update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: plbart-base-finetuned-ut-generator
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# plbart-base-finetuned-ut-generator
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [uclanlp/plbart-base](https://huggingface.co/uclanlp/plbart-base) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.3141
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 5e-06
|
36 |
+
- train_batch_size: 8
|
37 |
+
- eval_batch_size: 8
|
38 |
+
- seed: 42
|
39 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
+
- lr_scheduler_type: linear
|
41 |
+
- num_epochs: 2
|
42 |
+
- mixed_precision_training: Native AMP
|
43 |
+
|
44 |
+
### Training results
|
45 |
+
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
48 |
+
| 1.3625 | 0.09 | 100 | 0.4305 |
|
49 |
+
| 0.4651 | 0.18 | 200 | 0.3991 |
|
50 |
+
| 0.4273 | 0.27 | 300 | 0.3831 |
|
51 |
+
| 0.4021 | 0.36 | 400 | 0.3722 |
|
52 |
+
| 0.4101 | 0.44 | 500 | 0.3628 |
|
53 |
+
| 0.4004 | 0.53 | 600 | 0.3550 |
|
54 |
+
| 0.3877 | 0.62 | 700 | 0.3483 |
|
55 |
+
| 0.3835 | 0.71 | 800 | 0.3431 |
|
56 |
+
| 0.4012 | 0.8 | 900 | 0.3379 |
|
57 |
+
| 0.3537 | 0.89 | 1000 | 0.3343 |
|
58 |
+
| 0.3696 | 0.98 | 1100 | 0.3308 |
|
59 |
+
| 0.3574 | 1.07 | 1200 | 0.3278 |
|
60 |
+
| 0.3474 | 1.16 | 1300 | 0.3255 |
|
61 |
+
| 0.3564 | 1.24 | 1400 | 0.3228 |
|
62 |
+
| 0.3353 | 1.33 | 1500 | 0.3210 |
|
63 |
+
| 0.3233 | 1.42 | 1600 | 0.3191 |
|
64 |
+
| 0.3799 | 1.51 | 1700 | 0.3174 |
|
65 |
+
| 0.3565 | 1.6 | 1800 | 0.3164 |
|
66 |
+
| 0.3281 | 1.69 | 1900 | 0.3156 |
|
67 |
+
| 0.3272 | 1.78 | 2000 | 0.3150 |
|
68 |
+
| 0.3559 | 1.87 | 2100 | 0.3143 |
|
69 |
+
| 0.3486 | 1.96 | 2200 | 0.3141 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.26.1
|
75 |
+
- Pytorch 1.13.1+cu116
|
76 |
+
- Datasets 2.10.0
|
77 |
+
- Tokenizers 0.13.2
|