|
|
#include "../cuda_utils.h" |
|
|
#include "knnquery_cuda_kernel.h" |
|
|
|
|
|
|
|
|
__device__ void swap_float(float *x, float *y) |
|
|
{ |
|
|
float tmp = *x; |
|
|
*x = *y; |
|
|
*y = tmp; |
|
|
} |
|
|
|
|
|
|
|
|
__device__ void swap_int(int *x, int *y) |
|
|
{ |
|
|
int tmp = *x; |
|
|
*x = *y; |
|
|
*y = tmp; |
|
|
} |
|
|
|
|
|
|
|
|
__device__ void reheap(float *dist, int *idx, int k) |
|
|
{ |
|
|
int root = 0; |
|
|
int child = root * 2 + 1; |
|
|
while (child < k) |
|
|
{ |
|
|
if(child + 1 < k && dist[child+1] > dist[child]) |
|
|
child++; |
|
|
if(dist[root] > dist[child]) |
|
|
return; |
|
|
swap_float(&dist[root], &dist[child]); |
|
|
swap_int(&idx[root], &idx[child]); |
|
|
root = child; |
|
|
child = root * 2 + 1; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
__device__ void heap_sort(float *dist, int *idx, int k) |
|
|
{ |
|
|
int i; |
|
|
for (i = k - 1; i > 0; i |
|
|
{ |
|
|
swap_float(&dist[0], &dist[i]); |
|
|
swap_int(&idx[0], &idx[i]); |
|
|
reheap(dist, idx, i); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
__device__ int get_bt_idx(int idx, const int *offset) |
|
|
{ |
|
|
int i = 0; |
|
|
while (1) |
|
|
{ |
|
|
if (idx < offset[i]) |
|
|
break; |
|
|
else |
|
|
i++; |
|
|
} |
|
|
return i; |
|
|
} |
|
|
|
|
|
|
|
|
__global__ void knnquery_cuda_kernel(int m, int nsample, const float *__restrict__ xyz, const float *__restrict__ new_xyz, const int *__restrict__ offset, const int *__restrict__ new_offset, int *__restrict__ idx, float *__restrict__ dist2) { |
|
|
// input: xyz (n, 3) new_xyz (m, 3) |
|
|
// output: idx (m, nsample) dist2 (m, nsample) |
|
|
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x; |
|
|
if (pt_idx >= m) return; |
|
|
|
|
|
new_xyz += pt_idx * 3; |
|
|
idx += pt_idx * nsample; |
|
|
dist2 += pt_idx * nsample; |
|
|
int bt_idx = get_bt_idx(pt_idx, new_offset); |
|
|
int start; |
|
|
if (bt_idx == 0) |
|
|
start = 0; |
|
|
else |
|
|
start = offset[bt_idx - 1]; |
|
|
int end = offset[bt_idx]; |
|
|
|
|
|
float new_x = new_xyz[0]; |
|
|
float new_y = new_xyz[1]; |
|
|
float new_z = new_xyz[2]; |
|
|
|
|
|
float best_dist[100]; |
|
|
int best_idx[100]; |
|
|
for(int i = 0; i < nsample; i++){ |
|
|
best_dist[i] = 1e10; |
|
|
best_idx[i] = start; |
|
|
} |
|
|
for(int i = start; i < end; i++){ |
|
|
float x = xyz[i * 3 + 0]; |
|
|
float y = xyz[i * 3 + 1]; |
|
|
float z = xyz[i * 3 + 2]; |
|
|
float d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) + (new_z - z) * (new_z - z); |
|
|
if (d2 < best_dist[0]){ |
|
|
best_dist[0] = d2; |
|
|
best_idx[0] = i; |
|
|
reheap(best_dist, best_idx, nsample); |
|
|
} |
|
|
} |
|
|
heap_sort(best_dist, best_idx, nsample); |
|
|
for(int i = 0; i < nsample; i++){ |
|
|
idx[i] = best_idx[i]; |
|
|
dist2[i] = best_dist[i]; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void knnquery_cuda_launcher(int m, int nsample, const float *xyz, const float *new_xyz, const int *offset, const int *new_offset, int *idx, float *dist2) { |
|
|
// input: new_xyz: (m, 3), xyz: (n, 3), idx: (m, nsample) |
|
|
dim3 blocks(DIVUP(m, THREADS_PER_BLOCK)); |
|
|
dim3 threads(THREADS_PER_BLOCK); |
|
|
knnquery_cuda_kernel<<<blocks, threads, 0>>>(m, nsample, xyz, new_xyz, offset, new_offset, idx, dist2); |
|
|
} |
|
|
|