625,
670
+ "epoch": 4.213744380218369,
671
+ "grad_norm": 8.447151915362078,
672
+ "kl": 1.172177734375,
673
+ "learning_rate": 5.78622816032888e-07,
674
+ "loss": 0.0469,
675
+ "reward": 1.8300597659498452,
676
+ "reward_std": 0.17003738911065738,
677
+ "rewards/format_reward": 0.95875,
678
+ "rewards/iqa_reward_score": 0.8713097679056228,
679
+ "step": 8200
680
+ },
681
+ {
682
+ "clip_ratio": 0.0,
683
+ "completion_length": 29.536875,
684
+ "epoch": 4.3165061014771995,
685
+ "grad_norm": 139.19766910371885,
686
+ "kl": 1.204990234375,
687
+ "learning_rate": 5.683453237410072e-07,
688
+ "loss": 0.0482,
689
+ "reward": 1.8459081883728503,
690
+ "reward_std": 0.1452132201299537,
691
+ "rewards/format_reward": 0.966875,
692
+ "rewards/iqa_reward_score": 0.8790331880003214,
693
+ "step": 8400
694
+ },
695
+ {
696
+ "clip_ratio": 0.0,
697
+ "completion_length": 27.16125,
698
+ "epoch": 4.367886962106615,
699
+ "grad_norm": 67.10745002633337,
700
+ "kl": 1.1150390625,
701
+ "learning_rate": 5.632065775950667e-07,
702
+ "loss": 0.0446,
703
+ "reward": 1.8599339020252228,
704
+ "reward_std": 0.11604845726978966,
705
+ "rewards/format_reward": 0.9775,
706
+ "rewards/iqa_reward_score": 0.882433907315135,
707
+ "step": 8500
708
+ },
709
+ {
710
+ "clip_ratio": 0.0,
711
+ "completion_length": 27.22,
712
+ "epoch": 4.419267822736031,
713
+ "grad_norm": 7.122275917364418,
714
+ "kl": 1.02694091796875,
715
+ "learning_rate": 5.580678314491264e-07,
716
+ "loss": 0.0411,
717
+ "reward": 1.8712499970197678,
718
+ "reward_std": 0.11151634595706128,
719
+ "rewards/format_reward": 0.98,
720
+ "rewards/iqa_reward_score": 0.8912500011175871,
721
+ "step": 8600
722
+ },
723
+ {
724
+ "clip_ratio": 0.0,
725
+ "completion_length": 28.8384375,
726
+ "epoch": 4.5220295439948615,
727
+ "grad_norm": 36.76062498057171,
728
+ "kl": 1.05457763671875,
729
+ "learning_rate": 5.477903391572456e-07,
730
+ "loss": 0.0422,
731
+ "reward": 1.8598616697639228,
732
+ "reward_std": 0.1202874470622919,
733
+ "rewards/format_reward": 0.9740625,
734
+ "rewards/iqa_reward_score": 0.8857991739735007,
735
+ "step": 8800
736
+ },
737
+ {
738
+ "clip_ratio": 0.0,
739
+ "completion_length": 29.40375,
740
+ "epoch": 4.624791265253693,
741
+ "grad_norm": 11.169409676243108,
742
+ "kl": 1.180712890625,
743
+ "learning_rate": 5.375128468653648e-07,
744
+ "loss": 0.0472,
745
+ "reward": 1.8395798132568597,
746
+ "reward_std": 0.1512143662823655,
747
+ "rewards/format_reward": 0.96625,
748
+ "rewards/iqa_reward_score": 0.8733298133686185,
749
+ "step": 9000
750
+ },
751
+ {
752
+ "clip_ratio": 0.0,
753
+ "completion_length": 29.4003125,
754
+ "epoch": 4.727552986512524,
755
+ "grad_norm": 7.381446678871813,
756
+ "kl": 1.0400537109375,
757
+ "learning_rate": 5.27235354573484e-07,
758
+ "loss": 0.0416,
759
+ "reward": 1.8565457689017058,
760
+ "reward_std": 0.13243299395922803,
761
+ "rewards/format_reward": 0.973125,
762
+ "rewards/iqa_reward_score": 0.8834207731485367,
763
+ "step": 9200
764
+ },
765
+ {
766
+ "clip_ratio": 0.0,
767
+ "completion_length": 28.5815625,
768
+ "epoch": 4.830314707771355,
769
+ "grad_norm": 13.559802380662985,
770
+ "kl": 1.03513427734375,
771
+ "learning_rate": 5.169578622816033e-07,
772
+ "loss": 0.0414,
773
+ "reward": 1.864812575764954,
774
+ "reward_std": 0.12085459077716224,
775
+ "rewards/format_reward": 0.9753125,
776
+ "rewards/iqa_reward_score": 0.8895000796020031,
777
+ "step": 9400
778
+ },
779
+ {
780
+ "clip_ratio": 0.0,
781
+ "completion_length": 13.53,
782
+ "epoch": 4.881695568400771,
783
+ "grad_norm": 42.48053012611243,
784
+ "kl": 1.8257421875,
785
+ "learning_rate": 5.118191161356628e-07,
786
+ "loss": 0.073,
787
+ "reward": 1.8785359343886376,
788
+ "reward_std": 0.08481779177935095,
789
+ "rewards/format_reward": 0.98875,
790
+ "rewards/iqa_reward_score": 0.8897859378904104,
791
+ "step": 9500
792
+ },
793
+ {
794
+ "clip_ratio": 0.0,
795
+ "completion_length": 18.813125,
796
+ "epoch": 4.933076429030186,
797
+ "grad_norm": 47.10713474426497,
798
+ "kl": 2.1516796875,
799
+ "learning_rate": 5.066803699897225e-07,
800
+ "loss": 0.0861,
801
+ "reward": 1.8353367167711259,
802
+ "reward_std": 0.18400538112502546,
803
+ "rewards/format_reward": 0.956875,
804
+ "rewards/iqa_reward_score": 0.8784617200121283,
805
+ "step": 9600
806
+ },
807
+ {
808
+ "clip_ratio": 0.0,
809
+ "completion_length": 17.98125,
810
+ "epoch": 5.035966602440591,
811
+ "grad_norm": 29.850445718834017,
812
+ "kl": 2.100009765625,
813
+ "learning_rate": 4.964028776978417e-07,
814
+ "loss": 0.084,
815
+ "reward": 1.8705265574902297,
816
+ "reward_std": 0.10621097847208148,
817
+ "rewards/format_reward": 0.9790625,
818
+ "rewards/iqa_reward_score": 0.8914640637487173,
819
+ "step": 9800
820
+ },
821
+ {
822
+ "clip_ratio": 0.0,
823
+ "completion_length": 20.6721875,
824
+ "epoch": 5.138728323699422,
825
+ "grad_norm": 24.790938831821737,
826
+ "kl": 2.140517578125,
827
+ "learning_rate": 4.861253854059609e-07,
828
+ "loss": 0.0856,
829
+ "reward": 1.8829230420291423,
830
+ "reward_std": 0.10707416723642382,
831
+ "rewards/format_reward": 0.9803125,
832
+ "rewards/iqa_reward_score": 0.9026105474308133,
833
+ "step": 10000
834
+ },
835
+ {
836
+ "clip_ratio": 0.0,
837
+ "completion_length": 19.6746875,
838
+ "epoch": 5.241490044958253,
839
+ "grad_norm": 102.41178221797948,
840
+ "kl": 2.09017578125,
841
+ "learning_rate": 4.7584789311408014e-07,
842
+ "loss": 0.0836,
843
+ "reward": 1.8718234330415726,
844
+ "reward_std": 0.12345175031165127,
845
+ "rewards/format_reward": 0.97375,
846
+ "rewards/iqa_reward_score": 0.8980734394118189,
847
+ "step": 10200
848
+ },
849
+ {
850
+ "clip_ratio": 0.0,
851
+ "completion_length": 20.186875,
852
+ "epoch": 5.344251766217084,
853
+ "grad_norm": 10.598097581329563,
854
+ "kl": 1.971005859375,
855
+ "learning_rate": 4.6557040082219935e-07,
856
+ "loss": 0.0788,
857
+ "reward": 1.8742554614692926,
858
+ "reward_std": 0.10413653948286082,
859
+ "rewards/format_reward": 0.9796875,
860
+ "rewards/iqa_reward_score": 0.8945679685845971,
861
+ "step": 10400
862
+ },
863
+ {
864
+ "clip_ratio": 0.0,
865
+ "completion_length": 19.570625,
866
+ "epoch": 5.3956326268465,
867
+ "grad_norm": 15.65196245891987,
868
+ "kl": 1.966328125,
869
+ "learning_rate": 4.60431654676259e-07,
870
+ "loss": 0.0786,
871
+ "reward": 1.873755464553833,
872
+ "reward_std": 0.1017152764700586,
873
+ "rewards/format_reward": 0.98125,
874
+ "rewards/iqa_reward_score": 0.8925054696947337,
875
+ "step": 10500
876
+ },
877
+ {
878
+ "clip_ratio": 0.0,
879
+ "completion_length": 16.39375,
880
+ "epoch": 5.447013487475915,
881
+ "grad_norm": 17.05777069418545,
882
+ "kl": 2.1209765625,
883
+ "learning_rate": 4.552929085303186e-07,
884
+ "loss": 0.0848,
885
+ "reward": 1.8873523423075675,
886
+ "reward_std": 0.07782931060733972,
887
+ "rewards/format_reward": 0.988125,
888
+ "rewards/iqa_reward_score": 0.8992273437976838,
889
+ "step": 10600
890
+ },
891
+ {
892
+ "clip_ratio": 0.0,
893
+ "completion_length": 19.811875,
894
+ "epoch": 5.549775208734746,
895
+ "grad_norm": 31.92408805805376,
896
+ "kl": 2.054736328125,
897
+ "learning_rate": 4.450154162384378e-07,
898
+ "loss": 0.0822,
899
+ "reward": 1.870059761852026,
900
+ "reward_std": 0.10109247839223827,
901
+ "rewards/format_reward": 0.9815625,
902
+ "rewards/iqa_reward_score": 0.8884972659498453,
903
+ "step": 10800
904
+ },
905
+ {
906
+ "clip_ratio": 0.0,
907
+ "completion_length": 21.2728125,
908
+ "epoch": 5.652536929993578,
909
+ "grad_norm": 50.24699385323065,
910
+ "kl": 1.977314453125,
911
+ "learning_rate": 4.34737923946557e-07,
912
+ "loss": 0.0791,
913
+ "reward": 1.880501558482647,
914
+ "reward_std": 0.09021925082866801,
915
+ "rewards/format_reward": 0.984375,
916
+ "rewards/iqa_reward_score": 0.8961265632137656,
917
+ "step": 11000
918
+ },
919
+ {
920
+ "clip_ratio": 0.0,
921
+ "completion_length": 18.17,
922
+ "epoch": 5.755298651252408,
923
+ "grad_norm": 16.003754754439743,
924
+ "kl": 2.043388671875,
925
+ "learning_rate": 4.2446043165467627e-07,
926
+ "loss": 0.0817,
927
+ "reward": 1.879718798995018,
928
+ "reward_std": 0.09361302960853209,
929
+ "rewards/format_reward": 0.9821875,
930
+ "rewards/iqa_reward_score": 0.8975313076004386,
931
+ "step": 11200
932
+ },
933
+ {
934
+ "clip_ratio": 0.0,
935
+ "completion_length": 19.6184375,
936
+ "epoch": 5.85806037251124,
937
+ "grad_norm": 42.24292206080392,
938
+ "kl": 1.938994140625,
939
+ "learning_rate": 4.141829393627955e-07,
940
+ "loss": 0.0776,
941
+ "reward": 1.8871759340167045,
942
+ "reward_std": 0.08852186787073152,
943
+ "rewards/format_reward": 0.9846875,
944
+ "rewards/iqa_reward_score": 0.902488438487053,
945
+ "step": 11400
946
+ },
947
+ {
948
+ "clip_ratio": 0.0,
949
+ "completion_length": 20.74625,
950
+ "epoch": 5.909441233140655,
951
+ "grad_norm": 147.2735619120744,
952
+ "kl": 1.90677734375,
953
+ "learning_rate": 4.090441932168551e-07,
954
+ "loss": 0.0763,
955
+ "reward": 1.9003723841905593,
956
+ "reward_std": 0.06933337734662928,
957
+ "rewards/format_reward": 0.98875,
958
+ "rewards/iqa_reward_score": 0.9116223914176226,
959
+ "step": 11500
960
+ },
961
+ {
962
+ "clip_ratio": 0.0,
963
+ "completion_length": 20.711875,
964
+ "epoch": 5.960822093770071,
965
+ "grad_norm": 69.36856845472299,
966
+ "kl": 1.9169140625,
967
+ "learning_rate": 4.039054470709147e-07,
968
+ "loss": 0.0767,
969
+ "reward": 1.8851546820998193,
970
+ "reward_std": 0.09332547818601597,
971
+ "rewards/format_reward": 0.983125,
972
+ "rewards/iqa_reward_score": 0.9020296874642372,
973
+ "step": 11600
974
+ },
975
+ {
976
+ "clip_ratio": 0.0,
977
+ "completion_length": 20.3178125,
978
+ "epoch": 6.063712267180475,
979
+ "grad_norm": 20.48968236042837,
980
+ "kl": 1.988623046875,
981
+ "learning_rate": 3.936279547790339e-07,
982
+ "loss": 0.0796,
983
+ "reward": 1.8889730402827263,
984
+ "reward_std": 0.08705994199059205,
985
+ "rewards/format_reward": 0.9859375,
986
+ "rewards/iqa_reward_score": 0.9030355482548476,
987
+ "step": 11800
988
+ },
989
+ {
990
+ "clip_ratio": 0.0,
991
+ "completion_length": 20.341875,
992
+ "epoch": 6.166473988439306,
993
+ "grad_norm": 17.947997271086912,
994
+ "kl": 1.970908203125,
995
+ "learning_rate": 3.8335046248715314e-07,
996
+ "loss": 0.0788,
997
+ "reward": 1.8987746007740498,
998
+ "reward_std": 0.07162293007655535,
999
+ "rewards/format_reward": 0.9884375,
1000
+ "rewards/iqa_reward_score": 0.9103371092304587,
1001
+ "step": 12000
1002
+ },
1003
+ {
1004
+ "clip_ratio": 0.0,
1005
+ "completion_length": 20.67625,
1006
+ "epoch": 6.269235709698138,
1007
+ "grad_norm": 222.44736959018252,
1008
+ "kl": 1.915966796875,
1009
+ "learning_rate": 3.7307297019527235e-07,
1010
+ "loss": 0.0766,
1011
+ "reward": 1.8926163981109858,
1012
+ "reward_std": 0.07730939569650218,
1013
+ "rewards/format_reward": 0.9865625,
1014
+ "rewards/iqa_reward_score": 0.9060539072006941,
1015
+ "step": 12200
1016
+ },
1017
+ {
1018
+ "clip_ratio": 0.0,
1019
+ "completion_length": 20.5784375,
1020
+ "epoch": 6.371997430956968,
1021
+ "grad_norm": 13.356785918610642,
1022
+ "kl": 1.961318359375,
1023
+ "learning_rate": 3.6279547790339155e-07,
1024
+ "loss": 0.0784,
1025
+ "reward": 1.8869195252656936,
1026
+ "reward_std": 0.09981291456278996,
1027
+ "rewards/format_reward": 0.979375,
1028
+ "rewards/iqa_reward_score": 0.9075445308163762,
1029
+ "step": 12400
1030
+ },
1031
+ {
1032
+ "clip_ratio": 0.0,
1033
+ "completion_length": 22.4525,
1034
+ "epoch": 6.423378291586384,
1035
+ "grad_norm": 30.8756155693914,
1036
+ "kl": 1.8610546875,
1037
+ "learning_rate": 3.5765673175745115e-07,
1038
+ "loss": 0.0744,
1039
+ "reward": 1.9010210880637168,
1040
+ "reward_std": 0.07242356748203747,
1041
+ "rewards/format_reward": 0.98875,
1042
+ "rewards/iqa_reward_score": 0.9122710923105478,
1043
+ "step": 12500
1044
+ },
1045
+ {
1046
+ "clip_ratio": 0.0,
1047
+ "completion_length": 24.38,
1048
+ "epoch": 6.4747591522158,
1049
+ "grad_norm": 7.829345980386679,
1050
+ "kl": 1.74701171875,
1051
+ "learning_rate": 3.5251798561151076e-07,
1052
+ "loss": 0.0699,
1053
+ "reward": 1.8803515616059303,
1054
+ "reward_std": 0.10600787395669613,
1055
+ "rewards/format_reward": 0.979375,
1056
+ "rewards/iqa_reward_score": 0.9009765643626452,
1057
+ "step": 12600
1058
+ },
1059
+ {
1060
+ "clip_ratio": 0.0,
1061
+ "completion_length": 23.6565625,
1062
+ "epoch": 6.577520873474631,
1063
+ "grad_norm": 20.29606750367699,
1064
+ "kl": 1.82380859375,
1065
+ "learning_rate": 3.4224049331963e-07,
1066
+ "loss": 0.0729,
1067
+ "reward": 1.8765503884851933,
1068
+ "reward_std": 0.10835037114477018,
1069
+ "rewards/format_reward": 0.9771875,
1070
+ "rewards/iqa_reward_score": 0.8993628909811378,
1071
+ "step": 12800
1072
+ },
1073
+ {
1074
+ "clip_ratio": 0.0,
1075
+ "completion_length": 21.75625,
1076
+ "epoch": 6.680282594733462,
1077
+ "grad_norm": 13.068159937640354,
1078
+ "kl": 1.868056640625,
1079
+ "learning_rate": 3.319630010277492e-07,
1080
+ "loss": 0.0747,
1081
+ "reward": 1.8851296819746495,
1082
+ "reward_std": 0.09881990624518949,
1083
+ "rewards/format_reward": 0.9815625,
1084
+ "rewards/iqa_reward_score": 0.9035671878978611,
1085
+ "step": 13000
1086
+ },
1087
+ {
1088
+ "clip_ratio": 0.0,
1089
+ "completion_length": 18.6534375,
1090
+ "epoch": 6.783044315992293,
1091
+ "grad_norm": 43.271540826002,
1092
+ "kl": 1.896494140625,
1093
+ "learning_rate": 3.216855087358684e-07,
1094
+ "loss": 0.0759,
1095
+ "reward": 1.8839531208574771,
1096
+ "reward_std": 0.10083580034945044,
1097
+ "rewards/format_reward": 0.980625,
1098
+ "rewards/iqa_reward_score": 0.9033281239122153,
1099
+ "step": 13200
1100
+ },
1101
+ {
1102
+ "clip_ratio": 0.0,
1103
+ "completion_length": 17.59375,
1104
+ "epoch": 6.885806037251124,
1105
+ "grad_norm": 51.02501405917888,
1106
+ "kl": 1.973603515625,
1107
+ "learning_rate": 3.114080164439877e-07,
1108
+ "loss": 0.0789,
1109
+ "reward": 1.8915468671917914,
1110
+ "reward_std": 0.08674899358520634,
1111
+ "rewards/format_reward": 0.9840625,
1112
+ "rewards/iqa_reward_score": 0.9074843747541308,
1113
+ "step": 13400
1114
+ },
1115
+ {
1116
+ "clip_ratio": 0.0,
1117
+ "completion_length": 17.875,
1118
+ "epoch": 6.937186897880539,
1119
+ "grad_norm": 101.7576095129992,
1120
+ "kl": 1.999921875,
1121
+ "learning_rate": 3.062692702980473e-07,
1122
+ "loss": 0.08,
1123
+ "reward": 1.8977671816945076,
1124
+ "reward_std": 0.07746992219588719,
1125
+ "rewards/format_reward": 0.9875,
1126
+ "rewards/iqa_reward_score": 0.9102671888470649,
1127
+ "step": 13500
1128
+ },
1129
+ {
1130
+ "clip_ratio": 0.0,
1131
+ "completion_length": 19.418125,
1132
+ "epoch": 6.988567758509955,
1133
+ "grad_norm": 31.809990191429367,
1134
+ "kl": 1.88990234375,
1135
+ "learning_rate": 3.011305241521069e-07,
1136
+ "loss": 0.0756,
1137
+ "reward": 1.8850296795368195,
1138
+ "reward_std": 0.08940189514425584,
1139
+ "rewards/format_reward": 0.983125,
1140
+ "rewards/iqa_reward_score": 0.9019046877324581,
1141
+ "step": 13600
1142
+ },
1143
+ {
1144
+ "clip_ratio": 0.0,
1145
+ "completion_length": 20.1825,
1146
+ "epoch": 7.09145793192036,
1147
+ "grad_norm": 13.227429266121407,
1148
+ "kl": 1.850634765625,
1149
+ "learning_rate": 2.908530318602261e-07,
1150
+ "loss": 0.074,
1151
+ "reward": 1.8925906175374985,
1152
+ "reward_std": 0.09375914162839763,
1153
+ "rewards/format_reward": 0.9828125,
1154
+ "rewards/iqa_reward_score": 0.9097781255841255,
1155
+ "step": 13800
1156
+ },
1157
+ {
1158
+ "clip_ratio": 0.0,
1159
+ "completion_length": 18.1321875,
1160
+ "epoch": 7.194219653179191,
1161
+ "grad_norm": 10.599748254211335,
1162
+ "kl": 1.89337890625,
1163
+ "learning_rate": 2.805755395683453e-07,
1164
+ "loss": 0.0757,
1165
+ "reward": 1.899733590334654,
1166
+ "reward_std": 0.08313908010721206,
1167
+ "rewards/format_reward": 0.984375,
1168
+ "rewards/iqa_reward_score": 0.9153585939109325,
1169
+ "step": 14000
1170
+ },
1171
+ {
1172
+ "clip_ratio": 0.0,
1173
+ "completion_length": 19.83375,
1174
+ "epoch": 7.296981374438022,
1175
+ "grad_norm": 103.30184204894014,
1176
+ "kl": 1.8382421875,
1177
+ "learning_rate": 2.7029804727646455e-07,
1178
+ "loss": 0.0735,
1179
+ "reward": 1.8822011659294366,
1180
+ "reward_std": 0.1061160612545791,
1181
+ "rewards/format_reward": 0.9790625,
1182
+ "rewards/iqa_reward_score": 0.9031386712566019,
1183
+ "step": 14200
1184
+ },
1185
+ {
1186
+ "clip_ratio": 0.0,
1187
+ "completion_length": 18.7328125,
1188
+ "epoch": 7.399743095696853,
1189
+ "grad_norm": 21.624795896150882,
1190
+ "kl": 1.8940625,
1191
+ "learning_rate": 2.6002055498458376e-07,
1192
+ "loss": 0.0758,
1193
+ "reward": 1.8954588214308024,
1194
+ "reward_std": 0.08989560850925045,
1195
+ "rewards/format_reward": 0.985,
1196
+ "rewards/iqa_reward_score": 0.9104588272795081,
1197
+ "step": 14400
1198
+ },
1199
+ {
1200
+ "clip_ratio": 0.0,
1201
+ "completion_length": 18.505625,
1202
+ "epoch": 7.451123956326269,
1203
+ "grad_norm": 35.276748712299856,
1204
+ "kl": 1.89419921875,
1205
+ "learning_rate": 2.5488180883864336e-07,
1206
+ "loss": 0.0758,
1207
+ "reward": 1.884902337193489,
1208
+ "reward_std": 0.10493175498064375,
1209
+ "rewards/format_reward": 0.979375,
1210
+ "rewards/iqa_reward_score": 0.905527343377471,
1211
+ "step": 14500
1212
+ },
1213
+ {
1214
+ "clip_ratio": 0.0,
1215
+ "completion_length": 16.82625,
1216
+ "epoch": 7.502504816955684,
1217
+ "grad_norm": 84.53198174061639,
1218
+ "kl": 2.06251953125,
1219
+ "learning_rate": 2.4974306269270296e-07,
1220
+ "loss": 0.0825,
1221
+ "reward": 1.8909136363863945,
1222
+ "reward_std": 0.10835257644532248,
1223
+ "rewards/format_reward": 0.978125,
1224
+ "rewards/iqa_reward_score": 0.9127886415272951,
1225
+ "step": 14600
1226
+ },
1227
+ {
1228
+ "clip_ratio": 0.0,
1229
+ "completion_length": 17.5196875,
1230
+ "epoch": 7.605266538214515,
1231
+ "grad_norm": 10.589764450261264,
1232
+ "kl": 2.156630859375,
1233
+ "learning_rate": 2.3946557040082217e-07,
1234
+ "loss": 0.0863,
1235
+ "reward": 1.8696386666595937,
1236
+ "reward_std": 0.12423644962807884,
1237
+ "rewards/format_reward": 0.9715625,
1238
+ "rewards/iqa_reward_score": 0.8980761723965407,
1239
+ "step": 14800
1240
+ },
1241
+ {
1242
+ "clip_ratio": 0.0,
1243
+ "completion_length": 16.7325,
1244
+ "epoch": 7.7080282594733465,
1245
+ "grad_norm": 10.913131914126758,
1246
+ "kl": 2.070146484375,
1247
+ "learning_rate": 2.2918807810894143e-07,
1248
+ "loss": 0.0828,
1249
+ "reward": 1.8887575732171535,
1250
+ "reward_std": 0.11135890247678618,
1251
+ "rewards/format_reward": 0.9775,
1252
+ "rewards/iqa_reward_score": 0.9112575780972838,
1253
+ "step": 15000
1254
+ },
1255
+ {
1256
+ "clip_ratio": 0.0,
1257
+ "completion_length": 15.9571875,
1258
+ "epoch": 7.810789980732177,
1259
+ "grad_norm": 45.002154023589725,
1260
+ "kl": 2.196806640625,
1261
+ "learning_rate": 2.1891058581706063e-07,
1262
+ "loss": 0.0879,
1263
+ "reward": 1.892361634373665,
1264
+ "reward_std": 0.1102386135366396,
1265
+ "rewards/format_reward": 0.9771875,
1266
+ "rewards/iqa_reward_score": 0.9151741417497397,
1267
+ "step": 15200
1268
+ },
1269
+ {
1270
+ "clip_ratio": 0.0,
1271
+ "completion_length": 16.425625,
1272
+ "epoch": 7.913551701991008,
1273
+ "grad_norm": 15.653934750546377,
1274
+ "kl": 2.142041015625,
1275
+ "learning_rate": 2.0863309352517986e-07,
1276
+ "loss": 0.0857,
1277
+ "reward": 1.8734804604202508,
1278
+ "reward_std": 0.12232352063700092,
1279
+ "rewards/format_reward": 0.97375,
1280
+ "rewards/iqa_reward_score": 0.8997304691933096,
1281
+ "step": 15400
1282
+ },
1283
+ {
1284
+ "clip_ratio": 0.0,
1285
+ "completion_length": 17.148125,
1286
+ "epoch": 7.964932562620424,
1287
+ "grad_norm": 97.67216959654685,
1288
+ "kl": 2.11296875,
1289
+ "learning_rate": 2.0349434737923946e-07,
1290
+ "loss": 0.0845,
1291
+ "reward": 1.873739056289196,
1292
+ "reward_std": 0.12005866145074834,
1293
+ "rewards/format_reward": 0.976875,
1294
+ "rewards/iqa_reward_score": 0.8968640621006488,
1295
+ "step": 15500
1296
+ },
1297
+ {
1298
+ "clip_ratio": 0.0,
1299
+ "completion_length": 17.506875,
1300
+ "epoch": 8.016441875401412,
1301
+ "grad_norm": 105.09965514480388,
1302
+ "kl": 2.1259375,
1303
+ "learning_rate": 1.9835560123329907e-07,
1304
+ "loss": 0.085,
1305
+ "reward": 1.876248899102211,
1306
+ "reward_std": 0.11951107540109661,
1307
+ "rewards/format_reward": 0.976875,
1308
+ "rewards/iqa_reward_score": 0.8993739089369774,
1309
+ "step": 15600
1310
+ },
1311
+ {
1312
+ "clip_ratio": 0.0,
1313
+ "completion_length": 17.133125,
1314
+ "epoch": 8.119203596660244,
1315
+ "grad_norm": 6.128097746188641,
1316
+ "kl": 2.223037109375,
1317
+ "learning_rate": 1.880781089414183e-07,
1318
+ "loss": 0.0889,
1319
+ "reward": 1.880941744968295,
1320
+ "reward_std": 0.12711579945113044,
1321
+ "rewards/format_reward": 0.9734375,
1322
+ "rewards/iqa_reward_score": 0.9075042496249079,
1323
+ "step": 15800
1324
+ },
1325
+ {
1326
+ "clip_ratio": 0.0,
1327
+ "completion_length": 17.825,
1328
+ "epoch": 8.221965317919075,
1329
+ "grad_norm": 21.00097459983442,
1330
+ "kl": 2.175458984375,
1331
+ "learning_rate": 1.778006166495375e-07,
1332
+ "loss": 0.087,
1333
+ "reward": 1.8709558783471585,
1334
+ "reward_std": 0.14294033588666935,
1335
+ "rewards/format_reward": 0.9684375,
1336
+ "rewards/iqa_reward_score": 0.9025183825194836,
1337
+ "step": 16000
1338
+ },
1339
+ {
1340
+ "clip_ratio": 0.0,
1341
+ "completion_length": 17.31625,
1342
+ "epoch": 8.324727039177906,
1343
+ "grad_norm": 32.175418316210305,
1344
+ "kl": 2.24296875,
1345
+ "learning_rate": 1.6752312435765673e-07,
1346
+ "loss": 0.0897,
1347
+ "reward": 1.8707203871756792,
1348
+ "reward_std": 0.14462180348142284,
1349
+ "rewards/format_reward": 0.9675,
1350
+ "rewards/iqa_reward_score": 0.9032203914225101,
1351
+ "step": 16200
1352
+ },
1353
+ {
1354
+ "clip_ratio": 0.0,
1355
+ "completion_length": 17.0921875,
1356
+ "epoch": 8.427488760436738,
1357
+ "grad_norm": 19.585104477991443,
1358
+ "kl": 2.394765625,
1359
+ "learning_rate": 1.5724563206577597e-07,
1360
+ "loss": 0.0958,
1361
+ "reward": 1.865453900322318,
1362
+ "reward_std": 0.16036579100909876,
1363
+ "rewards/format_reward": 0.9640625,
1364
+ "rewards/iqa_reward_score": 0.9013914061337709,
1365
+ "step": 16400
1366
+ },
1367
+ {
1368
+ "clip_ratio": 0.0,
1369
+ "completion_length": 18.23625,
1370
+ "epoch": 8.478869621066153,
1371
+ "grad_norm": 52.50729568021014,
1372
+ "kl": 2.45123046875,
1373
+ "learning_rate": 1.5210688591983557e-07,
1374
+ "loss": 0.098,
1375
+ "reward": 1.8535247252881526,
1376
+ "reward_std": 0.1715104495617561,
1377
+ "rewards/format_reward": 0.96125,
1378
+ "rewards/iqa_reward_score": 0.892274733260274,
1379
+ "step": 16500
1380
+ },
1381
+ {
1382
+ "clip_ratio": 0.0,
1383
+ "completion_length": 17.33125,
1384
+ "epoch": 8.530250481695568,
1385
+ "grad_norm": 16.036354362208947,
1386
+ "kl": 2.4987109375,
1387
+ "learning_rate": 1.4696813977389517e-07,
1388
+ "loss": 0.1,
1389
+ "reward": 1.8759004624187947,
1390
+ "reward_std": 0.12627161706855985,
1391
+ "rewards/format_reward": 0.97375,
1392
+ "rewards/iqa_reward_score": 0.9021504689753056,
1393
+ "step": 16600
1394
+ }
1395
+ ],
1396
+ "logging_steps": 1.0,
1397
+ "max_steps": 19460,
1398
+ "num_input_tokens_seen": 0,
1399
+ "num_train_epochs": 10,
1400
+ "save_steps": 200,
1401
+ "stateful_callbacks": {
1402
+ "TrainerControl": {
1403
+ "args": {
1404
+ "should_epoch_stop": false,
1405
+ "should_evaluate": false,
1406
+ "should_log": false,
1407
+ "should_save": true,
1408
+ "should_training_stop": false
1409
+ },
1410
+ "attributes": {}
1411
+ }
1412
+ },
1413
+ "total_flos": 0.0,
1414
+ "train_batch_size": 1,
1415
+ "trial_name": null,
1416
+ "trial_params": null
1417
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66826cd48398dec61d3313b69768e51c52bf1c4f4f110eeab58e8c5e2fa3fbcf
3
+ size 8504
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)