MilaWang commited on
Commit
7029f18
·
verified ·
1 Parent(s): b6ab24a

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/README.md +202 -0
  2. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/adapter_config.json +29 -0
  3. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/adapter_model.safetensors +3 -0
  4. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/added_tokens.json +5 -0
  5. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/README.md +202 -0
  6. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/adapter_config.json +29 -0
  7. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/adapter_model.safetensors +3 -0
  8. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/added_tokens.json +5 -0
  9. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/merges.txt +0 -0
  10. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/optimizer.pt +3 -0
  11. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/rng_state.pth +3 -0
  12. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/scheduler.pt +3 -0
  13. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/special_tokens_map.json +14 -0
  14. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/tokenizer.json +0 -0
  15. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/tokenizer_config.json +43 -0
  16. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/trainer_state.json +857 -0
  17. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/training_args.bin +3 -0
  18. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/vocab.json +0 -0
  19. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/README.md +202 -0
  20. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/adapter_config.json +29 -0
  21. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/adapter_model.safetensors +3 -0
  22. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/added_tokens.json +5 -0
  23. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/merges.txt +0 -0
  24. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/optimizer.pt +3 -0
  25. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/rng_state.pth +3 -0
  26. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/scheduler.pt +3 -0
  27. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/special_tokens_map.json +14 -0
  28. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/tokenizer.json +0 -0
  29. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/tokenizer_config.json +43 -0
  30. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/trainer_state.json +1026 -0
  31. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/training_args.bin +3 -0
  32. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/vocab.json +0 -0
  33. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/README.md +202 -0
  34. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/adapter_config.json +29 -0
  35. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/adapter_model.safetensors +3 -0
  36. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/added_tokens.json +5 -0
  37. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/merges.txt +0 -0
  38. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/optimizer.pt +3 -0
  39. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/rng_state.pth +3 -0
  40. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/scheduler.pt +3 -0
  41. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/special_tokens_map.json +14 -0
  42. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/tokenizer.json +0 -0
  43. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/tokenizer_config.json +43 -0
  44. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/trainer_state.json +1188 -0
  45. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/training_args.bin +3 -0
  46. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/vocab.json +0 -0
  47. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1800/README.md +202 -0
  48. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1800/adapter_config.json +29 -0
  49. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1800/adapter_model.safetensors +3 -0
  50. Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1800/added_tokens.json +5 -0
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2-7B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bca64cc84ff73c12e7cef4b0e172cb7a1f9e426c15879ebb84296fd66907ea53
3
+ size 80755416
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2-7B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7428340d784699e741dcd69e0578e373472a5d385bcfc5a392f746b79381d28d
3
+ size 80755416
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:017ddd47da9630bba466f8751b922c5ef78f17bdb7dc371e18159a97f7af0882
3
+ size 41136570
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1eb30cbef2b7e1873f8935c9a22f37e4fbe0ac8ecb54a648bad0297a42bf99b
3
+ size 14244
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21878273a735f044e83414a39a919be2969bece88ceb8432a73dc0683c795cc0
3
+ size 1064
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/special_tokens_map.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": "<|im_end|>"
14
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 131072,
39
+ "pad_token": "<|im_end|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/trainer_state.json ADDED
@@ -0,0 +1,857 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.5916207432746887,
3
+ "best_model_checkpoint": "outputs-001/Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125",
4
+ "epoch": 5.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1125,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.044444444444444446,
13
+ "grad_norm": 0.2940807342529297,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.8338,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.08888888888888889,
20
+ "grad_norm": 0.36792996525764465,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.5844,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.13333333333333333,
27
+ "grad_norm": 0.44259828329086304,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.3603,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.17777777777777778,
34
+ "grad_norm": 0.760607898235321,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.1408,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.2222222222222222,
41
+ "grad_norm": 0.608131468296051,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.9766,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.26666666666666666,
48
+ "grad_norm": 0.5941349864006042,
49
+ "learning_rate": 0.0002,
50
+ "loss": 0.9176,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.3111111111111111,
55
+ "grad_norm": 0.5939444899559021,
56
+ "learning_rate": 0.0002,
57
+ "loss": 0.9081,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.35555555555555557,
62
+ "grad_norm": 0.6093971729278564,
63
+ "learning_rate": 0.0002,
64
+ "loss": 0.8406,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.4,
69
+ "grad_norm": 0.6158391237258911,
70
+ "learning_rate": 0.0002,
71
+ "loss": 0.8562,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.4444444444444444,
76
+ "grad_norm": 0.4985930621623993,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.8111,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.4888888888888889,
83
+ "grad_norm": 0.6661780476570129,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.7963,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.5333333333333333,
90
+ "grad_norm": 0.5717976689338684,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.8114,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.5777777777777777,
97
+ "grad_norm": 0.5666863918304443,
98
+ "learning_rate": 0.0002,
99
+ "loss": 0.7397,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.6222222222222222,
104
+ "grad_norm": 0.49229782819747925,
105
+ "learning_rate": 0.0002,
106
+ "loss": 0.7671,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.6666666666666666,
111
+ "grad_norm": 0.48167455196380615,
112
+ "learning_rate": 0.0002,
113
+ "loss": 0.7851,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.7111111111111111,
118
+ "grad_norm": 0.4657461643218994,
119
+ "learning_rate": 0.0002,
120
+ "loss": 0.7786,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.7555555555555555,
125
+ "grad_norm": 0.39121416211128235,
126
+ "learning_rate": 0.0002,
127
+ "loss": 0.7691,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.8,
132
+ "grad_norm": 0.441007524728775,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.7323,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.8444444444444444,
139
+ "grad_norm": 0.4213836193084717,
140
+ "learning_rate": 0.0002,
141
+ "loss": 0.7418,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.8888888888888888,
146
+ "grad_norm": 0.5080695152282715,
147
+ "learning_rate": 0.0002,
148
+ "loss": 0.7451,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.9333333333333333,
153
+ "grad_norm": 0.4761652648448944,
154
+ "learning_rate": 0.0002,
155
+ "loss": 0.757,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.9777777777777777,
160
+ "grad_norm": 0.5242546796798706,
161
+ "learning_rate": 0.0002,
162
+ "loss": 0.741,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 1.0,
167
+ "eval_loss": 0.7312084436416626,
168
+ "eval_runtime": 86.046,
169
+ "eval_samples_per_second": 3.707,
170
+ "eval_steps_per_second": 0.465,
171
+ "step": 225
172
+ },
173
+ {
174
+ "epoch": 1.0222222222222221,
175
+ "grad_norm": 0.4389289915561676,
176
+ "learning_rate": 0.0002,
177
+ "loss": 0.7365,
178
+ "step": 230
179
+ },
180
+ {
181
+ "epoch": 1.0666666666666667,
182
+ "grad_norm": 0.4293370246887207,
183
+ "learning_rate": 0.0002,
184
+ "loss": 0.7223,
185
+ "step": 240
186
+ },
187
+ {
188
+ "epoch": 1.1111111111111112,
189
+ "grad_norm": 0.45308825373649597,
190
+ "learning_rate": 0.0002,
191
+ "loss": 0.6934,
192
+ "step": 250
193
+ },
194
+ {
195
+ "epoch": 1.1555555555555554,
196
+ "grad_norm": 0.4458293318748474,
197
+ "learning_rate": 0.0002,
198
+ "loss": 0.7058,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 1.2,
203
+ "grad_norm": 0.46963292360305786,
204
+ "learning_rate": 0.0002,
205
+ "loss": 0.6956,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 1.2444444444444445,
210
+ "grad_norm": 0.39571475982666016,
211
+ "learning_rate": 0.0002,
212
+ "loss": 0.6882,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 1.2888888888888888,
217
+ "grad_norm": 0.4619075655937195,
218
+ "learning_rate": 0.0002,
219
+ "loss": 0.7241,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 1.3333333333333333,
224
+ "grad_norm": 0.457443505525589,
225
+ "learning_rate": 0.0002,
226
+ "loss": 0.7281,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 1.3777777777777778,
231
+ "grad_norm": 0.5545842051506042,
232
+ "learning_rate": 0.0002,
233
+ "loss": 0.7138,
234
+ "step": 310
235
+ },
236
+ {
237
+ "epoch": 1.4222222222222223,
238
+ "grad_norm": 0.4492949843406677,
239
+ "learning_rate": 0.0002,
240
+ "loss": 0.7082,
241
+ "step": 320
242
+ },
243
+ {
244
+ "epoch": 1.4666666666666668,
245
+ "grad_norm": 0.46642452478408813,
246
+ "learning_rate": 0.0002,
247
+ "loss": 0.6733,
248
+ "step": 330
249
+ },
250
+ {
251
+ "epoch": 1.511111111111111,
252
+ "grad_norm": 0.4598081707954407,
253
+ "learning_rate": 0.0002,
254
+ "loss": 0.6846,
255
+ "step": 340
256
+ },
257
+ {
258
+ "epoch": 1.5555555555555556,
259
+ "grad_norm": 0.34535378217697144,
260
+ "learning_rate": 0.0002,
261
+ "loss": 0.6981,
262
+ "step": 350
263
+ },
264
+ {
265
+ "epoch": 1.6,
266
+ "grad_norm": 0.4226590096950531,
267
+ "learning_rate": 0.0002,
268
+ "loss": 0.672,
269
+ "step": 360
270
+ },
271
+ {
272
+ "epoch": 1.6444444444444444,
273
+ "grad_norm": 0.47323980927467346,
274
+ "learning_rate": 0.0002,
275
+ "loss": 0.6638,
276
+ "step": 370
277
+ },
278
+ {
279
+ "epoch": 1.6888888888888889,
280
+ "grad_norm": 0.39699724316596985,
281
+ "learning_rate": 0.0002,
282
+ "loss": 0.6813,
283
+ "step": 380
284
+ },
285
+ {
286
+ "epoch": 1.7333333333333334,
287
+ "grad_norm": 0.5325330495834351,
288
+ "learning_rate": 0.0002,
289
+ "loss": 0.6852,
290
+ "step": 390
291
+ },
292
+ {
293
+ "epoch": 1.7777777777777777,
294
+ "grad_norm": 0.4336804449558258,
295
+ "learning_rate": 0.0002,
296
+ "loss": 0.6716,
297
+ "step": 400
298
+ },
299
+ {
300
+ "epoch": 1.8222222222222222,
301
+ "grad_norm": 0.44034498929977417,
302
+ "learning_rate": 0.0002,
303
+ "loss": 0.6538,
304
+ "step": 410
305
+ },
306
+ {
307
+ "epoch": 1.8666666666666667,
308
+ "grad_norm": 0.4527396261692047,
309
+ "learning_rate": 0.0002,
310
+ "loss": 0.6706,
311
+ "step": 420
312
+ },
313
+ {
314
+ "epoch": 1.911111111111111,
315
+ "grad_norm": 0.40166375041007996,
316
+ "learning_rate": 0.0002,
317
+ "loss": 0.6507,
318
+ "step": 430
319
+ },
320
+ {
321
+ "epoch": 1.9555555555555557,
322
+ "grad_norm": 0.49753332138061523,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.6599,
325
+ "step": 440
326
+ },
327
+ {
328
+ "epoch": 2.0,
329
+ "grad_norm": 0.5019579529762268,
330
+ "learning_rate": 0.0002,
331
+ "loss": 0.6482,
332
+ "step": 450
333
+ },
334
+ {
335
+ "epoch": 2.0,
336
+ "eval_loss": 0.6728096604347229,
337
+ "eval_runtime": 85.827,
338
+ "eval_samples_per_second": 3.717,
339
+ "eval_steps_per_second": 0.466,
340
+ "step": 450
341
+ },
342
+ {
343
+ "epoch": 2.0444444444444443,
344
+ "grad_norm": 0.5162734985351562,
345
+ "learning_rate": 0.0002,
346
+ "loss": 0.626,
347
+ "step": 460
348
+ },
349
+ {
350
+ "epoch": 2.088888888888889,
351
+ "grad_norm": 0.4973997175693512,
352
+ "learning_rate": 0.0002,
353
+ "loss": 0.6363,
354
+ "step": 470
355
+ },
356
+ {
357
+ "epoch": 2.1333333333333333,
358
+ "grad_norm": 0.6232216358184814,
359
+ "learning_rate": 0.0002,
360
+ "loss": 0.6225,
361
+ "step": 480
362
+ },
363
+ {
364
+ "epoch": 2.1777777777777776,
365
+ "grad_norm": 0.5598695278167725,
366
+ "learning_rate": 0.0002,
367
+ "loss": 0.6038,
368
+ "step": 490
369
+ },
370
+ {
371
+ "epoch": 2.2222222222222223,
372
+ "grad_norm": 0.5359365344047546,
373
+ "learning_rate": 0.0002,
374
+ "loss": 0.6247,
375
+ "step": 500
376
+ },
377
+ {
378
+ "epoch": 2.2666666666666666,
379
+ "grad_norm": 0.5992209315299988,
380
+ "learning_rate": 0.0002,
381
+ "loss": 0.6203,
382
+ "step": 510
383
+ },
384
+ {
385
+ "epoch": 2.311111111111111,
386
+ "grad_norm": 0.4921131730079651,
387
+ "learning_rate": 0.0002,
388
+ "loss": 0.6416,
389
+ "step": 520
390
+ },
391
+ {
392
+ "epoch": 2.3555555555555556,
393
+ "grad_norm": 0.5449638366699219,
394
+ "learning_rate": 0.0002,
395
+ "loss": 0.6157,
396
+ "step": 530
397
+ },
398
+ {
399
+ "epoch": 2.4,
400
+ "grad_norm": 0.45068296790122986,
401
+ "learning_rate": 0.0002,
402
+ "loss": 0.6244,
403
+ "step": 540
404
+ },
405
+ {
406
+ "epoch": 2.4444444444444446,
407
+ "grad_norm": 0.5800191164016724,
408
+ "learning_rate": 0.0002,
409
+ "loss": 0.6368,
410
+ "step": 550
411
+ },
412
+ {
413
+ "epoch": 2.488888888888889,
414
+ "grad_norm": 0.4825330674648285,
415
+ "learning_rate": 0.0002,
416
+ "loss": 0.6437,
417
+ "step": 560
418
+ },
419
+ {
420
+ "epoch": 2.533333333333333,
421
+ "grad_norm": 0.6174261569976807,
422
+ "learning_rate": 0.0002,
423
+ "loss": 0.606,
424
+ "step": 570
425
+ },
426
+ {
427
+ "epoch": 2.5777777777777775,
428
+ "grad_norm": 0.5854967832565308,
429
+ "learning_rate": 0.0002,
430
+ "loss": 0.5666,
431
+ "step": 580
432
+ },
433
+ {
434
+ "epoch": 2.6222222222222222,
435
+ "grad_norm": 0.44053414463996887,
436
+ "learning_rate": 0.0002,
437
+ "loss": 0.6017,
438
+ "step": 590
439
+ },
440
+ {
441
+ "epoch": 2.6666666666666665,
442
+ "grad_norm": 0.4803224503993988,
443
+ "learning_rate": 0.0002,
444
+ "loss": 0.6032,
445
+ "step": 600
446
+ },
447
+ {
448
+ "epoch": 2.7111111111111112,
449
+ "grad_norm": 0.5700278282165527,
450
+ "learning_rate": 0.0002,
451
+ "loss": 0.6238,
452
+ "step": 610
453
+ },
454
+ {
455
+ "epoch": 2.7555555555555555,
456
+ "grad_norm": 0.5318542122840881,
457
+ "learning_rate": 0.0002,
458
+ "loss": 0.5767,
459
+ "step": 620
460
+ },
461
+ {
462
+ "epoch": 2.8,
463
+ "grad_norm": 0.5594431161880493,
464
+ "learning_rate": 0.0002,
465
+ "loss": 0.5849,
466
+ "step": 630
467
+ },
468
+ {
469
+ "epoch": 2.8444444444444446,
470
+ "grad_norm": 0.5598340630531311,
471
+ "learning_rate": 0.0002,
472
+ "loss": 0.6094,
473
+ "step": 640
474
+ },
475
+ {
476
+ "epoch": 2.888888888888889,
477
+ "grad_norm": 0.5017251372337341,
478
+ "learning_rate": 0.0002,
479
+ "loss": 0.6059,
480
+ "step": 650
481
+ },
482
+ {
483
+ "epoch": 2.9333333333333336,
484
+ "grad_norm": 0.46027806401252747,
485
+ "learning_rate": 0.0002,
486
+ "loss": 0.6047,
487
+ "step": 660
488
+ },
489
+ {
490
+ "epoch": 2.977777777777778,
491
+ "grad_norm": 0.5706299543380737,
492
+ "learning_rate": 0.0002,
493
+ "loss": 0.5912,
494
+ "step": 670
495
+ },
496
+ {
497
+ "epoch": 3.0,
498
+ "eval_loss": 0.6362627148628235,
499
+ "eval_runtime": 85.1312,
500
+ "eval_samples_per_second": 3.747,
501
+ "eval_steps_per_second": 0.47,
502
+ "step": 675
503
+ },
504
+ {
505
+ "epoch": 3.022222222222222,
506
+ "grad_norm": 0.6016985774040222,
507
+ "learning_rate": 0.0002,
508
+ "loss": 0.5507,
509
+ "step": 680
510
+ },
511
+ {
512
+ "epoch": 3.066666666666667,
513
+ "grad_norm": 0.544710099697113,
514
+ "learning_rate": 0.0002,
515
+ "loss": 0.538,
516
+ "step": 690
517
+ },
518
+ {
519
+ "epoch": 3.111111111111111,
520
+ "grad_norm": 0.5868740081787109,
521
+ "learning_rate": 0.0002,
522
+ "loss": 0.5446,
523
+ "step": 700
524
+ },
525
+ {
526
+ "epoch": 3.1555555555555554,
527
+ "grad_norm": 0.4717068672180176,
528
+ "learning_rate": 0.0002,
529
+ "loss": 0.5337,
530
+ "step": 710
531
+ },
532
+ {
533
+ "epoch": 3.2,
534
+ "grad_norm": 0.5336525440216064,
535
+ "learning_rate": 0.0002,
536
+ "loss": 0.5561,
537
+ "step": 720
538
+ },
539
+ {
540
+ "epoch": 3.2444444444444445,
541
+ "grad_norm": 0.7006786465644836,
542
+ "learning_rate": 0.0002,
543
+ "loss": 0.5565,
544
+ "step": 730
545
+ },
546
+ {
547
+ "epoch": 3.2888888888888888,
548
+ "grad_norm": 0.5565499663352966,
549
+ "learning_rate": 0.0002,
550
+ "loss": 0.5312,
551
+ "step": 740
552
+ },
553
+ {
554
+ "epoch": 3.3333333333333335,
555
+ "grad_norm": 0.568071722984314,
556
+ "learning_rate": 0.0002,
557
+ "loss": 0.554,
558
+ "step": 750
559
+ },
560
+ {
561
+ "epoch": 3.3777777777777778,
562
+ "grad_norm": 0.6389057040214539,
563
+ "learning_rate": 0.0002,
564
+ "loss": 0.5297,
565
+ "step": 760
566
+ },
567
+ {
568
+ "epoch": 3.422222222222222,
569
+ "grad_norm": 0.5239511132240295,
570
+ "learning_rate": 0.0002,
571
+ "loss": 0.5191,
572
+ "step": 770
573
+ },
574
+ {
575
+ "epoch": 3.466666666666667,
576
+ "grad_norm": 0.6089216470718384,
577
+ "learning_rate": 0.0002,
578
+ "loss": 0.559,
579
+ "step": 780
580
+ },
581
+ {
582
+ "epoch": 3.511111111111111,
583
+ "grad_norm": 0.5546727776527405,
584
+ "learning_rate": 0.0002,
585
+ "loss": 0.5399,
586
+ "step": 790
587
+ },
588
+ {
589
+ "epoch": 3.5555555555555554,
590
+ "grad_norm": 0.5639946460723877,
591
+ "learning_rate": 0.0002,
592
+ "loss": 0.5558,
593
+ "step": 800
594
+ },
595
+ {
596
+ "epoch": 3.6,
597
+ "grad_norm": 0.5576934218406677,
598
+ "learning_rate": 0.0002,
599
+ "loss": 0.5476,
600
+ "step": 810
601
+ },
602
+ {
603
+ "epoch": 3.6444444444444444,
604
+ "grad_norm": 0.6561392545700073,
605
+ "learning_rate": 0.0002,
606
+ "loss": 0.5361,
607
+ "step": 820
608
+ },
609
+ {
610
+ "epoch": 3.688888888888889,
611
+ "grad_norm": 0.7699626088142395,
612
+ "learning_rate": 0.0002,
613
+ "loss": 0.5324,
614
+ "step": 830
615
+ },
616
+ {
617
+ "epoch": 3.7333333333333334,
618
+ "grad_norm": 0.47137776017189026,
619
+ "learning_rate": 0.0002,
620
+ "loss": 0.551,
621
+ "step": 840
622
+ },
623
+ {
624
+ "epoch": 3.7777777777777777,
625
+ "grad_norm": 0.7258023023605347,
626
+ "learning_rate": 0.0002,
627
+ "loss": 0.5581,
628
+ "step": 850
629
+ },
630
+ {
631
+ "epoch": 3.822222222222222,
632
+ "grad_norm": 0.510877251625061,
633
+ "learning_rate": 0.0002,
634
+ "loss": 0.5586,
635
+ "step": 860
636
+ },
637
+ {
638
+ "epoch": 3.8666666666666667,
639
+ "grad_norm": 0.6691411733627319,
640
+ "learning_rate": 0.0002,
641
+ "loss": 0.564,
642
+ "step": 870
643
+ },
644
+ {
645
+ "epoch": 3.911111111111111,
646
+ "grad_norm": 0.5722544193267822,
647
+ "learning_rate": 0.0002,
648
+ "loss": 0.5361,
649
+ "step": 880
650
+ },
651
+ {
652
+ "epoch": 3.9555555555555557,
653
+ "grad_norm": 0.6555589437484741,
654
+ "learning_rate": 0.0002,
655
+ "loss": 0.5307,
656
+ "step": 890
657
+ },
658
+ {
659
+ "epoch": 4.0,
660
+ "grad_norm": 0.5689453482627869,
661
+ "learning_rate": 0.0002,
662
+ "loss": 0.5251,
663
+ "step": 900
664
+ },
665
+ {
666
+ "epoch": 4.0,
667
+ "eval_loss": 0.6063342690467834,
668
+ "eval_runtime": 62.7917,
669
+ "eval_samples_per_second": 5.08,
670
+ "eval_steps_per_second": 0.637,
671
+ "step": 900
672
+ },
673
+ {
674
+ "epoch": 4.044444444444444,
675
+ "grad_norm": 0.8715280294418335,
676
+ "learning_rate": 0.0002,
677
+ "loss": 0.4847,
678
+ "step": 910
679
+ },
680
+ {
681
+ "epoch": 4.088888888888889,
682
+ "grad_norm": 0.5597540736198425,
683
+ "learning_rate": 0.0002,
684
+ "loss": 0.4756,
685
+ "step": 920
686
+ },
687
+ {
688
+ "epoch": 4.133333333333334,
689
+ "grad_norm": 0.7538669109344482,
690
+ "learning_rate": 0.0002,
691
+ "loss": 0.4673,
692
+ "step": 930
693
+ },
694
+ {
695
+ "epoch": 4.177777777777778,
696
+ "grad_norm": 0.7434868812561035,
697
+ "learning_rate": 0.0002,
698
+ "loss": 0.4835,
699
+ "step": 940
700
+ },
701
+ {
702
+ "epoch": 4.222222222222222,
703
+ "grad_norm": 0.6148455142974854,
704
+ "learning_rate": 0.0002,
705
+ "loss": 0.486,
706
+ "step": 950
707
+ },
708
+ {
709
+ "epoch": 4.266666666666667,
710
+ "grad_norm": 0.6513713598251343,
711
+ "learning_rate": 0.0002,
712
+ "loss": 0.4812,
713
+ "step": 960
714
+ },
715
+ {
716
+ "epoch": 4.311111111111111,
717
+ "grad_norm": 0.7177010774612427,
718
+ "learning_rate": 0.0002,
719
+ "loss": 0.4823,
720
+ "step": 970
721
+ },
722
+ {
723
+ "epoch": 4.355555555555555,
724
+ "grad_norm": 0.710017204284668,
725
+ "learning_rate": 0.0002,
726
+ "loss": 0.4934,
727
+ "step": 980
728
+ },
729
+ {
730
+ "epoch": 4.4,
731
+ "grad_norm": 0.7506688833236694,
732
+ "learning_rate": 0.0002,
733
+ "loss": 0.4682,
734
+ "step": 990
735
+ },
736
+ {
737
+ "epoch": 4.444444444444445,
738
+ "grad_norm": 0.7618675231933594,
739
+ "learning_rate": 0.0002,
740
+ "loss": 0.4782,
741
+ "step": 1000
742
+ },
743
+ {
744
+ "epoch": 4.488888888888889,
745
+ "grad_norm": 0.6317481994628906,
746
+ "learning_rate": 0.0002,
747
+ "loss": 0.5075,
748
+ "step": 1010
749
+ },
750
+ {
751
+ "epoch": 4.533333333333333,
752
+ "grad_norm": 0.5700439214706421,
753
+ "learning_rate": 0.0002,
754
+ "loss": 0.4822,
755
+ "step": 1020
756
+ },
757
+ {
758
+ "epoch": 4.5777777777777775,
759
+ "grad_norm": 0.7100785374641418,
760
+ "learning_rate": 0.0002,
761
+ "loss": 0.4734,
762
+ "step": 1030
763
+ },
764
+ {
765
+ "epoch": 4.622222222222222,
766
+ "grad_norm": 0.6751446723937988,
767
+ "learning_rate": 0.0002,
768
+ "loss": 0.4764,
769
+ "step": 1040
770
+ },
771
+ {
772
+ "epoch": 4.666666666666667,
773
+ "grad_norm": 0.7100826501846313,
774
+ "learning_rate": 0.0002,
775
+ "loss": 0.4843,
776
+ "step": 1050
777
+ },
778
+ {
779
+ "epoch": 4.711111111111111,
780
+ "grad_norm": 0.6513156890869141,
781
+ "learning_rate": 0.0002,
782
+ "loss": 0.5018,
783
+ "step": 1060
784
+ },
785
+ {
786
+ "epoch": 4.7555555555555555,
787
+ "grad_norm": 0.8129924535751343,
788
+ "learning_rate": 0.0002,
789
+ "loss": 0.495,
790
+ "step": 1070
791
+ },
792
+ {
793
+ "epoch": 4.8,
794
+ "grad_norm": 0.6378636956214905,
795
+ "learning_rate": 0.0002,
796
+ "loss": 0.4819,
797
+ "step": 1080
798
+ },
799
+ {
800
+ "epoch": 4.844444444444444,
801
+ "grad_norm": 0.8045517802238464,
802
+ "learning_rate": 0.0002,
803
+ "loss": 0.4809,
804
+ "step": 1090
805
+ },
806
+ {
807
+ "epoch": 4.888888888888889,
808
+ "grad_norm": 0.712690532207489,
809
+ "learning_rate": 0.0002,
810
+ "loss": 0.4844,
811
+ "step": 1100
812
+ },
813
+ {
814
+ "epoch": 4.933333333333334,
815
+ "grad_norm": 0.7078566551208496,
816
+ "learning_rate": 0.0002,
817
+ "loss": 0.4732,
818
+ "step": 1110
819
+ },
820
+ {
821
+ "epoch": 4.977777777777778,
822
+ "grad_norm": 0.5979776382446289,
823
+ "learning_rate": 0.0002,
824
+ "loss": 0.4727,
825
+ "step": 1120
826
+ },
827
+ {
828
+ "epoch": 5.0,
829
+ "eval_loss": 0.5916207432746887,
830
+ "eval_runtime": 62.8273,
831
+ "eval_samples_per_second": 5.077,
832
+ "eval_steps_per_second": 0.637,
833
+ "step": 1125
834
+ }
835
+ ],
836
+ "logging_steps": 10,
837
+ "max_steps": 1800,
838
+ "num_input_tokens_seen": 0,
839
+ "num_train_epochs": 8,
840
+ "save_steps": 200,
841
+ "stateful_callbacks": {
842
+ "TrainerControl": {
843
+ "args": {
844
+ "should_epoch_stop": false,
845
+ "should_evaluate": false,
846
+ "should_log": false,
847
+ "should_save": true,
848
+ "should_training_stop": false
849
+ },
850
+ "attributes": {}
851
+ }
852
+ },
853
+ "total_flos": 4.9011638796288e+16,
854
+ "train_batch_size": 1,
855
+ "trial_name": null,
856
+ "trial_params": null
857
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e959dbea71d2fa39c568a9d5bd6f17054bc6f0bf1101d40e99f8f6178453e4e
3
+ size 5560
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1125/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2-7B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a78e49d90d8f168b3cb2b9baa4b2c51650661dcd9d5003c109e758ab8932f3d8
3
+ size 80755416
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea7a3b63e85af11ad4f5b05b8c2ee8745eda162409e7d491702465d861152049
3
+ size 41136570
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2f5996f6467411d42e1fd6a96691600fb8b26e60054989e8a870a5b9f6d3a8a
3
+ size 14244
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7629012de9a2f741f71ead0fcc6bf0b49375818c4f4b47e0a48313b9a209ae4a
3
+ size 1064
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/special_tokens_map.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": "<|im_end|>"
14
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 131072,
39
+ "pad_token": "<|im_end|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/trainer_state.json ADDED
@@ -0,0 +1,1026 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.5706757307052612,
3
+ "best_model_checkpoint": "outputs-001/Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350",
4
+ "epoch": 6.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1350,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.044444444444444446,
13
+ "grad_norm": 0.2940807342529297,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.8338,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.08888888888888889,
20
+ "grad_norm": 0.36792996525764465,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.5844,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.13333333333333333,
27
+ "grad_norm": 0.44259828329086304,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.3603,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.17777777777777778,
34
+ "grad_norm": 0.760607898235321,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.1408,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.2222222222222222,
41
+ "grad_norm": 0.608131468296051,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.9766,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.26666666666666666,
48
+ "grad_norm": 0.5941349864006042,
49
+ "learning_rate": 0.0002,
50
+ "loss": 0.9176,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.3111111111111111,
55
+ "grad_norm": 0.5939444899559021,
56
+ "learning_rate": 0.0002,
57
+ "loss": 0.9081,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.35555555555555557,
62
+ "grad_norm": 0.6093971729278564,
63
+ "learning_rate": 0.0002,
64
+ "loss": 0.8406,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.4,
69
+ "grad_norm": 0.6158391237258911,
70
+ "learning_rate": 0.0002,
71
+ "loss": 0.8562,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.4444444444444444,
76
+ "grad_norm": 0.4985930621623993,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.8111,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.4888888888888889,
83
+ "grad_norm": 0.6661780476570129,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.7963,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.5333333333333333,
90
+ "grad_norm": 0.5717976689338684,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.8114,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.5777777777777777,
97
+ "grad_norm": 0.5666863918304443,
98
+ "learning_rate": 0.0002,
99
+ "loss": 0.7397,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.6222222222222222,
104
+ "grad_norm": 0.49229782819747925,
105
+ "learning_rate": 0.0002,
106
+ "loss": 0.7671,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.6666666666666666,
111
+ "grad_norm": 0.48167455196380615,
112
+ "learning_rate": 0.0002,
113
+ "loss": 0.7851,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.7111111111111111,
118
+ "grad_norm": 0.4657461643218994,
119
+ "learning_rate": 0.0002,
120
+ "loss": 0.7786,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.7555555555555555,
125
+ "grad_norm": 0.39121416211128235,
126
+ "learning_rate": 0.0002,
127
+ "loss": 0.7691,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.8,
132
+ "grad_norm": 0.441007524728775,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.7323,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.8444444444444444,
139
+ "grad_norm": 0.4213836193084717,
140
+ "learning_rate": 0.0002,
141
+ "loss": 0.7418,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.8888888888888888,
146
+ "grad_norm": 0.5080695152282715,
147
+ "learning_rate": 0.0002,
148
+ "loss": 0.7451,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.9333333333333333,
153
+ "grad_norm": 0.4761652648448944,
154
+ "learning_rate": 0.0002,
155
+ "loss": 0.757,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.9777777777777777,
160
+ "grad_norm": 0.5242546796798706,
161
+ "learning_rate": 0.0002,
162
+ "loss": 0.741,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 1.0,
167
+ "eval_loss": 0.7312084436416626,
168
+ "eval_runtime": 86.046,
169
+ "eval_samples_per_second": 3.707,
170
+ "eval_steps_per_second": 0.465,
171
+ "step": 225
172
+ },
173
+ {
174
+ "epoch": 1.0222222222222221,
175
+ "grad_norm": 0.4389289915561676,
176
+ "learning_rate": 0.0002,
177
+ "loss": 0.7365,
178
+ "step": 230
179
+ },
180
+ {
181
+ "epoch": 1.0666666666666667,
182
+ "grad_norm": 0.4293370246887207,
183
+ "learning_rate": 0.0002,
184
+ "loss": 0.7223,
185
+ "step": 240
186
+ },
187
+ {
188
+ "epoch": 1.1111111111111112,
189
+ "grad_norm": 0.45308825373649597,
190
+ "learning_rate": 0.0002,
191
+ "loss": 0.6934,
192
+ "step": 250
193
+ },
194
+ {
195
+ "epoch": 1.1555555555555554,
196
+ "grad_norm": 0.4458293318748474,
197
+ "learning_rate": 0.0002,
198
+ "loss": 0.7058,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 1.2,
203
+ "grad_norm": 0.46963292360305786,
204
+ "learning_rate": 0.0002,
205
+ "loss": 0.6956,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 1.2444444444444445,
210
+ "grad_norm": 0.39571475982666016,
211
+ "learning_rate": 0.0002,
212
+ "loss": 0.6882,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 1.2888888888888888,
217
+ "grad_norm": 0.4619075655937195,
218
+ "learning_rate": 0.0002,
219
+ "loss": 0.7241,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 1.3333333333333333,
224
+ "grad_norm": 0.457443505525589,
225
+ "learning_rate": 0.0002,
226
+ "loss": 0.7281,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 1.3777777777777778,
231
+ "grad_norm": 0.5545842051506042,
232
+ "learning_rate": 0.0002,
233
+ "loss": 0.7138,
234
+ "step": 310
235
+ },
236
+ {
237
+ "epoch": 1.4222222222222223,
238
+ "grad_norm": 0.4492949843406677,
239
+ "learning_rate": 0.0002,
240
+ "loss": 0.7082,
241
+ "step": 320
242
+ },
243
+ {
244
+ "epoch": 1.4666666666666668,
245
+ "grad_norm": 0.46642452478408813,
246
+ "learning_rate": 0.0002,
247
+ "loss": 0.6733,
248
+ "step": 330
249
+ },
250
+ {
251
+ "epoch": 1.511111111111111,
252
+ "grad_norm": 0.4598081707954407,
253
+ "learning_rate": 0.0002,
254
+ "loss": 0.6846,
255
+ "step": 340
256
+ },
257
+ {
258
+ "epoch": 1.5555555555555556,
259
+ "grad_norm": 0.34535378217697144,
260
+ "learning_rate": 0.0002,
261
+ "loss": 0.6981,
262
+ "step": 350
263
+ },
264
+ {
265
+ "epoch": 1.6,
266
+ "grad_norm": 0.4226590096950531,
267
+ "learning_rate": 0.0002,
268
+ "loss": 0.672,
269
+ "step": 360
270
+ },
271
+ {
272
+ "epoch": 1.6444444444444444,
273
+ "grad_norm": 0.47323980927467346,
274
+ "learning_rate": 0.0002,
275
+ "loss": 0.6638,
276
+ "step": 370
277
+ },
278
+ {
279
+ "epoch": 1.6888888888888889,
280
+ "grad_norm": 0.39699724316596985,
281
+ "learning_rate": 0.0002,
282
+ "loss": 0.6813,
283
+ "step": 380
284
+ },
285
+ {
286
+ "epoch": 1.7333333333333334,
287
+ "grad_norm": 0.5325330495834351,
288
+ "learning_rate": 0.0002,
289
+ "loss": 0.6852,
290
+ "step": 390
291
+ },
292
+ {
293
+ "epoch": 1.7777777777777777,
294
+ "grad_norm": 0.4336804449558258,
295
+ "learning_rate": 0.0002,
296
+ "loss": 0.6716,
297
+ "step": 400
298
+ },
299
+ {
300
+ "epoch": 1.8222222222222222,
301
+ "grad_norm": 0.44034498929977417,
302
+ "learning_rate": 0.0002,
303
+ "loss": 0.6538,
304
+ "step": 410
305
+ },
306
+ {
307
+ "epoch": 1.8666666666666667,
308
+ "grad_norm": 0.4527396261692047,
309
+ "learning_rate": 0.0002,
310
+ "loss": 0.6706,
311
+ "step": 420
312
+ },
313
+ {
314
+ "epoch": 1.911111111111111,
315
+ "grad_norm": 0.40166375041007996,
316
+ "learning_rate": 0.0002,
317
+ "loss": 0.6507,
318
+ "step": 430
319
+ },
320
+ {
321
+ "epoch": 1.9555555555555557,
322
+ "grad_norm": 0.49753332138061523,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.6599,
325
+ "step": 440
326
+ },
327
+ {
328
+ "epoch": 2.0,
329
+ "grad_norm": 0.5019579529762268,
330
+ "learning_rate": 0.0002,
331
+ "loss": 0.6482,
332
+ "step": 450
333
+ },
334
+ {
335
+ "epoch": 2.0,
336
+ "eval_loss": 0.6728096604347229,
337
+ "eval_runtime": 85.827,
338
+ "eval_samples_per_second": 3.717,
339
+ "eval_steps_per_second": 0.466,
340
+ "step": 450
341
+ },
342
+ {
343
+ "epoch": 2.0444444444444443,
344
+ "grad_norm": 0.5162734985351562,
345
+ "learning_rate": 0.0002,
346
+ "loss": 0.626,
347
+ "step": 460
348
+ },
349
+ {
350
+ "epoch": 2.088888888888889,
351
+ "grad_norm": 0.4973997175693512,
352
+ "learning_rate": 0.0002,
353
+ "loss": 0.6363,
354
+ "step": 470
355
+ },
356
+ {
357
+ "epoch": 2.1333333333333333,
358
+ "grad_norm": 0.6232216358184814,
359
+ "learning_rate": 0.0002,
360
+ "loss": 0.6225,
361
+ "step": 480
362
+ },
363
+ {
364
+ "epoch": 2.1777777777777776,
365
+ "grad_norm": 0.5598695278167725,
366
+ "learning_rate": 0.0002,
367
+ "loss": 0.6038,
368
+ "step": 490
369
+ },
370
+ {
371
+ "epoch": 2.2222222222222223,
372
+ "grad_norm": 0.5359365344047546,
373
+ "learning_rate": 0.0002,
374
+ "loss": 0.6247,
375
+ "step": 500
376
+ },
377
+ {
378
+ "epoch": 2.2666666666666666,
379
+ "grad_norm": 0.5992209315299988,
380
+ "learning_rate": 0.0002,
381
+ "loss": 0.6203,
382
+ "step": 510
383
+ },
384
+ {
385
+ "epoch": 2.311111111111111,
386
+ "grad_norm": 0.4921131730079651,
387
+ "learning_rate": 0.0002,
388
+ "loss": 0.6416,
389
+ "step": 520
390
+ },
391
+ {
392
+ "epoch": 2.3555555555555556,
393
+ "grad_norm": 0.5449638366699219,
394
+ "learning_rate": 0.0002,
395
+ "loss": 0.6157,
396
+ "step": 530
397
+ },
398
+ {
399
+ "epoch": 2.4,
400
+ "grad_norm": 0.45068296790122986,
401
+ "learning_rate": 0.0002,
402
+ "loss": 0.6244,
403
+ "step": 540
404
+ },
405
+ {
406
+ "epoch": 2.4444444444444446,
407
+ "grad_norm": 0.5800191164016724,
408
+ "learning_rate": 0.0002,
409
+ "loss": 0.6368,
410
+ "step": 550
411
+ },
412
+ {
413
+ "epoch": 2.488888888888889,
414
+ "grad_norm": 0.4825330674648285,
415
+ "learning_rate": 0.0002,
416
+ "loss": 0.6437,
417
+ "step": 560
418
+ },
419
+ {
420
+ "epoch": 2.533333333333333,
421
+ "grad_norm": 0.6174261569976807,
422
+ "learning_rate": 0.0002,
423
+ "loss": 0.606,
424
+ "step": 570
425
+ },
426
+ {
427
+ "epoch": 2.5777777777777775,
428
+ "grad_norm": 0.5854967832565308,
429
+ "learning_rate": 0.0002,
430
+ "loss": 0.5666,
431
+ "step": 580
432
+ },
433
+ {
434
+ "epoch": 2.6222222222222222,
435
+ "grad_norm": 0.44053414463996887,
436
+ "learning_rate": 0.0002,
437
+ "loss": 0.6017,
438
+ "step": 590
439
+ },
440
+ {
441
+ "epoch": 2.6666666666666665,
442
+ "grad_norm": 0.4803224503993988,
443
+ "learning_rate": 0.0002,
444
+ "loss": 0.6032,
445
+ "step": 600
446
+ },
447
+ {
448
+ "epoch": 2.7111111111111112,
449
+ "grad_norm": 0.5700278282165527,
450
+ "learning_rate": 0.0002,
451
+ "loss": 0.6238,
452
+ "step": 610
453
+ },
454
+ {
455
+ "epoch": 2.7555555555555555,
456
+ "grad_norm": 0.5318542122840881,
457
+ "learning_rate": 0.0002,
458
+ "loss": 0.5767,
459
+ "step": 620
460
+ },
461
+ {
462
+ "epoch": 2.8,
463
+ "grad_norm": 0.5594431161880493,
464
+ "learning_rate": 0.0002,
465
+ "loss": 0.5849,
466
+ "step": 630
467
+ },
468
+ {
469
+ "epoch": 2.8444444444444446,
470
+ "grad_norm": 0.5598340630531311,
471
+ "learning_rate": 0.0002,
472
+ "loss": 0.6094,
473
+ "step": 640
474
+ },
475
+ {
476
+ "epoch": 2.888888888888889,
477
+ "grad_norm": 0.5017251372337341,
478
+ "learning_rate": 0.0002,
479
+ "loss": 0.6059,
480
+ "step": 650
481
+ },
482
+ {
483
+ "epoch": 2.9333333333333336,
484
+ "grad_norm": 0.46027806401252747,
485
+ "learning_rate": 0.0002,
486
+ "loss": 0.6047,
487
+ "step": 660
488
+ },
489
+ {
490
+ "epoch": 2.977777777777778,
491
+ "grad_norm": 0.5706299543380737,
492
+ "learning_rate": 0.0002,
493
+ "loss": 0.5912,
494
+ "step": 670
495
+ },
496
+ {
497
+ "epoch": 3.0,
498
+ "eval_loss": 0.6362627148628235,
499
+ "eval_runtime": 85.1312,
500
+ "eval_samples_per_second": 3.747,
501
+ "eval_steps_per_second": 0.47,
502
+ "step": 675
503
+ },
504
+ {
505
+ "epoch": 3.022222222222222,
506
+ "grad_norm": 0.6016985774040222,
507
+ "learning_rate": 0.0002,
508
+ "loss": 0.5507,
509
+ "step": 680
510
+ },
511
+ {
512
+ "epoch": 3.066666666666667,
513
+ "grad_norm": 0.544710099697113,
514
+ "learning_rate": 0.0002,
515
+ "loss": 0.538,
516
+ "step": 690
517
+ },
518
+ {
519
+ "epoch": 3.111111111111111,
520
+ "grad_norm": 0.5868740081787109,
521
+ "learning_rate": 0.0002,
522
+ "loss": 0.5446,
523
+ "step": 700
524
+ },
525
+ {
526
+ "epoch": 3.1555555555555554,
527
+ "grad_norm": 0.4717068672180176,
528
+ "learning_rate": 0.0002,
529
+ "loss": 0.5337,
530
+ "step": 710
531
+ },
532
+ {
533
+ "epoch": 3.2,
534
+ "grad_norm": 0.5336525440216064,
535
+ "learning_rate": 0.0002,
536
+ "loss": 0.5561,
537
+ "step": 720
538
+ },
539
+ {
540
+ "epoch": 3.2444444444444445,
541
+ "grad_norm": 0.7006786465644836,
542
+ "learning_rate": 0.0002,
543
+ "loss": 0.5565,
544
+ "step": 730
545
+ },
546
+ {
547
+ "epoch": 3.2888888888888888,
548
+ "grad_norm": 0.5565499663352966,
549
+ "learning_rate": 0.0002,
550
+ "loss": 0.5312,
551
+ "step": 740
552
+ },
553
+ {
554
+ "epoch": 3.3333333333333335,
555
+ "grad_norm": 0.568071722984314,
556
+ "learning_rate": 0.0002,
557
+ "loss": 0.554,
558
+ "step": 750
559
+ },
560
+ {
561
+ "epoch": 3.3777777777777778,
562
+ "grad_norm": 0.6389057040214539,
563
+ "learning_rate": 0.0002,
564
+ "loss": 0.5297,
565
+ "step": 760
566
+ },
567
+ {
568
+ "epoch": 3.422222222222222,
569
+ "grad_norm": 0.5239511132240295,
570
+ "learning_rate": 0.0002,
571
+ "loss": 0.5191,
572
+ "step": 770
573
+ },
574
+ {
575
+ "epoch": 3.466666666666667,
576
+ "grad_norm": 0.6089216470718384,
577
+ "learning_rate": 0.0002,
578
+ "loss": 0.559,
579
+ "step": 780
580
+ },
581
+ {
582
+ "epoch": 3.511111111111111,
583
+ "grad_norm": 0.5546727776527405,
584
+ "learning_rate": 0.0002,
585
+ "loss": 0.5399,
586
+ "step": 790
587
+ },
588
+ {
589
+ "epoch": 3.5555555555555554,
590
+ "grad_norm": 0.5639946460723877,
591
+ "learning_rate": 0.0002,
592
+ "loss": 0.5558,
593
+ "step": 800
594
+ },
595
+ {
596
+ "epoch": 3.6,
597
+ "grad_norm": 0.5576934218406677,
598
+ "learning_rate": 0.0002,
599
+ "loss": 0.5476,
600
+ "step": 810
601
+ },
602
+ {
603
+ "epoch": 3.6444444444444444,
604
+ "grad_norm": 0.6561392545700073,
605
+ "learning_rate": 0.0002,
606
+ "loss": 0.5361,
607
+ "step": 820
608
+ },
609
+ {
610
+ "epoch": 3.688888888888889,
611
+ "grad_norm": 0.7699626088142395,
612
+ "learning_rate": 0.0002,
613
+ "loss": 0.5324,
614
+ "step": 830
615
+ },
616
+ {
617
+ "epoch": 3.7333333333333334,
618
+ "grad_norm": 0.47137776017189026,
619
+ "learning_rate": 0.0002,
620
+ "loss": 0.551,
621
+ "step": 840
622
+ },
623
+ {
624
+ "epoch": 3.7777777777777777,
625
+ "grad_norm": 0.7258023023605347,
626
+ "learning_rate": 0.0002,
627
+ "loss": 0.5581,
628
+ "step": 850
629
+ },
630
+ {
631
+ "epoch": 3.822222222222222,
632
+ "grad_norm": 0.510877251625061,
633
+ "learning_rate": 0.0002,
634
+ "loss": 0.5586,
635
+ "step": 860
636
+ },
637
+ {
638
+ "epoch": 3.8666666666666667,
639
+ "grad_norm": 0.6691411733627319,
640
+ "learning_rate": 0.0002,
641
+ "loss": 0.564,
642
+ "step": 870
643
+ },
644
+ {
645
+ "epoch": 3.911111111111111,
646
+ "grad_norm": 0.5722544193267822,
647
+ "learning_rate": 0.0002,
648
+ "loss": 0.5361,
649
+ "step": 880
650
+ },
651
+ {
652
+ "epoch": 3.9555555555555557,
653
+ "grad_norm": 0.6555589437484741,
654
+ "learning_rate": 0.0002,
655
+ "loss": 0.5307,
656
+ "step": 890
657
+ },
658
+ {
659
+ "epoch": 4.0,
660
+ "grad_norm": 0.5689453482627869,
661
+ "learning_rate": 0.0002,
662
+ "loss": 0.5251,
663
+ "step": 900
664
+ },
665
+ {
666
+ "epoch": 4.0,
667
+ "eval_loss": 0.6063342690467834,
668
+ "eval_runtime": 62.7917,
669
+ "eval_samples_per_second": 5.08,
670
+ "eval_steps_per_second": 0.637,
671
+ "step": 900
672
+ },
673
+ {
674
+ "epoch": 4.044444444444444,
675
+ "grad_norm": 0.8715280294418335,
676
+ "learning_rate": 0.0002,
677
+ "loss": 0.4847,
678
+ "step": 910
679
+ },
680
+ {
681
+ "epoch": 4.088888888888889,
682
+ "grad_norm": 0.5597540736198425,
683
+ "learning_rate": 0.0002,
684
+ "loss": 0.4756,
685
+ "step": 920
686
+ },
687
+ {
688
+ "epoch": 4.133333333333334,
689
+ "grad_norm": 0.7538669109344482,
690
+ "learning_rate": 0.0002,
691
+ "loss": 0.4673,
692
+ "step": 930
693
+ },
694
+ {
695
+ "epoch": 4.177777777777778,
696
+ "grad_norm": 0.7434868812561035,
697
+ "learning_rate": 0.0002,
698
+ "loss": 0.4835,
699
+ "step": 940
700
+ },
701
+ {
702
+ "epoch": 4.222222222222222,
703
+ "grad_norm": 0.6148455142974854,
704
+ "learning_rate": 0.0002,
705
+ "loss": 0.486,
706
+ "step": 950
707
+ },
708
+ {
709
+ "epoch": 4.266666666666667,
710
+ "grad_norm": 0.6513713598251343,
711
+ "learning_rate": 0.0002,
712
+ "loss": 0.4812,
713
+ "step": 960
714
+ },
715
+ {
716
+ "epoch": 4.311111111111111,
717
+ "grad_norm": 0.7177010774612427,
718
+ "learning_rate": 0.0002,
719
+ "loss": 0.4823,
720
+ "step": 970
721
+ },
722
+ {
723
+ "epoch": 4.355555555555555,
724
+ "grad_norm": 0.710017204284668,
725
+ "learning_rate": 0.0002,
726
+ "loss": 0.4934,
727
+ "step": 980
728
+ },
729
+ {
730
+ "epoch": 4.4,
731
+ "grad_norm": 0.7506688833236694,
732
+ "learning_rate": 0.0002,
733
+ "loss": 0.4682,
734
+ "step": 990
735
+ },
736
+ {
737
+ "epoch": 4.444444444444445,
738
+ "grad_norm": 0.7618675231933594,
739
+ "learning_rate": 0.0002,
740
+ "loss": 0.4782,
741
+ "step": 1000
742
+ },
743
+ {
744
+ "epoch": 4.488888888888889,
745
+ "grad_norm": 0.6317481994628906,
746
+ "learning_rate": 0.0002,
747
+ "loss": 0.5075,
748
+ "step": 1010
749
+ },
750
+ {
751
+ "epoch": 4.533333333333333,
752
+ "grad_norm": 0.5700439214706421,
753
+ "learning_rate": 0.0002,
754
+ "loss": 0.4822,
755
+ "step": 1020
756
+ },
757
+ {
758
+ "epoch": 4.5777777777777775,
759
+ "grad_norm": 0.7100785374641418,
760
+ "learning_rate": 0.0002,
761
+ "loss": 0.4734,
762
+ "step": 1030
763
+ },
764
+ {
765
+ "epoch": 4.622222222222222,
766
+ "grad_norm": 0.6751446723937988,
767
+ "learning_rate": 0.0002,
768
+ "loss": 0.4764,
769
+ "step": 1040
770
+ },
771
+ {
772
+ "epoch": 4.666666666666667,
773
+ "grad_norm": 0.7100826501846313,
774
+ "learning_rate": 0.0002,
775
+ "loss": 0.4843,
776
+ "step": 1050
777
+ },
778
+ {
779
+ "epoch": 4.711111111111111,
780
+ "grad_norm": 0.6513156890869141,
781
+ "learning_rate": 0.0002,
782
+ "loss": 0.5018,
783
+ "step": 1060
784
+ },
785
+ {
786
+ "epoch": 4.7555555555555555,
787
+ "grad_norm": 0.8129924535751343,
788
+ "learning_rate": 0.0002,
789
+ "loss": 0.495,
790
+ "step": 1070
791
+ },
792
+ {
793
+ "epoch": 4.8,
794
+ "grad_norm": 0.6378636956214905,
795
+ "learning_rate": 0.0002,
796
+ "loss": 0.4819,
797
+ "step": 1080
798
+ },
799
+ {
800
+ "epoch": 4.844444444444444,
801
+ "grad_norm": 0.8045517802238464,
802
+ "learning_rate": 0.0002,
803
+ "loss": 0.4809,
804
+ "step": 1090
805
+ },
806
+ {
807
+ "epoch": 4.888888888888889,
808
+ "grad_norm": 0.712690532207489,
809
+ "learning_rate": 0.0002,
810
+ "loss": 0.4844,
811
+ "step": 1100
812
+ },
813
+ {
814
+ "epoch": 4.933333333333334,
815
+ "grad_norm": 0.7078566551208496,
816
+ "learning_rate": 0.0002,
817
+ "loss": 0.4732,
818
+ "step": 1110
819
+ },
820
+ {
821
+ "epoch": 4.977777777777778,
822
+ "grad_norm": 0.5979776382446289,
823
+ "learning_rate": 0.0002,
824
+ "loss": 0.4727,
825
+ "step": 1120
826
+ },
827
+ {
828
+ "epoch": 5.0,
829
+ "eval_loss": 0.5916207432746887,
830
+ "eval_runtime": 62.8273,
831
+ "eval_samples_per_second": 5.077,
832
+ "eval_steps_per_second": 0.637,
833
+ "step": 1125
834
+ },
835
+ {
836
+ "epoch": 5.022222222222222,
837
+ "grad_norm": 0.6213210225105286,
838
+ "learning_rate": 0.0002,
839
+ "loss": 0.4418,
840
+ "step": 1130
841
+ },
842
+ {
843
+ "epoch": 5.066666666666666,
844
+ "grad_norm": 0.8804424405097961,
845
+ "learning_rate": 0.0002,
846
+ "loss": 0.4213,
847
+ "step": 1140
848
+ },
849
+ {
850
+ "epoch": 5.111111111111111,
851
+ "grad_norm": 0.5710713267326355,
852
+ "learning_rate": 0.0002,
853
+ "loss": 0.4231,
854
+ "step": 1150
855
+ },
856
+ {
857
+ "epoch": 5.155555555555556,
858
+ "grad_norm": 0.6581844687461853,
859
+ "learning_rate": 0.0002,
860
+ "loss": 0.4279,
861
+ "step": 1160
862
+ },
863
+ {
864
+ "epoch": 5.2,
865
+ "grad_norm": 1.4485387802124023,
866
+ "learning_rate": 0.0002,
867
+ "loss": 0.4227,
868
+ "step": 1170
869
+ },
870
+ {
871
+ "epoch": 5.2444444444444445,
872
+ "grad_norm": 0.9506292343139648,
873
+ "learning_rate": 0.0002,
874
+ "loss": 0.4413,
875
+ "step": 1180
876
+ },
877
+ {
878
+ "epoch": 5.288888888888889,
879
+ "grad_norm": 0.6971795558929443,
880
+ "learning_rate": 0.0002,
881
+ "loss": 0.4129,
882
+ "step": 1190
883
+ },
884
+ {
885
+ "epoch": 5.333333333333333,
886
+ "grad_norm": 0.7639512419700623,
887
+ "learning_rate": 0.0002,
888
+ "loss": 0.4283,
889
+ "step": 1200
890
+ },
891
+ {
892
+ "epoch": 5.377777777777778,
893
+ "grad_norm": 0.7847402691841125,
894
+ "learning_rate": 0.0002,
895
+ "loss": 0.4581,
896
+ "step": 1210
897
+ },
898
+ {
899
+ "epoch": 5.4222222222222225,
900
+ "grad_norm": 0.6164460182189941,
901
+ "learning_rate": 0.0002,
902
+ "loss": 0.4311,
903
+ "step": 1220
904
+ },
905
+ {
906
+ "epoch": 5.466666666666667,
907
+ "grad_norm": 0.748383104801178,
908
+ "learning_rate": 0.0002,
909
+ "loss": 0.4304,
910
+ "step": 1230
911
+ },
912
+ {
913
+ "epoch": 5.511111111111111,
914
+ "grad_norm": 0.5674386620521545,
915
+ "learning_rate": 0.0002,
916
+ "loss": 0.4405,
917
+ "step": 1240
918
+ },
919
+ {
920
+ "epoch": 5.555555555555555,
921
+ "grad_norm": 0.9450201392173767,
922
+ "learning_rate": 0.0002,
923
+ "loss": 0.4396,
924
+ "step": 1250
925
+ },
926
+ {
927
+ "epoch": 5.6,
928
+ "grad_norm": 0.6066147089004517,
929
+ "learning_rate": 0.0002,
930
+ "loss": 0.4456,
931
+ "step": 1260
932
+ },
933
+ {
934
+ "epoch": 5.644444444444445,
935
+ "grad_norm": 1.1018579006195068,
936
+ "learning_rate": 0.0002,
937
+ "loss": 0.4154,
938
+ "step": 1270
939
+ },
940
+ {
941
+ "epoch": 5.688888888888889,
942
+ "grad_norm": 0.7561473846435547,
943
+ "learning_rate": 0.0002,
944
+ "loss": 0.4379,
945
+ "step": 1280
946
+ },
947
+ {
948
+ "epoch": 5.733333333333333,
949
+ "grad_norm": 0.8838764429092407,
950
+ "learning_rate": 0.0002,
951
+ "loss": 0.4421,
952
+ "step": 1290
953
+ },
954
+ {
955
+ "epoch": 5.777777777777778,
956
+ "grad_norm": 0.7195517420768738,
957
+ "learning_rate": 0.0002,
958
+ "loss": 0.439,
959
+ "step": 1300
960
+ },
961
+ {
962
+ "epoch": 5.822222222222222,
963
+ "grad_norm": 0.8123605847358704,
964
+ "learning_rate": 0.0002,
965
+ "loss": 0.4377,
966
+ "step": 1310
967
+ },
968
+ {
969
+ "epoch": 5.866666666666667,
970
+ "grad_norm": 0.6891103386878967,
971
+ "learning_rate": 0.0002,
972
+ "loss": 0.435,
973
+ "step": 1320
974
+ },
975
+ {
976
+ "epoch": 5.911111111111111,
977
+ "grad_norm": 1.0846312046051025,
978
+ "learning_rate": 0.0002,
979
+ "loss": 0.4276,
980
+ "step": 1330
981
+ },
982
+ {
983
+ "epoch": 5.955555555555556,
984
+ "grad_norm": 0.6821148991584778,
985
+ "learning_rate": 0.0002,
986
+ "loss": 0.4343,
987
+ "step": 1340
988
+ },
989
+ {
990
+ "epoch": 6.0,
991
+ "grad_norm": 1.0653820037841797,
992
+ "learning_rate": 0.0002,
993
+ "loss": 0.4324,
994
+ "step": 1350
995
+ },
996
+ {
997
+ "epoch": 6.0,
998
+ "eval_loss": 0.5706757307052612,
999
+ "eval_runtime": 62.688,
1000
+ "eval_samples_per_second": 5.089,
1001
+ "eval_steps_per_second": 0.638,
1002
+ "step": 1350
1003
+ }
1004
+ ],
1005
+ "logging_steps": 10,
1006
+ "max_steps": 1800,
1007
+ "num_input_tokens_seen": 0,
1008
+ "num_train_epochs": 8,
1009
+ "save_steps": 200,
1010
+ "stateful_callbacks": {
1011
+ "TrainerControl": {
1012
+ "args": {
1013
+ "should_epoch_stop": false,
1014
+ "should_evaluate": false,
1015
+ "should_log": false,
1016
+ "should_save": true,
1017
+ "should_training_stop": false
1018
+ },
1019
+ "attributes": {}
1020
+ }
1021
+ },
1022
+ "total_flos": 5.88139665555456e+16,
1023
+ "train_batch_size": 1,
1024
+ "trial_name": null,
1025
+ "trial_params": null
1026
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e959dbea71d2fa39c568a9d5bd6f17054bc6f0bf1101d40e99f8f6178453e4e
3
+ size 5560
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1350/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2-7B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bca64cc84ff73c12e7cef4b0e172cb7a1f9e426c15879ebb84296fd66907ea53
3
+ size 80755416
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01779cd0b328fb9cba8d23086afe3652d4229dd04af6e879466d94e053a19d06
3
+ size 41136570
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bb59cf38366d8dcd1c2124d54cc40a7fe30cb57aab4d93e47137ebb1c16ba3d
3
+ size 14244
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6aad2b88bf1ffb4dc72f057d70b0e9ef4ef2ebf2f09db62fe672a9338a0c473d
3
+ size 1064
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/special_tokens_map.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": "<|im_end|>"
14
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/tokenizer_config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|im_end|>",
37
+ "errors": "replace",
38
+ "model_max_length": 131072,
39
+ "pad_token": "<|im_end|>",
40
+ "split_special_tokens": false,
41
+ "tokenizer_class": "Qwen2Tokenizer",
42
+ "unk_token": null
43
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/trainer_state.json ADDED
@@ -0,0 +1,1188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.5527341961860657,
3
+ "best_model_checkpoint": "outputs-001/Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575",
4
+ "epoch": 7.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1575,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.044444444444444446,
13
+ "grad_norm": 0.2940807342529297,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.8338,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.08888888888888889,
20
+ "grad_norm": 0.36792996525764465,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.5844,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.13333333333333333,
27
+ "grad_norm": 0.44259828329086304,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.3603,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.17777777777777778,
34
+ "grad_norm": 0.760607898235321,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.1408,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.2222222222222222,
41
+ "grad_norm": 0.608131468296051,
42
+ "learning_rate": 0.0002,
43
+ "loss": 0.9766,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.26666666666666666,
48
+ "grad_norm": 0.5941349864006042,
49
+ "learning_rate": 0.0002,
50
+ "loss": 0.9176,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.3111111111111111,
55
+ "grad_norm": 0.5939444899559021,
56
+ "learning_rate": 0.0002,
57
+ "loss": 0.9081,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.35555555555555557,
62
+ "grad_norm": 0.6093971729278564,
63
+ "learning_rate": 0.0002,
64
+ "loss": 0.8406,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.4,
69
+ "grad_norm": 0.6158391237258911,
70
+ "learning_rate": 0.0002,
71
+ "loss": 0.8562,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.4444444444444444,
76
+ "grad_norm": 0.4985930621623993,
77
+ "learning_rate": 0.0002,
78
+ "loss": 0.8111,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.4888888888888889,
83
+ "grad_norm": 0.6661780476570129,
84
+ "learning_rate": 0.0002,
85
+ "loss": 0.7963,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.5333333333333333,
90
+ "grad_norm": 0.5717976689338684,
91
+ "learning_rate": 0.0002,
92
+ "loss": 0.8114,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.5777777777777777,
97
+ "grad_norm": 0.5666863918304443,
98
+ "learning_rate": 0.0002,
99
+ "loss": 0.7397,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.6222222222222222,
104
+ "grad_norm": 0.49229782819747925,
105
+ "learning_rate": 0.0002,
106
+ "loss": 0.7671,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.6666666666666666,
111
+ "grad_norm": 0.48167455196380615,
112
+ "learning_rate": 0.0002,
113
+ "loss": 0.7851,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.7111111111111111,
118
+ "grad_norm": 0.4657461643218994,
119
+ "learning_rate": 0.0002,
120
+ "loss": 0.7786,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.7555555555555555,
125
+ "grad_norm": 0.39121416211128235,
126
+ "learning_rate": 0.0002,
127
+ "loss": 0.7691,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.8,
132
+ "grad_norm": 0.441007524728775,
133
+ "learning_rate": 0.0002,
134
+ "loss": 0.7323,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.8444444444444444,
139
+ "grad_norm": 0.4213836193084717,
140
+ "learning_rate": 0.0002,
141
+ "loss": 0.7418,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.8888888888888888,
146
+ "grad_norm": 0.5080695152282715,
147
+ "learning_rate": 0.0002,
148
+ "loss": 0.7451,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.9333333333333333,
153
+ "grad_norm": 0.4761652648448944,
154
+ "learning_rate": 0.0002,
155
+ "loss": 0.757,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.9777777777777777,
160
+ "grad_norm": 0.5242546796798706,
161
+ "learning_rate": 0.0002,
162
+ "loss": 0.741,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 1.0,
167
+ "eval_loss": 0.7312084436416626,
168
+ "eval_runtime": 86.046,
169
+ "eval_samples_per_second": 3.707,
170
+ "eval_steps_per_second": 0.465,
171
+ "step": 225
172
+ },
173
+ {
174
+ "epoch": 1.0222222222222221,
175
+ "grad_norm": 0.4389289915561676,
176
+ "learning_rate": 0.0002,
177
+ "loss": 0.7365,
178
+ "step": 230
179
+ },
180
+ {
181
+ "epoch": 1.0666666666666667,
182
+ "grad_norm": 0.4293370246887207,
183
+ "learning_rate": 0.0002,
184
+ "loss": 0.7223,
185
+ "step": 240
186
+ },
187
+ {
188
+ "epoch": 1.1111111111111112,
189
+ "grad_norm": 0.45308825373649597,
190
+ "learning_rate": 0.0002,
191
+ "loss": 0.6934,
192
+ "step": 250
193
+ },
194
+ {
195
+ "epoch": 1.1555555555555554,
196
+ "grad_norm": 0.4458293318748474,
197
+ "learning_rate": 0.0002,
198
+ "loss": 0.7058,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 1.2,
203
+ "grad_norm": 0.46963292360305786,
204
+ "learning_rate": 0.0002,
205
+ "loss": 0.6956,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 1.2444444444444445,
210
+ "grad_norm": 0.39571475982666016,
211
+ "learning_rate": 0.0002,
212
+ "loss": 0.6882,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 1.2888888888888888,
217
+ "grad_norm": 0.4619075655937195,
218
+ "learning_rate": 0.0002,
219
+ "loss": 0.7241,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 1.3333333333333333,
224
+ "grad_norm": 0.457443505525589,
225
+ "learning_rate": 0.0002,
226
+ "loss": 0.7281,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 1.3777777777777778,
231
+ "grad_norm": 0.5545842051506042,
232
+ "learning_rate": 0.0002,
233
+ "loss": 0.7138,
234
+ "step": 310
235
+ },
236
+ {
237
+ "epoch": 1.4222222222222223,
238
+ "grad_norm": 0.4492949843406677,
239
+ "learning_rate": 0.0002,
240
+ "loss": 0.7082,
241
+ "step": 320
242
+ },
243
+ {
244
+ "epoch": 1.4666666666666668,
245
+ "grad_norm": 0.46642452478408813,
246
+ "learning_rate": 0.0002,
247
+ "loss": 0.6733,
248
+ "step": 330
249
+ },
250
+ {
251
+ "epoch": 1.511111111111111,
252
+ "grad_norm": 0.4598081707954407,
253
+ "learning_rate": 0.0002,
254
+ "loss": 0.6846,
255
+ "step": 340
256
+ },
257
+ {
258
+ "epoch": 1.5555555555555556,
259
+ "grad_norm": 0.34535378217697144,
260
+ "learning_rate": 0.0002,
261
+ "loss": 0.6981,
262
+ "step": 350
263
+ },
264
+ {
265
+ "epoch": 1.6,
266
+ "grad_norm": 0.4226590096950531,
267
+ "learning_rate": 0.0002,
268
+ "loss": 0.672,
269
+ "step": 360
270
+ },
271
+ {
272
+ "epoch": 1.6444444444444444,
273
+ "grad_norm": 0.47323980927467346,
274
+ "learning_rate": 0.0002,
275
+ "loss": 0.6638,
276
+ "step": 370
277
+ },
278
+ {
279
+ "epoch": 1.6888888888888889,
280
+ "grad_norm": 0.39699724316596985,
281
+ "learning_rate": 0.0002,
282
+ "loss": 0.6813,
283
+ "step": 380
284
+ },
285
+ {
286
+ "epoch": 1.7333333333333334,
287
+ "grad_norm": 0.5325330495834351,
288
+ "learning_rate": 0.0002,
289
+ "loss": 0.6852,
290
+ "step": 390
291
+ },
292
+ {
293
+ "epoch": 1.7777777777777777,
294
+ "grad_norm": 0.4336804449558258,
295
+ "learning_rate": 0.0002,
296
+ "loss": 0.6716,
297
+ "step": 400
298
+ },
299
+ {
300
+ "epoch": 1.8222222222222222,
301
+ "grad_norm": 0.44034498929977417,
302
+ "learning_rate": 0.0002,
303
+ "loss": 0.6538,
304
+ "step": 410
305
+ },
306
+ {
307
+ "epoch": 1.8666666666666667,
308
+ "grad_norm": 0.4527396261692047,
309
+ "learning_rate": 0.0002,
310
+ "loss": 0.6706,
311
+ "step": 420
312
+ },
313
+ {
314
+ "epoch": 1.911111111111111,
315
+ "grad_norm": 0.40166375041007996,
316
+ "learning_rate": 0.0002,
317
+ "loss": 0.6507,
318
+ "step": 430
319
+ },
320
+ {
321
+ "epoch": 1.9555555555555557,
322
+ "grad_norm": 0.49753332138061523,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.6599,
325
+ "step": 440
326
+ },
327
+ {
328
+ "epoch": 2.0,
329
+ "grad_norm": 0.5019579529762268,
330
+ "learning_rate": 0.0002,
331
+ "loss": 0.6482,
332
+ "step": 450
333
+ },
334
+ {
335
+ "epoch": 2.0,
336
+ "eval_loss": 0.6728096604347229,
337
+ "eval_runtime": 85.827,
338
+ "eval_samples_per_second": 3.717,
339
+ "eval_steps_per_second": 0.466,
340
+ "step": 450
341
+ },
342
+ {
343
+ "epoch": 2.0444444444444443,
344
+ "grad_norm": 0.5162734985351562,
345
+ "learning_rate": 0.0002,
346
+ "loss": 0.626,
347
+ "step": 460
348
+ },
349
+ {
350
+ "epoch": 2.088888888888889,
351
+ "grad_norm": 0.4973997175693512,
352
+ "learning_rate": 0.0002,
353
+ "loss": 0.6363,
354
+ "step": 470
355
+ },
356
+ {
357
+ "epoch": 2.1333333333333333,
358
+ "grad_norm": 0.6232216358184814,
359
+ "learning_rate": 0.0002,
360
+ "loss": 0.6225,
361
+ "step": 480
362
+ },
363
+ {
364
+ "epoch": 2.1777777777777776,
365
+ "grad_norm": 0.5598695278167725,
366
+ "learning_rate": 0.0002,
367
+ "loss": 0.6038,
368
+ "step": 490
369
+ },
370
+ {
371
+ "epoch": 2.2222222222222223,
372
+ "grad_norm": 0.5359365344047546,
373
+ "learning_rate": 0.0002,
374
+ "loss": 0.6247,
375
+ "step": 500
376
+ },
377
+ {
378
+ "epoch": 2.2666666666666666,
379
+ "grad_norm": 0.5992209315299988,
380
+ "learning_rate": 0.0002,
381
+ "loss": 0.6203,
382
+ "step": 510
383
+ },
384
+ {
385
+ "epoch": 2.311111111111111,
386
+ "grad_norm": 0.4921131730079651,
387
+ "learning_rate": 0.0002,
388
+ "loss": 0.6416,
389
+ "step": 520
390
+ },
391
+ {
392
+ "epoch": 2.3555555555555556,
393
+ "grad_norm": 0.5449638366699219,
394
+ "learning_rate": 0.0002,
395
+ "loss": 0.6157,
396
+ "step": 530
397
+ },
398
+ {
399
+ "epoch": 2.4,
400
+ "grad_norm": 0.45068296790122986,
401
+ "learning_rate": 0.0002,
402
+ "loss": 0.6244,
403
+ "step": 540
404
+ },
405
+ {
406
+ "epoch": 2.4444444444444446,
407
+ "grad_norm": 0.5800191164016724,
408
+ "learning_rate": 0.0002,
409
+ "loss": 0.6368,
410
+ "step": 550
411
+ },
412
+ {
413
+ "epoch": 2.488888888888889,
414
+ "grad_norm": 0.4825330674648285,
415
+ "learning_rate": 0.0002,
416
+ "loss": 0.6437,
417
+ "step": 560
418
+ },
419
+ {
420
+ "epoch": 2.533333333333333,
421
+ "grad_norm": 0.6174261569976807,
422
+ "learning_rate": 0.0002,
423
+ "loss": 0.606,
424
+ "step": 570
425
+ },
426
+ {
427
+ "epoch": 2.5777777777777775,
428
+ "grad_norm": 0.5854967832565308,
429
+ "learning_rate": 0.0002,
430
+ "loss": 0.5666,
431
+ "step": 580
432
+ },
433
+ {
434
+ "epoch": 2.6222222222222222,
435
+ "grad_norm": 0.44053414463996887,
436
+ "learning_rate": 0.0002,
437
+ "loss": 0.6017,
438
+ "step": 590
439
+ },
440
+ {
441
+ "epoch": 2.6666666666666665,
442
+ "grad_norm": 0.4803224503993988,
443
+ "learning_rate": 0.0002,
444
+ "loss": 0.6032,
445
+ "step": 600
446
+ },
447
+ {
448
+ "epoch": 2.7111111111111112,
449
+ "grad_norm": 0.5700278282165527,
450
+ "learning_rate": 0.0002,
451
+ "loss": 0.6238,
452
+ "step": 610
453
+ },
454
+ {
455
+ "epoch": 2.7555555555555555,
456
+ "grad_norm": 0.5318542122840881,
457
+ "learning_rate": 0.0002,
458
+ "loss": 0.5767,
459
+ "step": 620
460
+ },
461
+ {
462
+ "epoch": 2.8,
463
+ "grad_norm": 0.5594431161880493,
464
+ "learning_rate": 0.0002,
465
+ "loss": 0.5849,
466
+ "step": 630
467
+ },
468
+ {
469
+ "epoch": 2.8444444444444446,
470
+ "grad_norm": 0.5598340630531311,
471
+ "learning_rate": 0.0002,
472
+ "loss": 0.6094,
473
+ "step": 640
474
+ },
475
+ {
476
+ "epoch": 2.888888888888889,
477
+ "grad_norm": 0.5017251372337341,
478
+ "learning_rate": 0.0002,
479
+ "loss": 0.6059,
480
+ "step": 650
481
+ },
482
+ {
483
+ "epoch": 2.9333333333333336,
484
+ "grad_norm": 0.46027806401252747,
485
+ "learning_rate": 0.0002,
486
+ "loss": 0.6047,
487
+ "step": 660
488
+ },
489
+ {
490
+ "epoch": 2.977777777777778,
491
+ "grad_norm": 0.5706299543380737,
492
+ "learning_rate": 0.0002,
493
+ "loss": 0.5912,
494
+ "step": 670
495
+ },
496
+ {
497
+ "epoch": 3.0,
498
+ "eval_loss": 0.6362627148628235,
499
+ "eval_runtime": 85.1312,
500
+ "eval_samples_per_second": 3.747,
501
+ "eval_steps_per_second": 0.47,
502
+ "step": 675
503
+ },
504
+ {
505
+ "epoch": 3.022222222222222,
506
+ "grad_norm": 0.6016985774040222,
507
+ "learning_rate": 0.0002,
508
+ "loss": 0.5507,
509
+ "step": 680
510
+ },
511
+ {
512
+ "epoch": 3.066666666666667,
513
+ "grad_norm": 0.544710099697113,
514
+ "learning_rate": 0.0002,
515
+ "loss": 0.538,
516
+ "step": 690
517
+ },
518
+ {
519
+ "epoch": 3.111111111111111,
520
+ "grad_norm": 0.5868740081787109,
521
+ "learning_rate": 0.0002,
522
+ "loss": 0.5446,
523
+ "step": 700
524
+ },
525
+ {
526
+ "epoch": 3.1555555555555554,
527
+ "grad_norm": 0.4717068672180176,
528
+ "learning_rate": 0.0002,
529
+ "loss": 0.5337,
530
+ "step": 710
531
+ },
532
+ {
533
+ "epoch": 3.2,
534
+ "grad_norm": 0.5336525440216064,
535
+ "learning_rate": 0.0002,
536
+ "loss": 0.5561,
537
+ "step": 720
538
+ },
539
+ {
540
+ "epoch": 3.2444444444444445,
541
+ "grad_norm": 0.7006786465644836,
542
+ "learning_rate": 0.0002,
543
+ "loss": 0.5565,
544
+ "step": 730
545
+ },
546
+ {
547
+ "epoch": 3.2888888888888888,
548
+ "grad_norm": 0.5565499663352966,
549
+ "learning_rate": 0.0002,
550
+ "loss": 0.5312,
551
+ "step": 740
552
+ },
553
+ {
554
+ "epoch": 3.3333333333333335,
555
+ "grad_norm": 0.568071722984314,
556
+ "learning_rate": 0.0002,
557
+ "loss": 0.554,
558
+ "step": 750
559
+ },
560
+ {
561
+ "epoch": 3.3777777777777778,
562
+ "grad_norm": 0.6389057040214539,
563
+ "learning_rate": 0.0002,
564
+ "loss": 0.5297,
565
+ "step": 760
566
+ },
567
+ {
568
+ "epoch": 3.422222222222222,
569
+ "grad_norm": 0.5239511132240295,
570
+ "learning_rate": 0.0002,
571
+ "loss": 0.5191,
572
+ "step": 770
573
+ },
574
+ {
575
+ "epoch": 3.466666666666667,
576
+ "grad_norm": 0.6089216470718384,
577
+ "learning_rate": 0.0002,
578
+ "loss": 0.559,
579
+ "step": 780
580
+ },
581
+ {
582
+ "epoch": 3.511111111111111,
583
+ "grad_norm": 0.5546727776527405,
584
+ "learning_rate": 0.0002,
585
+ "loss": 0.5399,
586
+ "step": 790
587
+ },
588
+ {
589
+ "epoch": 3.5555555555555554,
590
+ "grad_norm": 0.5639946460723877,
591
+ "learning_rate": 0.0002,
592
+ "loss": 0.5558,
593
+ "step": 800
594
+ },
595
+ {
596
+ "epoch": 3.6,
597
+ "grad_norm": 0.5576934218406677,
598
+ "learning_rate": 0.0002,
599
+ "loss": 0.5476,
600
+ "step": 810
601
+ },
602
+ {
603
+ "epoch": 3.6444444444444444,
604
+ "grad_norm": 0.6561392545700073,
605
+ "learning_rate": 0.0002,
606
+ "loss": 0.5361,
607
+ "step": 820
608
+ },
609
+ {
610
+ "epoch": 3.688888888888889,
611
+ "grad_norm": 0.7699626088142395,
612
+ "learning_rate": 0.0002,
613
+ "loss": 0.5324,
614
+ "step": 830
615
+ },
616
+ {
617
+ "epoch": 3.7333333333333334,
618
+ "grad_norm": 0.47137776017189026,
619
+ "learning_rate": 0.0002,
620
+ "loss": 0.551,
621
+ "step": 840
622
+ },
623
+ {
624
+ "epoch": 3.7777777777777777,
625
+ "grad_norm": 0.7258023023605347,
626
+ "learning_rate": 0.0002,
627
+ "loss": 0.5581,
628
+ "step": 850
629
+ },
630
+ {
631
+ "epoch": 3.822222222222222,
632
+ "grad_norm": 0.510877251625061,
633
+ "learning_rate": 0.0002,
634
+ "loss": 0.5586,
635
+ "step": 860
636
+ },
637
+ {
638
+ "epoch": 3.8666666666666667,
639
+ "grad_norm": 0.6691411733627319,
640
+ "learning_rate": 0.0002,
641
+ "loss": 0.564,
642
+ "step": 870
643
+ },
644
+ {
645
+ "epoch": 3.911111111111111,
646
+ "grad_norm": 0.5722544193267822,
647
+ "learning_rate": 0.0002,
648
+ "loss": 0.5361,
649
+ "step": 880
650
+ },
651
+ {
652
+ "epoch": 3.9555555555555557,
653
+ "grad_norm": 0.6555589437484741,
654
+ "learning_rate": 0.0002,
655
+ "loss": 0.5307,
656
+ "step": 890
657
+ },
658
+ {
659
+ "epoch": 4.0,
660
+ "grad_norm": 0.5689453482627869,
661
+ "learning_rate": 0.0002,
662
+ "loss": 0.5251,
663
+ "step": 900
664
+ },
665
+ {
666
+ "epoch": 4.0,
667
+ "eval_loss": 0.6063342690467834,
668
+ "eval_runtime": 62.7917,
669
+ "eval_samples_per_second": 5.08,
670
+ "eval_steps_per_second": 0.637,
671
+ "step": 900
672
+ },
673
+ {
674
+ "epoch": 4.044444444444444,
675
+ "grad_norm": 0.8715280294418335,
676
+ "learning_rate": 0.0002,
677
+ "loss": 0.4847,
678
+ "step": 910
679
+ },
680
+ {
681
+ "epoch": 4.088888888888889,
682
+ "grad_norm": 0.5597540736198425,
683
+ "learning_rate": 0.0002,
684
+ "loss": 0.4756,
685
+ "step": 920
686
+ },
687
+ {
688
+ "epoch": 4.133333333333334,
689
+ "grad_norm": 0.7538669109344482,
690
+ "learning_rate": 0.0002,
691
+ "loss": 0.4673,
692
+ "step": 930
693
+ },
694
+ {
695
+ "epoch": 4.177777777777778,
696
+ "grad_norm": 0.7434868812561035,
697
+ "learning_rate": 0.0002,
698
+ "loss": 0.4835,
699
+ "step": 940
700
+ },
701
+ {
702
+ "epoch": 4.222222222222222,
703
+ "grad_norm": 0.6148455142974854,
704
+ "learning_rate": 0.0002,
705
+ "loss": 0.486,
706
+ "step": 950
707
+ },
708
+ {
709
+ "epoch": 4.266666666666667,
710
+ "grad_norm": 0.6513713598251343,
711
+ "learning_rate": 0.0002,
712
+ "loss": 0.4812,
713
+ "step": 960
714
+ },
715
+ {
716
+ "epoch": 4.311111111111111,
717
+ "grad_norm": 0.7177010774612427,
718
+ "learning_rate": 0.0002,
719
+ "loss": 0.4823,
720
+ "step": 970
721
+ },
722
+ {
723
+ "epoch": 4.355555555555555,
724
+ "grad_norm": 0.710017204284668,
725
+ "learning_rate": 0.0002,
726
+ "loss": 0.4934,
727
+ "step": 980
728
+ },
729
+ {
730
+ "epoch": 4.4,
731
+ "grad_norm": 0.7506688833236694,
732
+ "learning_rate": 0.0002,
733
+ "loss": 0.4682,
734
+ "step": 990
735
+ },
736
+ {
737
+ "epoch": 4.444444444444445,
738
+ "grad_norm": 0.7618675231933594,
739
+ "learning_rate": 0.0002,
740
+ "loss": 0.4782,
741
+ "step": 1000
742
+ },
743
+ {
744
+ "epoch": 4.488888888888889,
745
+ "grad_norm": 0.6317481994628906,
746
+ "learning_rate": 0.0002,
747
+ "loss": 0.5075,
748
+ "step": 1010
749
+ },
750
+ {
751
+ "epoch": 4.533333333333333,
752
+ "grad_norm": 0.5700439214706421,
753
+ "learning_rate": 0.0002,
754
+ "loss": 0.4822,
755
+ "step": 1020
756
+ },
757
+ {
758
+ "epoch": 4.5777777777777775,
759
+ "grad_norm": 0.7100785374641418,
760
+ "learning_rate": 0.0002,
761
+ "loss": 0.4734,
762
+ "step": 1030
763
+ },
764
+ {
765
+ "epoch": 4.622222222222222,
766
+ "grad_norm": 0.6751446723937988,
767
+ "learning_rate": 0.0002,
768
+ "loss": 0.4764,
769
+ "step": 1040
770
+ },
771
+ {
772
+ "epoch": 4.666666666666667,
773
+ "grad_norm": 0.7100826501846313,
774
+ "learning_rate": 0.0002,
775
+ "loss": 0.4843,
776
+ "step": 1050
777
+ },
778
+ {
779
+ "epoch": 4.711111111111111,
780
+ "grad_norm": 0.6513156890869141,
781
+ "learning_rate": 0.0002,
782
+ "loss": 0.5018,
783
+ "step": 1060
784
+ },
785
+ {
786
+ "epoch": 4.7555555555555555,
787
+ "grad_norm": 0.8129924535751343,
788
+ "learning_rate": 0.0002,
789
+ "loss": 0.495,
790
+ "step": 1070
791
+ },
792
+ {
793
+ "epoch": 4.8,
794
+ "grad_norm": 0.6378636956214905,
795
+ "learning_rate": 0.0002,
796
+ "loss": 0.4819,
797
+ "step": 1080
798
+ },
799
+ {
800
+ "epoch": 4.844444444444444,
801
+ "grad_norm": 0.8045517802238464,
802
+ "learning_rate": 0.0002,
803
+ "loss": 0.4809,
804
+ "step": 1090
805
+ },
806
+ {
807
+ "epoch": 4.888888888888889,
808
+ "grad_norm": 0.712690532207489,
809
+ "learning_rate": 0.0002,
810
+ "loss": 0.4844,
811
+ "step": 1100
812
+ },
813
+ {
814
+ "epoch": 4.933333333333334,
815
+ "grad_norm": 0.7078566551208496,
816
+ "learning_rate": 0.0002,
817
+ "loss": 0.4732,
818
+ "step": 1110
819
+ },
820
+ {
821
+ "epoch": 4.977777777777778,
822
+ "grad_norm": 0.5979776382446289,
823
+ "learning_rate": 0.0002,
824
+ "loss": 0.4727,
825
+ "step": 1120
826
+ },
827
+ {
828
+ "epoch": 5.0,
829
+ "eval_loss": 0.5916207432746887,
830
+ "eval_runtime": 62.8273,
831
+ "eval_samples_per_second": 5.077,
832
+ "eval_steps_per_second": 0.637,
833
+ "step": 1125
834
+ },
835
+ {
836
+ "epoch": 5.022222222222222,
837
+ "grad_norm": 0.6213210225105286,
838
+ "learning_rate": 0.0002,
839
+ "loss": 0.4418,
840
+ "step": 1130
841
+ },
842
+ {
843
+ "epoch": 5.066666666666666,
844
+ "grad_norm": 0.8804424405097961,
845
+ "learning_rate": 0.0002,
846
+ "loss": 0.4213,
847
+ "step": 1140
848
+ },
849
+ {
850
+ "epoch": 5.111111111111111,
851
+ "grad_norm": 0.5710713267326355,
852
+ "learning_rate": 0.0002,
853
+ "loss": 0.4231,
854
+ "step": 1150
855
+ },
856
+ {
857
+ "epoch": 5.155555555555556,
858
+ "grad_norm": 0.6581844687461853,
859
+ "learning_rate": 0.0002,
860
+ "loss": 0.4279,
861
+ "step": 1160
862
+ },
863
+ {
864
+ "epoch": 5.2,
865
+ "grad_norm": 1.4485387802124023,
866
+ "learning_rate": 0.0002,
867
+ "loss": 0.4227,
868
+ "step": 1170
869
+ },
870
+ {
871
+ "epoch": 5.2444444444444445,
872
+ "grad_norm": 0.9506292343139648,
873
+ "learning_rate": 0.0002,
874
+ "loss": 0.4413,
875
+ "step": 1180
876
+ },
877
+ {
878
+ "epoch": 5.288888888888889,
879
+ "grad_norm": 0.6971795558929443,
880
+ "learning_rate": 0.0002,
881
+ "loss": 0.4129,
882
+ "step": 1190
883
+ },
884
+ {
885
+ "epoch": 5.333333333333333,
886
+ "grad_norm": 0.7639512419700623,
887
+ "learning_rate": 0.0002,
888
+ "loss": 0.4283,
889
+ "step": 1200
890
+ },
891
+ {
892
+ "epoch": 5.377777777777778,
893
+ "grad_norm": 0.7847402691841125,
894
+ "learning_rate": 0.0002,
895
+ "loss": 0.4581,
896
+ "step": 1210
897
+ },
898
+ {
899
+ "epoch": 5.4222222222222225,
900
+ "grad_norm": 0.6164460182189941,
901
+ "learning_rate": 0.0002,
902
+ "loss": 0.4311,
903
+ "step": 1220
904
+ },
905
+ {
906
+ "epoch": 5.466666666666667,
907
+ "grad_norm": 0.748383104801178,
908
+ "learning_rate": 0.0002,
909
+ "loss": 0.4304,
910
+ "step": 1230
911
+ },
912
+ {
913
+ "epoch": 5.511111111111111,
914
+ "grad_norm": 0.5674386620521545,
915
+ "learning_rate": 0.0002,
916
+ "loss": 0.4405,
917
+ "step": 1240
918
+ },
919
+ {
920
+ "epoch": 5.555555555555555,
921
+ "grad_norm": 0.9450201392173767,
922
+ "learning_rate": 0.0002,
923
+ "loss": 0.4396,
924
+ "step": 1250
925
+ },
926
+ {
927
+ "epoch": 5.6,
928
+ "grad_norm": 0.6066147089004517,
929
+ "learning_rate": 0.0002,
930
+ "loss": 0.4456,
931
+ "step": 1260
932
+ },
933
+ {
934
+ "epoch": 5.644444444444445,
935
+ "grad_norm": 1.1018579006195068,
936
+ "learning_rate": 0.0002,
937
+ "loss": 0.4154,
938
+ "step": 1270
939
+ },
940
+ {
941
+ "epoch": 5.688888888888889,
942
+ "grad_norm": 0.7561473846435547,
943
+ "learning_rate": 0.0002,
944
+ "loss": 0.4379,
945
+ "step": 1280
946
+ },
947
+ {
948
+ "epoch": 5.733333333333333,
949
+ "grad_norm": 0.8838764429092407,
950
+ "learning_rate": 0.0002,
951
+ "loss": 0.4421,
952
+ "step": 1290
953
+ },
954
+ {
955
+ "epoch": 5.777777777777778,
956
+ "grad_norm": 0.7195517420768738,
957
+ "learning_rate": 0.0002,
958
+ "loss": 0.439,
959
+ "step": 1300
960
+ },
961
+ {
962
+ "epoch": 5.822222222222222,
963
+ "grad_norm": 0.8123605847358704,
964
+ "learning_rate": 0.0002,
965
+ "loss": 0.4377,
966
+ "step": 1310
967
+ },
968
+ {
969
+ "epoch": 5.866666666666667,
970
+ "grad_norm": 0.6891103386878967,
971
+ "learning_rate": 0.0002,
972
+ "loss": 0.435,
973
+ "step": 1320
974
+ },
975
+ {
976
+ "epoch": 5.911111111111111,
977
+ "grad_norm": 1.0846312046051025,
978
+ "learning_rate": 0.0002,
979
+ "loss": 0.4276,
980
+ "step": 1330
981
+ },
982
+ {
983
+ "epoch": 5.955555555555556,
984
+ "grad_norm": 0.6821148991584778,
985
+ "learning_rate": 0.0002,
986
+ "loss": 0.4343,
987
+ "step": 1340
988
+ },
989
+ {
990
+ "epoch": 6.0,
991
+ "grad_norm": 1.0653820037841797,
992
+ "learning_rate": 0.0002,
993
+ "loss": 0.4324,
994
+ "step": 1350
995
+ },
996
+ {
997
+ "epoch": 6.0,
998
+ "eval_loss": 0.5706757307052612,
999
+ "eval_runtime": 62.688,
1000
+ "eval_samples_per_second": 5.089,
1001
+ "eval_steps_per_second": 0.638,
1002
+ "step": 1350
1003
+ },
1004
+ {
1005
+ "epoch": 6.044444444444444,
1006
+ "grad_norm": 0.9802659749984741,
1007
+ "learning_rate": 0.0002,
1008
+ "loss": 0.3798,
1009
+ "step": 1360
1010
+ },
1011
+ {
1012
+ "epoch": 6.088888888888889,
1013
+ "grad_norm": 0.6135040521621704,
1014
+ "learning_rate": 0.0002,
1015
+ "loss": 0.3922,
1016
+ "step": 1370
1017
+ },
1018
+ {
1019
+ "epoch": 6.133333333333334,
1020
+ "grad_norm": 0.7262284755706787,
1021
+ "learning_rate": 0.0002,
1022
+ "loss": 0.3775,
1023
+ "step": 1380
1024
+ },
1025
+ {
1026
+ "epoch": 6.177777777777778,
1027
+ "grad_norm": 1.0442302227020264,
1028
+ "learning_rate": 0.0002,
1029
+ "loss": 0.3938,
1030
+ "step": 1390
1031
+ },
1032
+ {
1033
+ "epoch": 6.222222222222222,
1034
+ "grad_norm": 0.6385959982872009,
1035
+ "learning_rate": 0.0002,
1036
+ "loss": 0.3955,
1037
+ "step": 1400
1038
+ },
1039
+ {
1040
+ "epoch": 6.266666666666667,
1041
+ "grad_norm": 0.6713771224021912,
1042
+ "learning_rate": 0.0002,
1043
+ "loss": 0.3784,
1044
+ "step": 1410
1045
+ },
1046
+ {
1047
+ "epoch": 6.311111111111111,
1048
+ "grad_norm": 0.5622318983078003,
1049
+ "learning_rate": 0.0002,
1050
+ "loss": 0.4045,
1051
+ "step": 1420
1052
+ },
1053
+ {
1054
+ "epoch": 6.355555555555555,
1055
+ "grad_norm": 0.807933509349823,
1056
+ "learning_rate": 0.0002,
1057
+ "loss": 0.378,
1058
+ "step": 1430
1059
+ },
1060
+ {
1061
+ "epoch": 6.4,
1062
+ "grad_norm": 0.7370631694793701,
1063
+ "learning_rate": 0.0002,
1064
+ "loss": 0.4065,
1065
+ "step": 1440
1066
+ },
1067
+ {
1068
+ "epoch": 6.444444444444445,
1069
+ "grad_norm": 0.8557499647140503,
1070
+ "learning_rate": 0.0002,
1071
+ "loss": 0.397,
1072
+ "step": 1450
1073
+ },
1074
+ {
1075
+ "epoch": 6.488888888888889,
1076
+ "grad_norm": 0.703018069267273,
1077
+ "learning_rate": 0.0002,
1078
+ "loss": 0.3878,
1079
+ "step": 1460
1080
+ },
1081
+ {
1082
+ "epoch": 6.533333333333333,
1083
+ "grad_norm": 0.7124331593513489,
1084
+ "learning_rate": 0.0002,
1085
+ "loss": 0.3885,
1086
+ "step": 1470
1087
+ },
1088
+ {
1089
+ "epoch": 6.5777777777777775,
1090
+ "grad_norm": 0.6987470388412476,
1091
+ "learning_rate": 0.0002,
1092
+ "loss": 0.397,
1093
+ "step": 1480
1094
+ },
1095
+ {
1096
+ "epoch": 6.622222222222222,
1097
+ "grad_norm": 0.8872422575950623,
1098
+ "learning_rate": 0.0002,
1099
+ "loss": 0.3895,
1100
+ "step": 1490
1101
+ },
1102
+ {
1103
+ "epoch": 6.666666666666667,
1104
+ "grad_norm": 0.7840065956115723,
1105
+ "learning_rate": 0.0002,
1106
+ "loss": 0.4046,
1107
+ "step": 1500
1108
+ },
1109
+ {
1110
+ "epoch": 6.711111111111111,
1111
+ "grad_norm": 0.6836118698120117,
1112
+ "learning_rate": 0.0002,
1113
+ "loss": 0.3932,
1114
+ "step": 1510
1115
+ },
1116
+ {
1117
+ "epoch": 6.7555555555555555,
1118
+ "grad_norm": 0.7144377827644348,
1119
+ "learning_rate": 0.0002,
1120
+ "loss": 0.4101,
1121
+ "step": 1520
1122
+ },
1123
+ {
1124
+ "epoch": 6.8,
1125
+ "grad_norm": 0.7409266829490662,
1126
+ "learning_rate": 0.0002,
1127
+ "loss": 0.3932,
1128
+ "step": 1530
1129
+ },
1130
+ {
1131
+ "epoch": 6.844444444444444,
1132
+ "grad_norm": 0.7913723587989807,
1133
+ "learning_rate": 0.0002,
1134
+ "loss": 0.3989,
1135
+ "step": 1540
1136
+ },
1137
+ {
1138
+ "epoch": 6.888888888888889,
1139
+ "grad_norm": 0.8343528509140015,
1140
+ "learning_rate": 0.0002,
1141
+ "loss": 0.3987,
1142
+ "step": 1550
1143
+ },
1144
+ {
1145
+ "epoch": 6.933333333333334,
1146
+ "grad_norm": 0.7788136601448059,
1147
+ "learning_rate": 0.0002,
1148
+ "loss": 0.3945,
1149
+ "step": 1560
1150
+ },
1151
+ {
1152
+ "epoch": 6.977777777777778,
1153
+ "grad_norm": 0.913601279258728,
1154
+ "learning_rate": 0.0002,
1155
+ "loss": 0.4042,
1156
+ "step": 1570
1157
+ },
1158
+ {
1159
+ "epoch": 7.0,
1160
+ "eval_loss": 0.5527341961860657,
1161
+ "eval_runtime": 46.4414,
1162
+ "eval_samples_per_second": 6.869,
1163
+ "eval_steps_per_second": 0.861,
1164
+ "step": 1575
1165
+ }
1166
+ ],
1167
+ "logging_steps": 10,
1168
+ "max_steps": 1800,
1169
+ "num_input_tokens_seen": 0,
1170
+ "num_train_epochs": 8,
1171
+ "save_steps": 200,
1172
+ "stateful_callbacks": {
1173
+ "TrainerControl": {
1174
+ "args": {
1175
+ "should_epoch_stop": false,
1176
+ "should_evaluate": false,
1177
+ "should_log": false,
1178
+ "should_save": true,
1179
+ "should_training_stop": false
1180
+ },
1181
+ "attributes": {}
1182
+ }
1183
+ },
1184
+ "total_flos": 6.86162943148032e+16,
1185
+ "train_batch_size": 1,
1186
+ "trial_name": null,
1187
+ "trial_params": null
1188
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e959dbea71d2fa39c568a9d5bd6f17054bc6f0bf1101d40e99f8f6178453e4e
3
+ size 5560
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1575/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1800/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2-7B-Instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1800/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2-7B-Instruct",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1800/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa07c21653694aa072db05e651373f2135ba91389f8905d3b6a6d3162d99dfe0
3
+ size 80755416
Qwen2-7B-Instruct_int4_flare-headlines_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.2-num-4314-sd-1/checkpoint-1800/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }