MilaWang commited on
Commit
90a2f48
·
verified ·
1 Parent(s): d907777

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/README.md +202 -0
  2. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/adapter_config.json +29 -0
  3. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/adapter_model.safetensors +3 -0
  4. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/README.md +202 -0
  5. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/adapter_config.json +29 -0
  6. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/adapter_model.safetensors +3 -0
  7. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/optimizer.pt +3 -0
  8. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/rng_state.pth +3 -0
  9. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/scheduler.pt +3 -0
  10. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/special_tokens_map.json +24 -0
  11. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/tokenizer.json +0 -0
  12. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/tokenizer.model +3 -0
  13. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/tokenizer_config.json +0 -0
  14. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/trainer_state.json +911 -0
  15. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/training_args.bin +3 -0
  16. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/README.md +202 -0
  17. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/adapter_config.json +29 -0
  18. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/adapter_model.safetensors +3 -0
  19. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/optimizer.pt +3 -0
  20. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/rng_state.pth +3 -0
  21. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/scheduler.pt +3 -0
  22. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/special_tokens_map.json +24 -0
  23. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/tokenizer.json +0 -0
  24. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/tokenizer.model +3 -0
  25. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/tokenizer_config.json +0 -0
  26. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/trainer_state.json +1206 -0
  27. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/training_args.bin +3 -0
  28. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/README.md +202 -0
  29. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/adapter_config.json +29 -0
  30. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/adapter_model.safetensors +3 -0
  31. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/optimizer.pt +3 -0
  32. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/rng_state.pth +3 -0
  33. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/scheduler.pt +3 -0
  34. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/special_tokens_map.json +24 -0
  35. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/tokenizer.json +0 -0
  36. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/tokenizer.model +3 -0
  37. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/tokenizer_config.json +0 -0
  38. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/trainer_state.json +1494 -0
  39. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/training_args.bin +3 -0
  40. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/README.md +202 -0
  41. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/adapter_config.json +29 -0
  42. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/adapter_model.safetensors +3 -0
  43. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/optimizer.pt +3 -0
  44. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/rng_state.pth +3 -0
  45. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/scheduler.pt +3 -0
  46. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/special_tokens_map.json +24 -0
  47. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/tokenizer.json +0 -0
  48. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/tokenizer.model +3 -0
  49. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/tokenizer_config.json +0 -0
  50. Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/trainer_state.json +1789 -0
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad4a9f6462cc9a90e52594f6bd32574ef3ef3eadaa8bb8b48cf62640ec1604e1
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a557c0caa06d6149244435a36e20fb0ff820012384501a96717af84d73b4ab7
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5527614ca942123c39a84d47990fc1d0173a78ef912e710e6b2e720027d420da
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50c81d5c0a6501b9a3dad1fd7e729e9c5beb647ab7f6cf96d4b9a494ef0702d6
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c49496ce00eb78c814fcb6b8085fb3bdf31dcf5e4152f99090d12a4b280f9538
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/trainer_state.json ADDED
@@ -0,0 +1,911 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.3188884258270264,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-407",
4
+ "epoch": 2.9987730061349693,
5
+ "eval_steps": 10,
6
+ "global_step": 1222,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.024539877300613498,
13
+ "grad_norm": 1.0104172229766846,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7717,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.049079754601226995,
20
+ "grad_norm": 0.8800041079521179,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.6041,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.0736196319018405,
27
+ "grad_norm": 1.337620496749878,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.4421,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.09815950920245399,
34
+ "grad_norm": 0.6757020354270935,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.5542,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.12269938650306748,
41
+ "grad_norm": 42.27006149291992,
42
+ "learning_rate": 0.0002,
43
+ "loss": 1.4365,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.147239263803681,
48
+ "grad_norm": 0.8157640099525452,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.1226,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.17177914110429449,
55
+ "grad_norm": 1.0711787939071655,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.1886,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.19631901840490798,
62
+ "grad_norm": 0.5880025029182434,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.1239,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.22085889570552147,
69
+ "grad_norm": 0.827833354473114,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.0696,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.24539877300613497,
76
+ "grad_norm": 0.579414963722229,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.0468,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.26993865030674846,
83
+ "grad_norm": 0.6620142459869385,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.0914,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.294478527607362,
90
+ "grad_norm": 0.5601297616958618,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.0873,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.31901840490797545,
97
+ "grad_norm": 0.5814566612243652,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.1652,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.34355828220858897,
104
+ "grad_norm": 0.6171417236328125,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.0915,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.36809815950920244,
111
+ "grad_norm": 0.6176294088363647,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.1572,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.39263803680981596,
118
+ "grad_norm": 0.8398241400718689,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.1135,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.4171779141104294,
125
+ "grad_norm": 0.5397658944129944,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.1235,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.44171779141104295,
132
+ "grad_norm": 0.7487576603889465,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.1438,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.4662576687116564,
139
+ "grad_norm": 0.4767085015773773,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.1178,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.49079754601226994,
146
+ "grad_norm": 0.6086363196372986,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.1222,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.5153374233128835,
153
+ "grad_norm": 0.6940106749534607,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.0346,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.5398773006134969,
160
+ "grad_norm": 0.775067150592804,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.1162,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.5644171779141104,
167
+ "grad_norm": 0.7273200154304504,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.1335,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.588957055214724,
174
+ "grad_norm": 0.5168078541755676,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.0606,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.6134969325153374,
181
+ "grad_norm": 0.6487783193588257,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.0792,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.6380368098159509,
188
+ "grad_norm": 1.0914227962493896,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.1642,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.6625766871165644,
195
+ "grad_norm": 1.0182702541351318,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.065,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.6871165644171779,
202
+ "grad_norm": 0.7045943140983582,
203
+ "learning_rate": 0.0002,
204
+ "loss": 0.9816,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.7116564417177914,
209
+ "grad_norm": 0.6228044033050537,
210
+ "learning_rate": 0.0002,
211
+ "loss": 0.9675,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.7361963190184049,
216
+ "grad_norm": 0.6161119341850281,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.076,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.7607361963190185,
223
+ "grad_norm": 0.8310935497283936,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.0597,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.7852760736196319,
230
+ "grad_norm": 0.6500546336174011,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.0817,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.8098159509202454,
237
+ "grad_norm": 0.9254736304283142,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.109,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.8343558282208589,
244
+ "grad_norm": 0.5892964005470276,
245
+ "learning_rate": 0.0002,
246
+ "loss": 0.9929,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.8588957055214724,
251
+ "grad_norm": 0.5500181913375854,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.0637,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.8834355828220859,
258
+ "grad_norm": 0.7814139127731323,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.0693,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.9079754601226994,
265
+ "grad_norm": 0.6288005113601685,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.059,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.9325153374233128,
272
+ "grad_norm": 0.5031183958053589,
273
+ "learning_rate": 0.0002,
274
+ "loss": 0.9904,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.9570552147239264,
279
+ "grad_norm": 0.8656964898109436,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.1183,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.9815950920245399,
286
+ "grad_norm": 0.6746202111244202,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.0296,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.9987730061349693,
293
+ "eval_loss": 1.3188884258270264,
294
+ "eval_runtime": 124.2158,
295
+ "eval_samples_per_second": 3.671,
296
+ "eval_steps_per_second": 0.459,
297
+ "step": 407
298
+ },
299
+ {
300
+ "epoch": 1.0061349693251533,
301
+ "grad_norm": 0.5244082808494568,
302
+ "learning_rate": 0.0002,
303
+ "loss": 0.9679,
304
+ "step": 410
305
+ },
306
+ {
307
+ "epoch": 1.030674846625767,
308
+ "grad_norm": 0.6792967319488525,
309
+ "learning_rate": 0.0002,
310
+ "loss": 0.97,
311
+ "step": 420
312
+ },
313
+ {
314
+ "epoch": 1.0552147239263803,
315
+ "grad_norm": 0.6114474534988403,
316
+ "learning_rate": 0.0002,
317
+ "loss": 0.8935,
318
+ "step": 430
319
+ },
320
+ {
321
+ "epoch": 1.0797546012269938,
322
+ "grad_norm": 0.6367565393447876,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.9469,
325
+ "step": 440
326
+ },
327
+ {
328
+ "epoch": 1.1042944785276074,
329
+ "grad_norm": 0.7007757425308228,
330
+ "learning_rate": 0.0002,
331
+ "loss": 0.9536,
332
+ "step": 450
333
+ },
334
+ {
335
+ "epoch": 1.1288343558282208,
336
+ "grad_norm": 0.9737136960029602,
337
+ "learning_rate": 0.0002,
338
+ "loss": 0.8806,
339
+ "step": 460
340
+ },
341
+ {
342
+ "epoch": 1.1533742331288344,
343
+ "grad_norm": 1.1624044179916382,
344
+ "learning_rate": 0.0002,
345
+ "loss": 0.9217,
346
+ "step": 470
347
+ },
348
+ {
349
+ "epoch": 1.177914110429448,
350
+ "grad_norm": 2.1017873287200928,
351
+ "learning_rate": 0.0002,
352
+ "loss": 0.9056,
353
+ "step": 480
354
+ },
355
+ {
356
+ "epoch": 1.2024539877300613,
357
+ "grad_norm": 0.7352198958396912,
358
+ "learning_rate": 0.0002,
359
+ "loss": 0.9945,
360
+ "step": 490
361
+ },
362
+ {
363
+ "epoch": 1.2269938650306749,
364
+ "grad_norm": 0.9491982460021973,
365
+ "learning_rate": 0.0002,
366
+ "loss": 0.9224,
367
+ "step": 500
368
+ },
369
+ {
370
+ "epoch": 1.2515337423312882,
371
+ "grad_norm": 1.0124034881591797,
372
+ "learning_rate": 0.0002,
373
+ "loss": 0.9079,
374
+ "step": 510
375
+ },
376
+ {
377
+ "epoch": 1.2760736196319018,
378
+ "grad_norm": 0.7620294094085693,
379
+ "learning_rate": 0.0002,
380
+ "loss": 0.9596,
381
+ "step": 520
382
+ },
383
+ {
384
+ "epoch": 1.3006134969325154,
385
+ "grad_norm": 0.7207106351852417,
386
+ "learning_rate": 0.0002,
387
+ "loss": 0.9095,
388
+ "step": 530
389
+ },
390
+ {
391
+ "epoch": 1.3251533742331287,
392
+ "grad_norm": 0.586559534072876,
393
+ "learning_rate": 0.0002,
394
+ "loss": 0.8588,
395
+ "step": 540
396
+ },
397
+ {
398
+ "epoch": 1.3496932515337423,
399
+ "grad_norm": 0.7113742828369141,
400
+ "learning_rate": 0.0002,
401
+ "loss": 0.9146,
402
+ "step": 550
403
+ },
404
+ {
405
+ "epoch": 1.3742331288343559,
406
+ "grad_norm": 0.9574087262153625,
407
+ "learning_rate": 0.0002,
408
+ "loss": 0.9504,
409
+ "step": 560
410
+ },
411
+ {
412
+ "epoch": 1.3987730061349692,
413
+ "grad_norm": 0.71551913022995,
414
+ "learning_rate": 0.0002,
415
+ "loss": 0.9124,
416
+ "step": 570
417
+ },
418
+ {
419
+ "epoch": 1.4233128834355828,
420
+ "grad_norm": 1.0000630617141724,
421
+ "learning_rate": 0.0002,
422
+ "loss": 0.8944,
423
+ "step": 580
424
+ },
425
+ {
426
+ "epoch": 1.4478527607361964,
427
+ "grad_norm": 0.6878040432929993,
428
+ "learning_rate": 0.0002,
429
+ "loss": 0.8707,
430
+ "step": 590
431
+ },
432
+ {
433
+ "epoch": 1.4723926380368098,
434
+ "grad_norm": 0.770113468170166,
435
+ "learning_rate": 0.0002,
436
+ "loss": 0.953,
437
+ "step": 600
438
+ },
439
+ {
440
+ "epoch": 1.4969325153374233,
441
+ "grad_norm": 0.7941587567329407,
442
+ "learning_rate": 0.0002,
443
+ "loss": 0.9293,
444
+ "step": 610
445
+ },
446
+ {
447
+ "epoch": 1.521472392638037,
448
+ "grad_norm": 0.971196711063385,
449
+ "learning_rate": 0.0002,
450
+ "loss": 0.9177,
451
+ "step": 620
452
+ },
453
+ {
454
+ "epoch": 1.5460122699386503,
455
+ "grad_norm": 0.6944937109947205,
456
+ "learning_rate": 0.0002,
457
+ "loss": 0.8605,
458
+ "step": 630
459
+ },
460
+ {
461
+ "epoch": 1.5705521472392638,
462
+ "grad_norm": 1.104216456413269,
463
+ "learning_rate": 0.0002,
464
+ "loss": 0.8922,
465
+ "step": 640
466
+ },
467
+ {
468
+ "epoch": 1.5950920245398774,
469
+ "grad_norm": 0.786145806312561,
470
+ "learning_rate": 0.0002,
471
+ "loss": 0.9264,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 1.6196319018404908,
476
+ "grad_norm": 0.8748652935028076,
477
+ "learning_rate": 0.0002,
478
+ "loss": 0.8515,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 1.6441717791411041,
483
+ "grad_norm": 0.6184355020523071,
484
+ "learning_rate": 0.0002,
485
+ "loss": 0.8818,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 1.668711656441718,
490
+ "grad_norm": 1.0236579179763794,
491
+ "learning_rate": 0.0002,
492
+ "loss": 0.9484,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 1.6932515337423313,
497
+ "grad_norm": 0.9815388917922974,
498
+ "learning_rate": 0.0002,
499
+ "loss": 0.9078,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 1.7177914110429446,
504
+ "grad_norm": 0.6398373246192932,
505
+ "learning_rate": 0.0002,
506
+ "loss": 0.9036,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 1.7423312883435584,
511
+ "grad_norm": 0.6157359480857849,
512
+ "learning_rate": 0.0002,
513
+ "loss": 0.8702,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 1.7668711656441718,
518
+ "grad_norm": 0.7352675795555115,
519
+ "learning_rate": 0.0002,
520
+ "loss": 0.8712,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 1.7914110429447851,
525
+ "grad_norm": 0.6840626001358032,
526
+ "learning_rate": 0.0002,
527
+ "loss": 0.8737,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 1.8159509202453987,
532
+ "grad_norm": 0.8363635540008545,
533
+ "learning_rate": 0.0002,
534
+ "loss": 0.9113,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 1.8404907975460123,
539
+ "grad_norm": 1.7173194885253906,
540
+ "learning_rate": 0.0002,
541
+ "loss": 0.973,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 1.8650306748466257,
546
+ "grad_norm": 0.8277300000190735,
547
+ "learning_rate": 0.0002,
548
+ "loss": 0.9438,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 1.8895705521472392,
553
+ "grad_norm": 0.6714297533035278,
554
+ "learning_rate": 0.0002,
555
+ "loss": 0.919,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 1.9141104294478528,
560
+ "grad_norm": 0.7646296620368958,
561
+ "learning_rate": 0.0002,
562
+ "loss": 0.889,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 1.9386503067484662,
567
+ "grad_norm": 0.9777507781982422,
568
+ "learning_rate": 0.0002,
569
+ "loss": 0.8433,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 1.9631901840490797,
574
+ "grad_norm": 0.7732912302017212,
575
+ "learning_rate": 0.0002,
576
+ "loss": 0.9255,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 1.9877300613496933,
581
+ "grad_norm": 0.7485368847846985,
582
+ "learning_rate": 0.0002,
583
+ "loss": 0.9556,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 2.0,
588
+ "eval_loss": 1.335689663887024,
589
+ "eval_runtime": 80.1256,
590
+ "eval_samples_per_second": 5.691,
591
+ "eval_steps_per_second": 0.711,
592
+ "step": 815
593
+ },
594
+ {
595
+ "epoch": 2.0122699386503067,
596
+ "grad_norm": 0.7061107158660889,
597
+ "learning_rate": 0.0002,
598
+ "loss": 0.9555,
599
+ "step": 820
600
+ },
601
+ {
602
+ "epoch": 2.03680981595092,
603
+ "grad_norm": 1.101184368133545,
604
+ "learning_rate": 0.0002,
605
+ "loss": 0.7363,
606
+ "step": 830
607
+ },
608
+ {
609
+ "epoch": 2.061349693251534,
610
+ "grad_norm": 0.6724491119384766,
611
+ "learning_rate": 0.0002,
612
+ "loss": 0.7269,
613
+ "step": 840
614
+ },
615
+ {
616
+ "epoch": 2.085889570552147,
617
+ "grad_norm": 0.8159838318824768,
618
+ "learning_rate": 0.0002,
619
+ "loss": 0.6836,
620
+ "step": 850
621
+ },
622
+ {
623
+ "epoch": 2.1104294478527605,
624
+ "grad_norm": 0.9286916255950928,
625
+ "learning_rate": 0.0002,
626
+ "loss": 0.7237,
627
+ "step": 860
628
+ },
629
+ {
630
+ "epoch": 2.1349693251533743,
631
+ "grad_norm": 0.9122375845909119,
632
+ "learning_rate": 0.0002,
633
+ "loss": 0.7258,
634
+ "step": 870
635
+ },
636
+ {
637
+ "epoch": 2.1595092024539877,
638
+ "grad_norm": 0.9655355215072632,
639
+ "learning_rate": 0.0002,
640
+ "loss": 0.7164,
641
+ "step": 880
642
+ },
643
+ {
644
+ "epoch": 2.184049079754601,
645
+ "grad_norm": 1.1539593935012817,
646
+ "learning_rate": 0.0002,
647
+ "loss": 0.741,
648
+ "step": 890
649
+ },
650
+ {
651
+ "epoch": 2.208588957055215,
652
+ "grad_norm": 1.0535199642181396,
653
+ "learning_rate": 0.0002,
654
+ "loss": 0.7368,
655
+ "step": 900
656
+ },
657
+ {
658
+ "epoch": 2.233128834355828,
659
+ "grad_norm": 1.2841371297836304,
660
+ "learning_rate": 0.0002,
661
+ "loss": 0.6615,
662
+ "step": 910
663
+ },
664
+ {
665
+ "epoch": 2.2576687116564416,
666
+ "grad_norm": 0.8669798970222473,
667
+ "learning_rate": 0.0002,
668
+ "loss": 0.767,
669
+ "step": 920
670
+ },
671
+ {
672
+ "epoch": 2.2822085889570554,
673
+ "grad_norm": 0.8732201457023621,
674
+ "learning_rate": 0.0002,
675
+ "loss": 0.7303,
676
+ "step": 930
677
+ },
678
+ {
679
+ "epoch": 2.3067484662576687,
680
+ "grad_norm": 0.9955021739006042,
681
+ "learning_rate": 0.0002,
682
+ "loss": 0.7205,
683
+ "step": 940
684
+ },
685
+ {
686
+ "epoch": 2.331288343558282,
687
+ "grad_norm": 1.0610932111740112,
688
+ "learning_rate": 0.0002,
689
+ "loss": 0.6781,
690
+ "step": 950
691
+ },
692
+ {
693
+ "epoch": 2.355828220858896,
694
+ "grad_norm": 0.9506151080131531,
695
+ "learning_rate": 0.0002,
696
+ "loss": 0.729,
697
+ "step": 960
698
+ },
699
+ {
700
+ "epoch": 2.3803680981595092,
701
+ "grad_norm": 1.259052038192749,
702
+ "learning_rate": 0.0002,
703
+ "loss": 0.6784,
704
+ "step": 970
705
+ },
706
+ {
707
+ "epoch": 2.4049079754601226,
708
+ "grad_norm": 1.1822247505187988,
709
+ "learning_rate": 0.0002,
710
+ "loss": 0.6668,
711
+ "step": 980
712
+ },
713
+ {
714
+ "epoch": 2.4294478527607364,
715
+ "grad_norm": 0.6920015811920166,
716
+ "learning_rate": 0.0002,
717
+ "loss": 0.6623,
718
+ "step": 990
719
+ },
720
+ {
721
+ "epoch": 2.4539877300613497,
722
+ "grad_norm": 0.7560105323791504,
723
+ "learning_rate": 0.0002,
724
+ "loss": 0.6802,
725
+ "step": 1000
726
+ },
727
+ {
728
+ "epoch": 2.478527607361963,
729
+ "grad_norm": 0.8672356009483337,
730
+ "learning_rate": 0.0002,
731
+ "loss": 0.7685,
732
+ "step": 1010
733
+ },
734
+ {
735
+ "epoch": 2.5030674846625764,
736
+ "grad_norm": 1.1074872016906738,
737
+ "learning_rate": 0.0002,
738
+ "loss": 0.7058,
739
+ "step": 1020
740
+ },
741
+ {
742
+ "epoch": 2.5276073619631902,
743
+ "grad_norm": 1.1430137157440186,
744
+ "learning_rate": 0.0002,
745
+ "loss": 0.7746,
746
+ "step": 1030
747
+ },
748
+ {
749
+ "epoch": 2.5521472392638036,
750
+ "grad_norm": 1.6926707029342651,
751
+ "learning_rate": 0.0002,
752
+ "loss": 0.7444,
753
+ "step": 1040
754
+ },
755
+ {
756
+ "epoch": 2.5766871165644174,
757
+ "grad_norm": 1.0170048475265503,
758
+ "learning_rate": 0.0002,
759
+ "loss": 0.7131,
760
+ "step": 1050
761
+ },
762
+ {
763
+ "epoch": 2.6012269938650308,
764
+ "grad_norm": 1.1462562084197998,
765
+ "learning_rate": 0.0002,
766
+ "loss": 0.7275,
767
+ "step": 1060
768
+ },
769
+ {
770
+ "epoch": 2.625766871165644,
771
+ "grad_norm": 1.127669334411621,
772
+ "learning_rate": 0.0002,
773
+ "loss": 0.6736,
774
+ "step": 1070
775
+ },
776
+ {
777
+ "epoch": 2.6503067484662575,
778
+ "grad_norm": 0.9649022221565247,
779
+ "learning_rate": 0.0002,
780
+ "loss": 0.7218,
781
+ "step": 1080
782
+ },
783
+ {
784
+ "epoch": 2.6748466257668713,
785
+ "grad_norm": 0.9426548480987549,
786
+ "learning_rate": 0.0002,
787
+ "loss": 0.7651,
788
+ "step": 1090
789
+ },
790
+ {
791
+ "epoch": 2.6993865030674846,
792
+ "grad_norm": 1.1191051006317139,
793
+ "learning_rate": 0.0002,
794
+ "loss": 0.7829,
795
+ "step": 1100
796
+ },
797
+ {
798
+ "epoch": 2.7239263803680984,
799
+ "grad_norm": 2.229809284210205,
800
+ "learning_rate": 0.0002,
801
+ "loss": 0.7238,
802
+ "step": 1110
803
+ },
804
+ {
805
+ "epoch": 2.7484662576687118,
806
+ "grad_norm": 1.2478930950164795,
807
+ "learning_rate": 0.0002,
808
+ "loss": 0.6828,
809
+ "step": 1120
810
+ },
811
+ {
812
+ "epoch": 2.773006134969325,
813
+ "grad_norm": 0.9907709360122681,
814
+ "learning_rate": 0.0002,
815
+ "loss": 0.7194,
816
+ "step": 1130
817
+ },
818
+ {
819
+ "epoch": 2.7975460122699385,
820
+ "grad_norm": 1.1670643091201782,
821
+ "learning_rate": 0.0002,
822
+ "loss": 0.6531,
823
+ "step": 1140
824
+ },
825
+ {
826
+ "epoch": 2.8220858895705523,
827
+ "grad_norm": 1.1675913333892822,
828
+ "learning_rate": 0.0002,
829
+ "loss": 0.7076,
830
+ "step": 1150
831
+ },
832
+ {
833
+ "epoch": 2.8466257668711656,
834
+ "grad_norm": 0.9909353256225586,
835
+ "learning_rate": 0.0002,
836
+ "loss": 0.6915,
837
+ "step": 1160
838
+ },
839
+ {
840
+ "epoch": 2.871165644171779,
841
+ "grad_norm": 0.8759778141975403,
842
+ "learning_rate": 0.0002,
843
+ "loss": 0.7294,
844
+ "step": 1170
845
+ },
846
+ {
847
+ "epoch": 2.895705521472393,
848
+ "grad_norm": 0.8080666661262512,
849
+ "learning_rate": 0.0002,
850
+ "loss": 0.6451,
851
+ "step": 1180
852
+ },
853
+ {
854
+ "epoch": 2.920245398773006,
855
+ "grad_norm": 0.9743189811706543,
856
+ "learning_rate": 0.0002,
857
+ "loss": 0.7331,
858
+ "step": 1190
859
+ },
860
+ {
861
+ "epoch": 2.9447852760736195,
862
+ "grad_norm": 0.8573821187019348,
863
+ "learning_rate": 0.0002,
864
+ "loss": 0.7471,
865
+ "step": 1200
866
+ },
867
+ {
868
+ "epoch": 2.969325153374233,
869
+ "grad_norm": 1.0196788311004639,
870
+ "learning_rate": 0.0002,
871
+ "loss": 0.7396,
872
+ "step": 1210
873
+ },
874
+ {
875
+ "epoch": 2.9938650306748467,
876
+ "grad_norm": 0.8840402960777283,
877
+ "learning_rate": 0.0002,
878
+ "loss": 0.7288,
879
+ "step": 1220
880
+ },
881
+ {
882
+ "epoch": 2.9987730061349693,
883
+ "eval_loss": 1.4348119497299194,
884
+ "eval_runtime": 80.7583,
885
+ "eval_samples_per_second": 5.646,
886
+ "eval_steps_per_second": 0.706,
887
+ "step": 1222
888
+ }
889
+ ],
890
+ "logging_steps": 10,
891
+ "max_steps": 3256,
892
+ "num_input_tokens_seen": 0,
893
+ "num_train_epochs": 8,
894
+ "save_steps": 200,
895
+ "stateful_callbacks": {
896
+ "TrainerControl": {
897
+ "args": {
898
+ "should_epoch_stop": false,
899
+ "should_evaluate": false,
900
+ "should_log": false,
901
+ "should_save": true,
902
+ "should_training_stop": false
903
+ },
904
+ "attributes": {}
905
+ }
906
+ },
907
+ "total_flos": 5.3636853399552e+16,
908
+ "train_batch_size": 1,
909
+ "trial_name": null,
910
+ "trial_params": null
911
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1222/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0e586c733c860e8234b028525d14453b4a2a52ad2c815f3775cbbbef35878fb
3
+ size 5624
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bae1c53ba1462780acdb93d2a60c6abd0cfbc0157a080916a2e4121129b7d003
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9aaaf9208b8ee8828f2ef2d1eb396ea5dc14d5fa5bfc02759a0a15d9ec4ac3b
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20d5d7f3cd1f1e2df2c979a0255d46f1f4d1561d1d1012f4d8c7001cf8c51381
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6325287366e061d5bbdcfa31d6e731688ff21db98e00579126330afff60ececf
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/trainer_state.json ADDED
@@ -0,0 +1,1206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.3188884258270264,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-407",
4
+ "epoch": 4.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1630,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.024539877300613498,
13
+ "grad_norm": 1.0104172229766846,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7717,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.049079754601226995,
20
+ "grad_norm": 0.8800041079521179,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.6041,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.0736196319018405,
27
+ "grad_norm": 1.337620496749878,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.4421,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.09815950920245399,
34
+ "grad_norm": 0.6757020354270935,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.5542,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.12269938650306748,
41
+ "grad_norm": 42.27006149291992,
42
+ "learning_rate": 0.0002,
43
+ "loss": 1.4365,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.147239263803681,
48
+ "grad_norm": 0.8157640099525452,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.1226,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.17177914110429449,
55
+ "grad_norm": 1.0711787939071655,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.1886,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.19631901840490798,
62
+ "grad_norm": 0.5880025029182434,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.1239,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.22085889570552147,
69
+ "grad_norm": 0.827833354473114,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.0696,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.24539877300613497,
76
+ "grad_norm": 0.579414963722229,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.0468,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.26993865030674846,
83
+ "grad_norm": 0.6620142459869385,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.0914,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.294478527607362,
90
+ "grad_norm": 0.5601297616958618,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.0873,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.31901840490797545,
97
+ "grad_norm": 0.5814566612243652,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.1652,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.34355828220858897,
104
+ "grad_norm": 0.6171417236328125,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.0915,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.36809815950920244,
111
+ "grad_norm": 0.6176294088363647,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.1572,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.39263803680981596,
118
+ "grad_norm": 0.8398241400718689,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.1135,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.4171779141104294,
125
+ "grad_norm": 0.5397658944129944,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.1235,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.44171779141104295,
132
+ "grad_norm": 0.7487576603889465,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.1438,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.4662576687116564,
139
+ "grad_norm": 0.4767085015773773,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.1178,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.49079754601226994,
146
+ "grad_norm": 0.6086363196372986,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.1222,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.5153374233128835,
153
+ "grad_norm": 0.6940106749534607,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.0346,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.5398773006134969,
160
+ "grad_norm": 0.775067150592804,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.1162,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.5644171779141104,
167
+ "grad_norm": 0.7273200154304504,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.1335,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.588957055214724,
174
+ "grad_norm": 0.5168078541755676,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.0606,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.6134969325153374,
181
+ "grad_norm": 0.6487783193588257,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.0792,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.6380368098159509,
188
+ "grad_norm": 1.0914227962493896,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.1642,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.6625766871165644,
195
+ "grad_norm": 1.0182702541351318,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.065,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.6871165644171779,
202
+ "grad_norm": 0.7045943140983582,
203
+ "learning_rate": 0.0002,
204
+ "loss": 0.9816,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.7116564417177914,
209
+ "grad_norm": 0.6228044033050537,
210
+ "learning_rate": 0.0002,
211
+ "loss": 0.9675,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.7361963190184049,
216
+ "grad_norm": 0.6161119341850281,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.076,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.7607361963190185,
223
+ "grad_norm": 0.8310935497283936,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.0597,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.7852760736196319,
230
+ "grad_norm": 0.6500546336174011,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.0817,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.8098159509202454,
237
+ "grad_norm": 0.9254736304283142,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.109,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.8343558282208589,
244
+ "grad_norm": 0.5892964005470276,
245
+ "learning_rate": 0.0002,
246
+ "loss": 0.9929,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.8588957055214724,
251
+ "grad_norm": 0.5500181913375854,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.0637,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.8834355828220859,
258
+ "grad_norm": 0.7814139127731323,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.0693,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.9079754601226994,
265
+ "grad_norm": 0.6288005113601685,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.059,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.9325153374233128,
272
+ "grad_norm": 0.5031183958053589,
273
+ "learning_rate": 0.0002,
274
+ "loss": 0.9904,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.9570552147239264,
279
+ "grad_norm": 0.8656964898109436,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.1183,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.9815950920245399,
286
+ "grad_norm": 0.6746202111244202,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.0296,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.9987730061349693,
293
+ "eval_loss": 1.3188884258270264,
294
+ "eval_runtime": 124.2158,
295
+ "eval_samples_per_second": 3.671,
296
+ "eval_steps_per_second": 0.459,
297
+ "step": 407
298
+ },
299
+ {
300
+ "epoch": 1.0061349693251533,
301
+ "grad_norm": 0.5244082808494568,
302
+ "learning_rate": 0.0002,
303
+ "loss": 0.9679,
304
+ "step": 410
305
+ },
306
+ {
307
+ "epoch": 1.030674846625767,
308
+ "grad_norm": 0.6792967319488525,
309
+ "learning_rate": 0.0002,
310
+ "loss": 0.97,
311
+ "step": 420
312
+ },
313
+ {
314
+ "epoch": 1.0552147239263803,
315
+ "grad_norm": 0.6114474534988403,
316
+ "learning_rate": 0.0002,
317
+ "loss": 0.8935,
318
+ "step": 430
319
+ },
320
+ {
321
+ "epoch": 1.0797546012269938,
322
+ "grad_norm": 0.6367565393447876,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.9469,
325
+ "step": 440
326
+ },
327
+ {
328
+ "epoch": 1.1042944785276074,
329
+ "grad_norm": 0.7007757425308228,
330
+ "learning_rate": 0.0002,
331
+ "loss": 0.9536,
332
+ "step": 450
333
+ },
334
+ {
335
+ "epoch": 1.1288343558282208,
336
+ "grad_norm": 0.9737136960029602,
337
+ "learning_rate": 0.0002,
338
+ "loss": 0.8806,
339
+ "step": 460
340
+ },
341
+ {
342
+ "epoch": 1.1533742331288344,
343
+ "grad_norm": 1.1624044179916382,
344
+ "learning_rate": 0.0002,
345
+ "loss": 0.9217,
346
+ "step": 470
347
+ },
348
+ {
349
+ "epoch": 1.177914110429448,
350
+ "grad_norm": 2.1017873287200928,
351
+ "learning_rate": 0.0002,
352
+ "loss": 0.9056,
353
+ "step": 480
354
+ },
355
+ {
356
+ "epoch": 1.2024539877300613,
357
+ "grad_norm": 0.7352198958396912,
358
+ "learning_rate": 0.0002,
359
+ "loss": 0.9945,
360
+ "step": 490
361
+ },
362
+ {
363
+ "epoch": 1.2269938650306749,
364
+ "grad_norm": 0.9491982460021973,
365
+ "learning_rate": 0.0002,
366
+ "loss": 0.9224,
367
+ "step": 500
368
+ },
369
+ {
370
+ "epoch": 1.2515337423312882,
371
+ "grad_norm": 1.0124034881591797,
372
+ "learning_rate": 0.0002,
373
+ "loss": 0.9079,
374
+ "step": 510
375
+ },
376
+ {
377
+ "epoch": 1.2760736196319018,
378
+ "grad_norm": 0.7620294094085693,
379
+ "learning_rate": 0.0002,
380
+ "loss": 0.9596,
381
+ "step": 520
382
+ },
383
+ {
384
+ "epoch": 1.3006134969325154,
385
+ "grad_norm": 0.7207106351852417,
386
+ "learning_rate": 0.0002,
387
+ "loss": 0.9095,
388
+ "step": 530
389
+ },
390
+ {
391
+ "epoch": 1.3251533742331287,
392
+ "grad_norm": 0.586559534072876,
393
+ "learning_rate": 0.0002,
394
+ "loss": 0.8588,
395
+ "step": 540
396
+ },
397
+ {
398
+ "epoch": 1.3496932515337423,
399
+ "grad_norm": 0.7113742828369141,
400
+ "learning_rate": 0.0002,
401
+ "loss": 0.9146,
402
+ "step": 550
403
+ },
404
+ {
405
+ "epoch": 1.3742331288343559,
406
+ "grad_norm": 0.9574087262153625,
407
+ "learning_rate": 0.0002,
408
+ "loss": 0.9504,
409
+ "step": 560
410
+ },
411
+ {
412
+ "epoch": 1.3987730061349692,
413
+ "grad_norm": 0.71551913022995,
414
+ "learning_rate": 0.0002,
415
+ "loss": 0.9124,
416
+ "step": 570
417
+ },
418
+ {
419
+ "epoch": 1.4233128834355828,
420
+ "grad_norm": 1.0000630617141724,
421
+ "learning_rate": 0.0002,
422
+ "loss": 0.8944,
423
+ "step": 580
424
+ },
425
+ {
426
+ "epoch": 1.4478527607361964,
427
+ "grad_norm": 0.6878040432929993,
428
+ "learning_rate": 0.0002,
429
+ "loss": 0.8707,
430
+ "step": 590
431
+ },
432
+ {
433
+ "epoch": 1.4723926380368098,
434
+ "grad_norm": 0.770113468170166,
435
+ "learning_rate": 0.0002,
436
+ "loss": 0.953,
437
+ "step": 600
438
+ },
439
+ {
440
+ "epoch": 1.4969325153374233,
441
+ "grad_norm": 0.7941587567329407,
442
+ "learning_rate": 0.0002,
443
+ "loss": 0.9293,
444
+ "step": 610
445
+ },
446
+ {
447
+ "epoch": 1.521472392638037,
448
+ "grad_norm": 0.971196711063385,
449
+ "learning_rate": 0.0002,
450
+ "loss": 0.9177,
451
+ "step": 620
452
+ },
453
+ {
454
+ "epoch": 1.5460122699386503,
455
+ "grad_norm": 0.6944937109947205,
456
+ "learning_rate": 0.0002,
457
+ "loss": 0.8605,
458
+ "step": 630
459
+ },
460
+ {
461
+ "epoch": 1.5705521472392638,
462
+ "grad_norm": 1.104216456413269,
463
+ "learning_rate": 0.0002,
464
+ "loss": 0.8922,
465
+ "step": 640
466
+ },
467
+ {
468
+ "epoch": 1.5950920245398774,
469
+ "grad_norm": 0.786145806312561,
470
+ "learning_rate": 0.0002,
471
+ "loss": 0.9264,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 1.6196319018404908,
476
+ "grad_norm": 0.8748652935028076,
477
+ "learning_rate": 0.0002,
478
+ "loss": 0.8515,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 1.6441717791411041,
483
+ "grad_norm": 0.6184355020523071,
484
+ "learning_rate": 0.0002,
485
+ "loss": 0.8818,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 1.668711656441718,
490
+ "grad_norm": 1.0236579179763794,
491
+ "learning_rate": 0.0002,
492
+ "loss": 0.9484,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 1.6932515337423313,
497
+ "grad_norm": 0.9815388917922974,
498
+ "learning_rate": 0.0002,
499
+ "loss": 0.9078,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 1.7177914110429446,
504
+ "grad_norm": 0.6398373246192932,
505
+ "learning_rate": 0.0002,
506
+ "loss": 0.9036,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 1.7423312883435584,
511
+ "grad_norm": 0.6157359480857849,
512
+ "learning_rate": 0.0002,
513
+ "loss": 0.8702,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 1.7668711656441718,
518
+ "grad_norm": 0.7352675795555115,
519
+ "learning_rate": 0.0002,
520
+ "loss": 0.8712,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 1.7914110429447851,
525
+ "grad_norm": 0.6840626001358032,
526
+ "learning_rate": 0.0002,
527
+ "loss": 0.8737,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 1.8159509202453987,
532
+ "grad_norm": 0.8363635540008545,
533
+ "learning_rate": 0.0002,
534
+ "loss": 0.9113,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 1.8404907975460123,
539
+ "grad_norm": 1.7173194885253906,
540
+ "learning_rate": 0.0002,
541
+ "loss": 0.973,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 1.8650306748466257,
546
+ "grad_norm": 0.8277300000190735,
547
+ "learning_rate": 0.0002,
548
+ "loss": 0.9438,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 1.8895705521472392,
553
+ "grad_norm": 0.6714297533035278,
554
+ "learning_rate": 0.0002,
555
+ "loss": 0.919,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 1.9141104294478528,
560
+ "grad_norm": 0.7646296620368958,
561
+ "learning_rate": 0.0002,
562
+ "loss": 0.889,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 1.9386503067484662,
567
+ "grad_norm": 0.9777507781982422,
568
+ "learning_rate": 0.0002,
569
+ "loss": 0.8433,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 1.9631901840490797,
574
+ "grad_norm": 0.7732912302017212,
575
+ "learning_rate": 0.0002,
576
+ "loss": 0.9255,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 1.9877300613496933,
581
+ "grad_norm": 0.7485368847846985,
582
+ "learning_rate": 0.0002,
583
+ "loss": 0.9556,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 2.0,
588
+ "eval_loss": 1.335689663887024,
589
+ "eval_runtime": 80.1256,
590
+ "eval_samples_per_second": 5.691,
591
+ "eval_steps_per_second": 0.711,
592
+ "step": 815
593
+ },
594
+ {
595
+ "epoch": 2.0122699386503067,
596
+ "grad_norm": 0.7061107158660889,
597
+ "learning_rate": 0.0002,
598
+ "loss": 0.9555,
599
+ "step": 820
600
+ },
601
+ {
602
+ "epoch": 2.03680981595092,
603
+ "grad_norm": 1.101184368133545,
604
+ "learning_rate": 0.0002,
605
+ "loss": 0.7363,
606
+ "step": 830
607
+ },
608
+ {
609
+ "epoch": 2.061349693251534,
610
+ "grad_norm": 0.6724491119384766,
611
+ "learning_rate": 0.0002,
612
+ "loss": 0.7269,
613
+ "step": 840
614
+ },
615
+ {
616
+ "epoch": 2.085889570552147,
617
+ "grad_norm": 0.8159838318824768,
618
+ "learning_rate": 0.0002,
619
+ "loss": 0.6836,
620
+ "step": 850
621
+ },
622
+ {
623
+ "epoch": 2.1104294478527605,
624
+ "grad_norm": 0.9286916255950928,
625
+ "learning_rate": 0.0002,
626
+ "loss": 0.7237,
627
+ "step": 860
628
+ },
629
+ {
630
+ "epoch": 2.1349693251533743,
631
+ "grad_norm": 0.9122375845909119,
632
+ "learning_rate": 0.0002,
633
+ "loss": 0.7258,
634
+ "step": 870
635
+ },
636
+ {
637
+ "epoch": 2.1595092024539877,
638
+ "grad_norm": 0.9655355215072632,
639
+ "learning_rate": 0.0002,
640
+ "loss": 0.7164,
641
+ "step": 880
642
+ },
643
+ {
644
+ "epoch": 2.184049079754601,
645
+ "grad_norm": 1.1539593935012817,
646
+ "learning_rate": 0.0002,
647
+ "loss": 0.741,
648
+ "step": 890
649
+ },
650
+ {
651
+ "epoch": 2.208588957055215,
652
+ "grad_norm": 1.0535199642181396,
653
+ "learning_rate": 0.0002,
654
+ "loss": 0.7368,
655
+ "step": 900
656
+ },
657
+ {
658
+ "epoch": 2.233128834355828,
659
+ "grad_norm": 1.2841371297836304,
660
+ "learning_rate": 0.0002,
661
+ "loss": 0.6615,
662
+ "step": 910
663
+ },
664
+ {
665
+ "epoch": 2.2576687116564416,
666
+ "grad_norm": 0.8669798970222473,
667
+ "learning_rate": 0.0002,
668
+ "loss": 0.767,
669
+ "step": 920
670
+ },
671
+ {
672
+ "epoch": 2.2822085889570554,
673
+ "grad_norm": 0.8732201457023621,
674
+ "learning_rate": 0.0002,
675
+ "loss": 0.7303,
676
+ "step": 930
677
+ },
678
+ {
679
+ "epoch": 2.3067484662576687,
680
+ "grad_norm": 0.9955021739006042,
681
+ "learning_rate": 0.0002,
682
+ "loss": 0.7205,
683
+ "step": 940
684
+ },
685
+ {
686
+ "epoch": 2.331288343558282,
687
+ "grad_norm": 1.0610932111740112,
688
+ "learning_rate": 0.0002,
689
+ "loss": 0.6781,
690
+ "step": 950
691
+ },
692
+ {
693
+ "epoch": 2.355828220858896,
694
+ "grad_norm": 0.9506151080131531,
695
+ "learning_rate": 0.0002,
696
+ "loss": 0.729,
697
+ "step": 960
698
+ },
699
+ {
700
+ "epoch": 2.3803680981595092,
701
+ "grad_norm": 1.259052038192749,
702
+ "learning_rate": 0.0002,
703
+ "loss": 0.6784,
704
+ "step": 970
705
+ },
706
+ {
707
+ "epoch": 2.4049079754601226,
708
+ "grad_norm": 1.1822247505187988,
709
+ "learning_rate": 0.0002,
710
+ "loss": 0.6668,
711
+ "step": 980
712
+ },
713
+ {
714
+ "epoch": 2.4294478527607364,
715
+ "grad_norm": 0.6920015811920166,
716
+ "learning_rate": 0.0002,
717
+ "loss": 0.6623,
718
+ "step": 990
719
+ },
720
+ {
721
+ "epoch": 2.4539877300613497,
722
+ "grad_norm": 0.7560105323791504,
723
+ "learning_rate": 0.0002,
724
+ "loss": 0.6802,
725
+ "step": 1000
726
+ },
727
+ {
728
+ "epoch": 2.478527607361963,
729
+ "grad_norm": 0.8672356009483337,
730
+ "learning_rate": 0.0002,
731
+ "loss": 0.7685,
732
+ "step": 1010
733
+ },
734
+ {
735
+ "epoch": 2.5030674846625764,
736
+ "grad_norm": 1.1074872016906738,
737
+ "learning_rate": 0.0002,
738
+ "loss": 0.7058,
739
+ "step": 1020
740
+ },
741
+ {
742
+ "epoch": 2.5276073619631902,
743
+ "grad_norm": 1.1430137157440186,
744
+ "learning_rate": 0.0002,
745
+ "loss": 0.7746,
746
+ "step": 1030
747
+ },
748
+ {
749
+ "epoch": 2.5521472392638036,
750
+ "grad_norm": 1.6926707029342651,
751
+ "learning_rate": 0.0002,
752
+ "loss": 0.7444,
753
+ "step": 1040
754
+ },
755
+ {
756
+ "epoch": 2.5766871165644174,
757
+ "grad_norm": 1.0170048475265503,
758
+ "learning_rate": 0.0002,
759
+ "loss": 0.7131,
760
+ "step": 1050
761
+ },
762
+ {
763
+ "epoch": 2.6012269938650308,
764
+ "grad_norm": 1.1462562084197998,
765
+ "learning_rate": 0.0002,
766
+ "loss": 0.7275,
767
+ "step": 1060
768
+ },
769
+ {
770
+ "epoch": 2.625766871165644,
771
+ "grad_norm": 1.127669334411621,
772
+ "learning_rate": 0.0002,
773
+ "loss": 0.6736,
774
+ "step": 1070
775
+ },
776
+ {
777
+ "epoch": 2.6503067484662575,
778
+ "grad_norm": 0.9649022221565247,
779
+ "learning_rate": 0.0002,
780
+ "loss": 0.7218,
781
+ "step": 1080
782
+ },
783
+ {
784
+ "epoch": 2.6748466257668713,
785
+ "grad_norm": 0.9426548480987549,
786
+ "learning_rate": 0.0002,
787
+ "loss": 0.7651,
788
+ "step": 1090
789
+ },
790
+ {
791
+ "epoch": 2.6993865030674846,
792
+ "grad_norm": 1.1191051006317139,
793
+ "learning_rate": 0.0002,
794
+ "loss": 0.7829,
795
+ "step": 1100
796
+ },
797
+ {
798
+ "epoch": 2.7239263803680984,
799
+ "grad_norm": 2.229809284210205,
800
+ "learning_rate": 0.0002,
801
+ "loss": 0.7238,
802
+ "step": 1110
803
+ },
804
+ {
805
+ "epoch": 2.7484662576687118,
806
+ "grad_norm": 1.2478930950164795,
807
+ "learning_rate": 0.0002,
808
+ "loss": 0.6828,
809
+ "step": 1120
810
+ },
811
+ {
812
+ "epoch": 2.773006134969325,
813
+ "grad_norm": 0.9907709360122681,
814
+ "learning_rate": 0.0002,
815
+ "loss": 0.7194,
816
+ "step": 1130
817
+ },
818
+ {
819
+ "epoch": 2.7975460122699385,
820
+ "grad_norm": 1.1670643091201782,
821
+ "learning_rate": 0.0002,
822
+ "loss": 0.6531,
823
+ "step": 1140
824
+ },
825
+ {
826
+ "epoch": 2.8220858895705523,
827
+ "grad_norm": 1.1675913333892822,
828
+ "learning_rate": 0.0002,
829
+ "loss": 0.7076,
830
+ "step": 1150
831
+ },
832
+ {
833
+ "epoch": 2.8466257668711656,
834
+ "grad_norm": 0.9909353256225586,
835
+ "learning_rate": 0.0002,
836
+ "loss": 0.6915,
837
+ "step": 1160
838
+ },
839
+ {
840
+ "epoch": 2.871165644171779,
841
+ "grad_norm": 0.8759778141975403,
842
+ "learning_rate": 0.0002,
843
+ "loss": 0.7294,
844
+ "step": 1170
845
+ },
846
+ {
847
+ "epoch": 2.895705521472393,
848
+ "grad_norm": 0.8080666661262512,
849
+ "learning_rate": 0.0002,
850
+ "loss": 0.6451,
851
+ "step": 1180
852
+ },
853
+ {
854
+ "epoch": 2.920245398773006,
855
+ "grad_norm": 0.9743189811706543,
856
+ "learning_rate": 0.0002,
857
+ "loss": 0.7331,
858
+ "step": 1190
859
+ },
860
+ {
861
+ "epoch": 2.9447852760736195,
862
+ "grad_norm": 0.8573821187019348,
863
+ "learning_rate": 0.0002,
864
+ "loss": 0.7471,
865
+ "step": 1200
866
+ },
867
+ {
868
+ "epoch": 2.969325153374233,
869
+ "grad_norm": 1.0196788311004639,
870
+ "learning_rate": 0.0002,
871
+ "loss": 0.7396,
872
+ "step": 1210
873
+ },
874
+ {
875
+ "epoch": 2.9938650306748467,
876
+ "grad_norm": 0.8840402960777283,
877
+ "learning_rate": 0.0002,
878
+ "loss": 0.7288,
879
+ "step": 1220
880
+ },
881
+ {
882
+ "epoch": 2.9987730061349693,
883
+ "eval_loss": 1.4348119497299194,
884
+ "eval_runtime": 80.7583,
885
+ "eval_samples_per_second": 5.646,
886
+ "eval_steps_per_second": 0.706,
887
+ "step": 1222
888
+ },
889
+ {
890
+ "epoch": 3.01840490797546,
891
+ "grad_norm": 1.2376960515975952,
892
+ "learning_rate": 0.0002,
893
+ "loss": 0.5671,
894
+ "step": 1230
895
+ },
896
+ {
897
+ "epoch": 3.042944785276074,
898
+ "grad_norm": 0.9861388206481934,
899
+ "learning_rate": 0.0002,
900
+ "loss": 0.5176,
901
+ "step": 1240
902
+ },
903
+ {
904
+ "epoch": 3.067484662576687,
905
+ "grad_norm": 1.2193198204040527,
906
+ "learning_rate": 0.0002,
907
+ "loss": 0.5623,
908
+ "step": 1250
909
+ },
910
+ {
911
+ "epoch": 3.0920245398773005,
912
+ "grad_norm": 1.1927645206451416,
913
+ "learning_rate": 0.0002,
914
+ "loss": 0.5727,
915
+ "step": 1260
916
+ },
917
+ {
918
+ "epoch": 3.116564417177914,
919
+ "grad_norm": 1.0420559644699097,
920
+ "learning_rate": 0.0002,
921
+ "loss": 0.5296,
922
+ "step": 1270
923
+ },
924
+ {
925
+ "epoch": 3.1411042944785277,
926
+ "grad_norm": 1.014664649963379,
927
+ "learning_rate": 0.0002,
928
+ "loss": 0.5322,
929
+ "step": 1280
930
+ },
931
+ {
932
+ "epoch": 3.165644171779141,
933
+ "grad_norm": 1.3103076219558716,
934
+ "learning_rate": 0.0002,
935
+ "loss": 0.5519,
936
+ "step": 1290
937
+ },
938
+ {
939
+ "epoch": 3.190184049079755,
940
+ "grad_norm": 1.2735213041305542,
941
+ "learning_rate": 0.0002,
942
+ "loss": 0.5133,
943
+ "step": 1300
944
+ },
945
+ {
946
+ "epoch": 3.214723926380368,
947
+ "grad_norm": 1.147608995437622,
948
+ "learning_rate": 0.0002,
949
+ "loss": 0.514,
950
+ "step": 1310
951
+ },
952
+ {
953
+ "epoch": 3.2392638036809815,
954
+ "grad_norm": 0.922386884689331,
955
+ "learning_rate": 0.0002,
956
+ "loss": 0.58,
957
+ "step": 1320
958
+ },
959
+ {
960
+ "epoch": 3.263803680981595,
961
+ "grad_norm": 1.1271566152572632,
962
+ "learning_rate": 0.0002,
963
+ "loss": 0.5425,
964
+ "step": 1330
965
+ },
966
+ {
967
+ "epoch": 3.2883435582822087,
968
+ "grad_norm": 1.2994354963302612,
969
+ "learning_rate": 0.0002,
970
+ "loss": 0.519,
971
+ "step": 1340
972
+ },
973
+ {
974
+ "epoch": 3.312883435582822,
975
+ "grad_norm": 1.0001686811447144,
976
+ "learning_rate": 0.0002,
977
+ "loss": 0.5521,
978
+ "step": 1350
979
+ },
980
+ {
981
+ "epoch": 3.3374233128834354,
982
+ "grad_norm": 1.6737695932388306,
983
+ "learning_rate": 0.0002,
984
+ "loss": 0.564,
985
+ "step": 1360
986
+ },
987
+ {
988
+ "epoch": 3.361963190184049,
989
+ "grad_norm": 1.1842162609100342,
990
+ "learning_rate": 0.0002,
991
+ "loss": 0.5529,
992
+ "step": 1370
993
+ },
994
+ {
995
+ "epoch": 3.3865030674846626,
996
+ "grad_norm": 1.1873128414154053,
997
+ "learning_rate": 0.0002,
998
+ "loss": 0.569,
999
+ "step": 1380
1000
+ },
1001
+ {
1002
+ "epoch": 3.411042944785276,
1003
+ "grad_norm": 1.4505162239074707,
1004
+ "learning_rate": 0.0002,
1005
+ "loss": 0.5199,
1006
+ "step": 1390
1007
+ },
1008
+ {
1009
+ "epoch": 3.4355828220858897,
1010
+ "grad_norm": 1.254621982574463,
1011
+ "learning_rate": 0.0002,
1012
+ "loss": 0.5536,
1013
+ "step": 1400
1014
+ },
1015
+ {
1016
+ "epoch": 3.460122699386503,
1017
+ "grad_norm": 1.5493544340133667,
1018
+ "learning_rate": 0.0002,
1019
+ "loss": 0.5547,
1020
+ "step": 1410
1021
+ },
1022
+ {
1023
+ "epoch": 3.4846625766871164,
1024
+ "grad_norm": 1.4435759782791138,
1025
+ "learning_rate": 0.0002,
1026
+ "loss": 0.542,
1027
+ "step": 1420
1028
+ },
1029
+ {
1030
+ "epoch": 3.5092024539877302,
1031
+ "grad_norm": 1.5885447263717651,
1032
+ "learning_rate": 0.0002,
1033
+ "loss": 0.6124,
1034
+ "step": 1430
1035
+ },
1036
+ {
1037
+ "epoch": 3.5337423312883436,
1038
+ "grad_norm": 1.3357222080230713,
1039
+ "learning_rate": 0.0002,
1040
+ "loss": 0.5737,
1041
+ "step": 1440
1042
+ },
1043
+ {
1044
+ "epoch": 3.558282208588957,
1045
+ "grad_norm": 1.8510551452636719,
1046
+ "learning_rate": 0.0002,
1047
+ "loss": 0.5903,
1048
+ "step": 1450
1049
+ },
1050
+ {
1051
+ "epoch": 3.5828220858895703,
1052
+ "grad_norm": 1.1081656217575073,
1053
+ "learning_rate": 0.0002,
1054
+ "loss": 0.5214,
1055
+ "step": 1460
1056
+ },
1057
+ {
1058
+ "epoch": 3.607361963190184,
1059
+ "grad_norm": 1.2849210500717163,
1060
+ "learning_rate": 0.0002,
1061
+ "loss": 0.5351,
1062
+ "step": 1470
1063
+ },
1064
+ {
1065
+ "epoch": 3.6319018404907975,
1066
+ "grad_norm": 1.2472909688949585,
1067
+ "learning_rate": 0.0002,
1068
+ "loss": 0.5364,
1069
+ "step": 1480
1070
+ },
1071
+ {
1072
+ "epoch": 3.6564417177914113,
1073
+ "grad_norm": 1.1466434001922607,
1074
+ "learning_rate": 0.0002,
1075
+ "loss": 0.5371,
1076
+ "step": 1490
1077
+ },
1078
+ {
1079
+ "epoch": 3.6809815950920246,
1080
+ "grad_norm": 1.325461506843567,
1081
+ "learning_rate": 0.0002,
1082
+ "loss": 0.565,
1083
+ "step": 1500
1084
+ },
1085
+ {
1086
+ "epoch": 3.705521472392638,
1087
+ "grad_norm": 1.4214563369750977,
1088
+ "learning_rate": 0.0002,
1089
+ "loss": 0.6154,
1090
+ "step": 1510
1091
+ },
1092
+ {
1093
+ "epoch": 3.7300613496932513,
1094
+ "grad_norm": 1.1496703624725342,
1095
+ "learning_rate": 0.0002,
1096
+ "loss": 0.5726,
1097
+ "step": 1520
1098
+ },
1099
+ {
1100
+ "epoch": 3.754601226993865,
1101
+ "grad_norm": 1.205261468887329,
1102
+ "learning_rate": 0.0002,
1103
+ "loss": 0.5687,
1104
+ "step": 1530
1105
+ },
1106
+ {
1107
+ "epoch": 3.7791411042944785,
1108
+ "grad_norm": 1.6516913175582886,
1109
+ "learning_rate": 0.0002,
1110
+ "loss": 0.5593,
1111
+ "step": 1540
1112
+ },
1113
+ {
1114
+ "epoch": 3.8036809815950923,
1115
+ "grad_norm": 1.7035053968429565,
1116
+ "learning_rate": 0.0002,
1117
+ "loss": 0.5767,
1118
+ "step": 1550
1119
+ },
1120
+ {
1121
+ "epoch": 3.8282208588957056,
1122
+ "grad_norm": 1.463699460029602,
1123
+ "learning_rate": 0.0002,
1124
+ "loss": 0.5948,
1125
+ "step": 1560
1126
+ },
1127
+ {
1128
+ "epoch": 3.852760736196319,
1129
+ "grad_norm": 1.7970601320266724,
1130
+ "learning_rate": 0.0002,
1131
+ "loss": 0.5326,
1132
+ "step": 1570
1133
+ },
1134
+ {
1135
+ "epoch": 3.8773006134969323,
1136
+ "grad_norm": 1.2967402935028076,
1137
+ "learning_rate": 0.0002,
1138
+ "loss": 0.5919,
1139
+ "step": 1580
1140
+ },
1141
+ {
1142
+ "epoch": 3.901840490797546,
1143
+ "grad_norm": 1.0639182329177856,
1144
+ "learning_rate": 0.0002,
1145
+ "loss": 0.5502,
1146
+ "step": 1590
1147
+ },
1148
+ {
1149
+ "epoch": 3.9263803680981595,
1150
+ "grad_norm": 1.4388368129730225,
1151
+ "learning_rate": 0.0002,
1152
+ "loss": 0.5281,
1153
+ "step": 1600
1154
+ },
1155
+ {
1156
+ "epoch": 3.950920245398773,
1157
+ "grad_norm": 1.2425099611282349,
1158
+ "learning_rate": 0.0002,
1159
+ "loss": 0.6305,
1160
+ "step": 1610
1161
+ },
1162
+ {
1163
+ "epoch": 3.9754601226993866,
1164
+ "grad_norm": 1.3989970684051514,
1165
+ "learning_rate": 0.0002,
1166
+ "loss": 0.5548,
1167
+ "step": 1620
1168
+ },
1169
+ {
1170
+ "epoch": 4.0,
1171
+ "grad_norm": 0.9850553274154663,
1172
+ "learning_rate": 0.0002,
1173
+ "loss": 0.5661,
1174
+ "step": 1630
1175
+ },
1176
+ {
1177
+ "epoch": 4.0,
1178
+ "eval_loss": 1.5340977907180786,
1179
+ "eval_runtime": 79.7233,
1180
+ "eval_samples_per_second": 5.72,
1181
+ "eval_steps_per_second": 0.715,
1182
+ "step": 1630
1183
+ }
1184
+ ],
1185
+ "logging_steps": 10,
1186
+ "max_steps": 3256,
1187
+ "num_input_tokens_seen": 0,
1188
+ "num_train_epochs": 8,
1189
+ "save_steps": 200,
1190
+ "stateful_callbacks": {
1191
+ "TrainerControl": {
1192
+ "args": {
1193
+ "should_epoch_stop": false,
1194
+ "should_evaluate": false,
1195
+ "should_log": false,
1196
+ "should_save": true,
1197
+ "should_training_stop": false
1198
+ },
1199
+ "attributes": {}
1200
+ }
1201
+ },
1202
+ "total_flos": 7.1515804532736e+16,
1203
+ "train_batch_size": 1,
1204
+ "trial_name": null,
1205
+ "trial_params": null
1206
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-1630/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0e586c733c860e8234b028525d14453b4a2a52ad2c815f3775cbbbef35878fb
3
+ size 5624
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84fb720fe1b2949bab1c77875553a8b4113c41aadf21a58eba32891e4c934e7e
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fca324ccfd1000d178f88ec3c67a9d8fca7a508effb3a8e59b728e9dbbe0751
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6eae64b0137634cf7c08ef754094f7efde2030ee6f7b894972e6e9d8c43d734b
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:587a5e5a97615ccb59addd37c4b5047258f7e6fb8e0a0f3019f257ace6f89800
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/trainer_state.json ADDED
@@ -0,0 +1,1494 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.3188884258270264,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-407",
4
+ "epoch": 4.99877300613497,
5
+ "eval_steps": 10,
6
+ "global_step": 2037,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.024539877300613498,
13
+ "grad_norm": 1.0104172229766846,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7717,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.049079754601226995,
20
+ "grad_norm": 0.8800041079521179,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.6041,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.0736196319018405,
27
+ "grad_norm": 1.337620496749878,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.4421,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.09815950920245399,
34
+ "grad_norm": 0.6757020354270935,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.5542,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.12269938650306748,
41
+ "grad_norm": 42.27006149291992,
42
+ "learning_rate": 0.0002,
43
+ "loss": 1.4365,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.147239263803681,
48
+ "grad_norm": 0.8157640099525452,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.1226,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.17177914110429449,
55
+ "grad_norm": 1.0711787939071655,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.1886,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.19631901840490798,
62
+ "grad_norm": 0.5880025029182434,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.1239,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.22085889570552147,
69
+ "grad_norm": 0.827833354473114,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.0696,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.24539877300613497,
76
+ "grad_norm": 0.579414963722229,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.0468,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.26993865030674846,
83
+ "grad_norm": 0.6620142459869385,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.0914,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.294478527607362,
90
+ "grad_norm": 0.5601297616958618,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.0873,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.31901840490797545,
97
+ "grad_norm": 0.5814566612243652,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.1652,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.34355828220858897,
104
+ "grad_norm": 0.6171417236328125,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.0915,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.36809815950920244,
111
+ "grad_norm": 0.6176294088363647,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.1572,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.39263803680981596,
118
+ "grad_norm": 0.8398241400718689,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.1135,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.4171779141104294,
125
+ "grad_norm": 0.5397658944129944,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.1235,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.44171779141104295,
132
+ "grad_norm": 0.7487576603889465,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.1438,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.4662576687116564,
139
+ "grad_norm": 0.4767085015773773,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.1178,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.49079754601226994,
146
+ "grad_norm": 0.6086363196372986,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.1222,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.5153374233128835,
153
+ "grad_norm": 0.6940106749534607,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.0346,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.5398773006134969,
160
+ "grad_norm": 0.775067150592804,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.1162,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.5644171779141104,
167
+ "grad_norm": 0.7273200154304504,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.1335,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.588957055214724,
174
+ "grad_norm": 0.5168078541755676,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.0606,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.6134969325153374,
181
+ "grad_norm": 0.6487783193588257,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.0792,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.6380368098159509,
188
+ "grad_norm": 1.0914227962493896,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.1642,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.6625766871165644,
195
+ "grad_norm": 1.0182702541351318,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.065,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.6871165644171779,
202
+ "grad_norm": 0.7045943140983582,
203
+ "learning_rate": 0.0002,
204
+ "loss": 0.9816,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.7116564417177914,
209
+ "grad_norm": 0.6228044033050537,
210
+ "learning_rate": 0.0002,
211
+ "loss": 0.9675,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.7361963190184049,
216
+ "grad_norm": 0.6161119341850281,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.076,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.7607361963190185,
223
+ "grad_norm": 0.8310935497283936,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.0597,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.7852760736196319,
230
+ "grad_norm": 0.6500546336174011,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.0817,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.8098159509202454,
237
+ "grad_norm": 0.9254736304283142,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.109,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.8343558282208589,
244
+ "grad_norm": 0.5892964005470276,
245
+ "learning_rate": 0.0002,
246
+ "loss": 0.9929,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.8588957055214724,
251
+ "grad_norm": 0.5500181913375854,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.0637,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.8834355828220859,
258
+ "grad_norm": 0.7814139127731323,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.0693,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.9079754601226994,
265
+ "grad_norm": 0.6288005113601685,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.059,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.9325153374233128,
272
+ "grad_norm": 0.5031183958053589,
273
+ "learning_rate": 0.0002,
274
+ "loss": 0.9904,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.9570552147239264,
279
+ "grad_norm": 0.8656964898109436,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.1183,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.9815950920245399,
286
+ "grad_norm": 0.6746202111244202,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.0296,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.9987730061349693,
293
+ "eval_loss": 1.3188884258270264,
294
+ "eval_runtime": 124.2158,
295
+ "eval_samples_per_second": 3.671,
296
+ "eval_steps_per_second": 0.459,
297
+ "step": 407
298
+ },
299
+ {
300
+ "epoch": 1.0061349693251533,
301
+ "grad_norm": 0.5244082808494568,
302
+ "learning_rate": 0.0002,
303
+ "loss": 0.9679,
304
+ "step": 410
305
+ },
306
+ {
307
+ "epoch": 1.030674846625767,
308
+ "grad_norm": 0.6792967319488525,
309
+ "learning_rate": 0.0002,
310
+ "loss": 0.97,
311
+ "step": 420
312
+ },
313
+ {
314
+ "epoch": 1.0552147239263803,
315
+ "grad_norm": 0.6114474534988403,
316
+ "learning_rate": 0.0002,
317
+ "loss": 0.8935,
318
+ "step": 430
319
+ },
320
+ {
321
+ "epoch": 1.0797546012269938,
322
+ "grad_norm": 0.6367565393447876,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.9469,
325
+ "step": 440
326
+ },
327
+ {
328
+ "epoch": 1.1042944785276074,
329
+ "grad_norm": 0.7007757425308228,
330
+ "learning_rate": 0.0002,
331
+ "loss": 0.9536,
332
+ "step": 450
333
+ },
334
+ {
335
+ "epoch": 1.1288343558282208,
336
+ "grad_norm": 0.9737136960029602,
337
+ "learning_rate": 0.0002,
338
+ "loss": 0.8806,
339
+ "step": 460
340
+ },
341
+ {
342
+ "epoch": 1.1533742331288344,
343
+ "grad_norm": 1.1624044179916382,
344
+ "learning_rate": 0.0002,
345
+ "loss": 0.9217,
346
+ "step": 470
347
+ },
348
+ {
349
+ "epoch": 1.177914110429448,
350
+ "grad_norm": 2.1017873287200928,
351
+ "learning_rate": 0.0002,
352
+ "loss": 0.9056,
353
+ "step": 480
354
+ },
355
+ {
356
+ "epoch": 1.2024539877300613,
357
+ "grad_norm": 0.7352198958396912,
358
+ "learning_rate": 0.0002,
359
+ "loss": 0.9945,
360
+ "step": 490
361
+ },
362
+ {
363
+ "epoch": 1.2269938650306749,
364
+ "grad_norm": 0.9491982460021973,
365
+ "learning_rate": 0.0002,
366
+ "loss": 0.9224,
367
+ "step": 500
368
+ },
369
+ {
370
+ "epoch": 1.2515337423312882,
371
+ "grad_norm": 1.0124034881591797,
372
+ "learning_rate": 0.0002,
373
+ "loss": 0.9079,
374
+ "step": 510
375
+ },
376
+ {
377
+ "epoch": 1.2760736196319018,
378
+ "grad_norm": 0.7620294094085693,
379
+ "learning_rate": 0.0002,
380
+ "loss": 0.9596,
381
+ "step": 520
382
+ },
383
+ {
384
+ "epoch": 1.3006134969325154,
385
+ "grad_norm": 0.7207106351852417,
386
+ "learning_rate": 0.0002,
387
+ "loss": 0.9095,
388
+ "step": 530
389
+ },
390
+ {
391
+ "epoch": 1.3251533742331287,
392
+ "grad_norm": 0.586559534072876,
393
+ "learning_rate": 0.0002,
394
+ "loss": 0.8588,
395
+ "step": 540
396
+ },
397
+ {
398
+ "epoch": 1.3496932515337423,
399
+ "grad_norm": 0.7113742828369141,
400
+ "learning_rate": 0.0002,
401
+ "loss": 0.9146,
402
+ "step": 550
403
+ },
404
+ {
405
+ "epoch": 1.3742331288343559,
406
+ "grad_norm": 0.9574087262153625,
407
+ "learning_rate": 0.0002,
408
+ "loss": 0.9504,
409
+ "step": 560
410
+ },
411
+ {
412
+ "epoch": 1.3987730061349692,
413
+ "grad_norm": 0.71551913022995,
414
+ "learning_rate": 0.0002,
415
+ "loss": 0.9124,
416
+ "step": 570
417
+ },
418
+ {
419
+ "epoch": 1.4233128834355828,
420
+ "grad_norm": 1.0000630617141724,
421
+ "learning_rate": 0.0002,
422
+ "loss": 0.8944,
423
+ "step": 580
424
+ },
425
+ {
426
+ "epoch": 1.4478527607361964,
427
+ "grad_norm": 0.6878040432929993,
428
+ "learning_rate": 0.0002,
429
+ "loss": 0.8707,
430
+ "step": 590
431
+ },
432
+ {
433
+ "epoch": 1.4723926380368098,
434
+ "grad_norm": 0.770113468170166,
435
+ "learning_rate": 0.0002,
436
+ "loss": 0.953,
437
+ "step": 600
438
+ },
439
+ {
440
+ "epoch": 1.4969325153374233,
441
+ "grad_norm": 0.7941587567329407,
442
+ "learning_rate": 0.0002,
443
+ "loss": 0.9293,
444
+ "step": 610
445
+ },
446
+ {
447
+ "epoch": 1.521472392638037,
448
+ "grad_norm": 0.971196711063385,
449
+ "learning_rate": 0.0002,
450
+ "loss": 0.9177,
451
+ "step": 620
452
+ },
453
+ {
454
+ "epoch": 1.5460122699386503,
455
+ "grad_norm": 0.6944937109947205,
456
+ "learning_rate": 0.0002,
457
+ "loss": 0.8605,
458
+ "step": 630
459
+ },
460
+ {
461
+ "epoch": 1.5705521472392638,
462
+ "grad_norm": 1.104216456413269,
463
+ "learning_rate": 0.0002,
464
+ "loss": 0.8922,
465
+ "step": 640
466
+ },
467
+ {
468
+ "epoch": 1.5950920245398774,
469
+ "grad_norm": 0.786145806312561,
470
+ "learning_rate": 0.0002,
471
+ "loss": 0.9264,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 1.6196319018404908,
476
+ "grad_norm": 0.8748652935028076,
477
+ "learning_rate": 0.0002,
478
+ "loss": 0.8515,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 1.6441717791411041,
483
+ "grad_norm": 0.6184355020523071,
484
+ "learning_rate": 0.0002,
485
+ "loss": 0.8818,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 1.668711656441718,
490
+ "grad_norm": 1.0236579179763794,
491
+ "learning_rate": 0.0002,
492
+ "loss": 0.9484,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 1.6932515337423313,
497
+ "grad_norm": 0.9815388917922974,
498
+ "learning_rate": 0.0002,
499
+ "loss": 0.9078,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 1.7177914110429446,
504
+ "grad_norm": 0.6398373246192932,
505
+ "learning_rate": 0.0002,
506
+ "loss": 0.9036,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 1.7423312883435584,
511
+ "grad_norm": 0.6157359480857849,
512
+ "learning_rate": 0.0002,
513
+ "loss": 0.8702,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 1.7668711656441718,
518
+ "grad_norm": 0.7352675795555115,
519
+ "learning_rate": 0.0002,
520
+ "loss": 0.8712,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 1.7914110429447851,
525
+ "grad_norm": 0.6840626001358032,
526
+ "learning_rate": 0.0002,
527
+ "loss": 0.8737,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 1.8159509202453987,
532
+ "grad_norm": 0.8363635540008545,
533
+ "learning_rate": 0.0002,
534
+ "loss": 0.9113,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 1.8404907975460123,
539
+ "grad_norm": 1.7173194885253906,
540
+ "learning_rate": 0.0002,
541
+ "loss": 0.973,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 1.8650306748466257,
546
+ "grad_norm": 0.8277300000190735,
547
+ "learning_rate": 0.0002,
548
+ "loss": 0.9438,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 1.8895705521472392,
553
+ "grad_norm": 0.6714297533035278,
554
+ "learning_rate": 0.0002,
555
+ "loss": 0.919,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 1.9141104294478528,
560
+ "grad_norm": 0.7646296620368958,
561
+ "learning_rate": 0.0002,
562
+ "loss": 0.889,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 1.9386503067484662,
567
+ "grad_norm": 0.9777507781982422,
568
+ "learning_rate": 0.0002,
569
+ "loss": 0.8433,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 1.9631901840490797,
574
+ "grad_norm": 0.7732912302017212,
575
+ "learning_rate": 0.0002,
576
+ "loss": 0.9255,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 1.9877300613496933,
581
+ "grad_norm": 0.7485368847846985,
582
+ "learning_rate": 0.0002,
583
+ "loss": 0.9556,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 2.0,
588
+ "eval_loss": 1.335689663887024,
589
+ "eval_runtime": 80.1256,
590
+ "eval_samples_per_second": 5.691,
591
+ "eval_steps_per_second": 0.711,
592
+ "step": 815
593
+ },
594
+ {
595
+ "epoch": 2.0122699386503067,
596
+ "grad_norm": 0.7061107158660889,
597
+ "learning_rate": 0.0002,
598
+ "loss": 0.9555,
599
+ "step": 820
600
+ },
601
+ {
602
+ "epoch": 2.03680981595092,
603
+ "grad_norm": 1.101184368133545,
604
+ "learning_rate": 0.0002,
605
+ "loss": 0.7363,
606
+ "step": 830
607
+ },
608
+ {
609
+ "epoch": 2.061349693251534,
610
+ "grad_norm": 0.6724491119384766,
611
+ "learning_rate": 0.0002,
612
+ "loss": 0.7269,
613
+ "step": 840
614
+ },
615
+ {
616
+ "epoch": 2.085889570552147,
617
+ "grad_norm": 0.8159838318824768,
618
+ "learning_rate": 0.0002,
619
+ "loss": 0.6836,
620
+ "step": 850
621
+ },
622
+ {
623
+ "epoch": 2.1104294478527605,
624
+ "grad_norm": 0.9286916255950928,
625
+ "learning_rate": 0.0002,
626
+ "loss": 0.7237,
627
+ "step": 860
628
+ },
629
+ {
630
+ "epoch": 2.1349693251533743,
631
+ "grad_norm": 0.9122375845909119,
632
+ "learning_rate": 0.0002,
633
+ "loss": 0.7258,
634
+ "step": 870
635
+ },
636
+ {
637
+ "epoch": 2.1595092024539877,
638
+ "grad_norm": 0.9655355215072632,
639
+ "learning_rate": 0.0002,
640
+ "loss": 0.7164,
641
+ "step": 880
642
+ },
643
+ {
644
+ "epoch": 2.184049079754601,
645
+ "grad_norm": 1.1539593935012817,
646
+ "learning_rate": 0.0002,
647
+ "loss": 0.741,
648
+ "step": 890
649
+ },
650
+ {
651
+ "epoch": 2.208588957055215,
652
+ "grad_norm": 1.0535199642181396,
653
+ "learning_rate": 0.0002,
654
+ "loss": 0.7368,
655
+ "step": 900
656
+ },
657
+ {
658
+ "epoch": 2.233128834355828,
659
+ "grad_norm": 1.2841371297836304,
660
+ "learning_rate": 0.0002,
661
+ "loss": 0.6615,
662
+ "step": 910
663
+ },
664
+ {
665
+ "epoch": 2.2576687116564416,
666
+ "grad_norm": 0.8669798970222473,
667
+ "learning_rate": 0.0002,
668
+ "loss": 0.767,
669
+ "step": 920
670
+ },
671
+ {
672
+ "epoch": 2.2822085889570554,
673
+ "grad_norm": 0.8732201457023621,
674
+ "learning_rate": 0.0002,
675
+ "loss": 0.7303,
676
+ "step": 930
677
+ },
678
+ {
679
+ "epoch": 2.3067484662576687,
680
+ "grad_norm": 0.9955021739006042,
681
+ "learning_rate": 0.0002,
682
+ "loss": 0.7205,
683
+ "step": 940
684
+ },
685
+ {
686
+ "epoch": 2.331288343558282,
687
+ "grad_norm": 1.0610932111740112,
688
+ "learning_rate": 0.0002,
689
+ "loss": 0.6781,
690
+ "step": 950
691
+ },
692
+ {
693
+ "epoch": 2.355828220858896,
694
+ "grad_norm": 0.9506151080131531,
695
+ "learning_rate": 0.0002,
696
+ "loss": 0.729,
697
+ "step": 960
698
+ },
699
+ {
700
+ "epoch": 2.3803680981595092,
701
+ "grad_norm": 1.259052038192749,
702
+ "learning_rate": 0.0002,
703
+ "loss": 0.6784,
704
+ "step": 970
705
+ },
706
+ {
707
+ "epoch": 2.4049079754601226,
708
+ "grad_norm": 1.1822247505187988,
709
+ "learning_rate": 0.0002,
710
+ "loss": 0.6668,
711
+ "step": 980
712
+ },
713
+ {
714
+ "epoch": 2.4294478527607364,
715
+ "grad_norm": 0.6920015811920166,
716
+ "learning_rate": 0.0002,
717
+ "loss": 0.6623,
718
+ "step": 990
719
+ },
720
+ {
721
+ "epoch": 2.4539877300613497,
722
+ "grad_norm": 0.7560105323791504,
723
+ "learning_rate": 0.0002,
724
+ "loss": 0.6802,
725
+ "step": 1000
726
+ },
727
+ {
728
+ "epoch": 2.478527607361963,
729
+ "grad_norm": 0.8672356009483337,
730
+ "learning_rate": 0.0002,
731
+ "loss": 0.7685,
732
+ "step": 1010
733
+ },
734
+ {
735
+ "epoch": 2.5030674846625764,
736
+ "grad_norm": 1.1074872016906738,
737
+ "learning_rate": 0.0002,
738
+ "loss": 0.7058,
739
+ "step": 1020
740
+ },
741
+ {
742
+ "epoch": 2.5276073619631902,
743
+ "grad_norm": 1.1430137157440186,
744
+ "learning_rate": 0.0002,
745
+ "loss": 0.7746,
746
+ "step": 1030
747
+ },
748
+ {
749
+ "epoch": 2.5521472392638036,
750
+ "grad_norm": 1.6926707029342651,
751
+ "learning_rate": 0.0002,
752
+ "loss": 0.7444,
753
+ "step": 1040
754
+ },
755
+ {
756
+ "epoch": 2.5766871165644174,
757
+ "grad_norm": 1.0170048475265503,
758
+ "learning_rate": 0.0002,
759
+ "loss": 0.7131,
760
+ "step": 1050
761
+ },
762
+ {
763
+ "epoch": 2.6012269938650308,
764
+ "grad_norm": 1.1462562084197998,
765
+ "learning_rate": 0.0002,
766
+ "loss": 0.7275,
767
+ "step": 1060
768
+ },
769
+ {
770
+ "epoch": 2.625766871165644,
771
+ "grad_norm": 1.127669334411621,
772
+ "learning_rate": 0.0002,
773
+ "loss": 0.6736,
774
+ "step": 1070
775
+ },
776
+ {
777
+ "epoch": 2.6503067484662575,
778
+ "grad_norm": 0.9649022221565247,
779
+ "learning_rate": 0.0002,
780
+ "loss": 0.7218,
781
+ "step": 1080
782
+ },
783
+ {
784
+ "epoch": 2.6748466257668713,
785
+ "grad_norm": 0.9426548480987549,
786
+ "learning_rate": 0.0002,
787
+ "loss": 0.7651,
788
+ "step": 1090
789
+ },
790
+ {
791
+ "epoch": 2.6993865030674846,
792
+ "grad_norm": 1.1191051006317139,
793
+ "learning_rate": 0.0002,
794
+ "loss": 0.7829,
795
+ "step": 1100
796
+ },
797
+ {
798
+ "epoch": 2.7239263803680984,
799
+ "grad_norm": 2.229809284210205,
800
+ "learning_rate": 0.0002,
801
+ "loss": 0.7238,
802
+ "step": 1110
803
+ },
804
+ {
805
+ "epoch": 2.7484662576687118,
806
+ "grad_norm": 1.2478930950164795,
807
+ "learning_rate": 0.0002,
808
+ "loss": 0.6828,
809
+ "step": 1120
810
+ },
811
+ {
812
+ "epoch": 2.773006134969325,
813
+ "grad_norm": 0.9907709360122681,
814
+ "learning_rate": 0.0002,
815
+ "loss": 0.7194,
816
+ "step": 1130
817
+ },
818
+ {
819
+ "epoch": 2.7975460122699385,
820
+ "grad_norm": 1.1670643091201782,
821
+ "learning_rate": 0.0002,
822
+ "loss": 0.6531,
823
+ "step": 1140
824
+ },
825
+ {
826
+ "epoch": 2.8220858895705523,
827
+ "grad_norm": 1.1675913333892822,
828
+ "learning_rate": 0.0002,
829
+ "loss": 0.7076,
830
+ "step": 1150
831
+ },
832
+ {
833
+ "epoch": 2.8466257668711656,
834
+ "grad_norm": 0.9909353256225586,
835
+ "learning_rate": 0.0002,
836
+ "loss": 0.6915,
837
+ "step": 1160
838
+ },
839
+ {
840
+ "epoch": 2.871165644171779,
841
+ "grad_norm": 0.8759778141975403,
842
+ "learning_rate": 0.0002,
843
+ "loss": 0.7294,
844
+ "step": 1170
845
+ },
846
+ {
847
+ "epoch": 2.895705521472393,
848
+ "grad_norm": 0.8080666661262512,
849
+ "learning_rate": 0.0002,
850
+ "loss": 0.6451,
851
+ "step": 1180
852
+ },
853
+ {
854
+ "epoch": 2.920245398773006,
855
+ "grad_norm": 0.9743189811706543,
856
+ "learning_rate": 0.0002,
857
+ "loss": 0.7331,
858
+ "step": 1190
859
+ },
860
+ {
861
+ "epoch": 2.9447852760736195,
862
+ "grad_norm": 0.8573821187019348,
863
+ "learning_rate": 0.0002,
864
+ "loss": 0.7471,
865
+ "step": 1200
866
+ },
867
+ {
868
+ "epoch": 2.969325153374233,
869
+ "grad_norm": 1.0196788311004639,
870
+ "learning_rate": 0.0002,
871
+ "loss": 0.7396,
872
+ "step": 1210
873
+ },
874
+ {
875
+ "epoch": 2.9938650306748467,
876
+ "grad_norm": 0.8840402960777283,
877
+ "learning_rate": 0.0002,
878
+ "loss": 0.7288,
879
+ "step": 1220
880
+ },
881
+ {
882
+ "epoch": 2.9987730061349693,
883
+ "eval_loss": 1.4348119497299194,
884
+ "eval_runtime": 80.7583,
885
+ "eval_samples_per_second": 5.646,
886
+ "eval_steps_per_second": 0.706,
887
+ "step": 1222
888
+ },
889
+ {
890
+ "epoch": 3.01840490797546,
891
+ "grad_norm": 1.2376960515975952,
892
+ "learning_rate": 0.0002,
893
+ "loss": 0.5671,
894
+ "step": 1230
895
+ },
896
+ {
897
+ "epoch": 3.042944785276074,
898
+ "grad_norm": 0.9861388206481934,
899
+ "learning_rate": 0.0002,
900
+ "loss": 0.5176,
901
+ "step": 1240
902
+ },
903
+ {
904
+ "epoch": 3.067484662576687,
905
+ "grad_norm": 1.2193198204040527,
906
+ "learning_rate": 0.0002,
907
+ "loss": 0.5623,
908
+ "step": 1250
909
+ },
910
+ {
911
+ "epoch": 3.0920245398773005,
912
+ "grad_norm": 1.1927645206451416,
913
+ "learning_rate": 0.0002,
914
+ "loss": 0.5727,
915
+ "step": 1260
916
+ },
917
+ {
918
+ "epoch": 3.116564417177914,
919
+ "grad_norm": 1.0420559644699097,
920
+ "learning_rate": 0.0002,
921
+ "loss": 0.5296,
922
+ "step": 1270
923
+ },
924
+ {
925
+ "epoch": 3.1411042944785277,
926
+ "grad_norm": 1.014664649963379,
927
+ "learning_rate": 0.0002,
928
+ "loss": 0.5322,
929
+ "step": 1280
930
+ },
931
+ {
932
+ "epoch": 3.165644171779141,
933
+ "grad_norm": 1.3103076219558716,
934
+ "learning_rate": 0.0002,
935
+ "loss": 0.5519,
936
+ "step": 1290
937
+ },
938
+ {
939
+ "epoch": 3.190184049079755,
940
+ "grad_norm": 1.2735213041305542,
941
+ "learning_rate": 0.0002,
942
+ "loss": 0.5133,
943
+ "step": 1300
944
+ },
945
+ {
946
+ "epoch": 3.214723926380368,
947
+ "grad_norm": 1.147608995437622,
948
+ "learning_rate": 0.0002,
949
+ "loss": 0.514,
950
+ "step": 1310
951
+ },
952
+ {
953
+ "epoch": 3.2392638036809815,
954
+ "grad_norm": 0.922386884689331,
955
+ "learning_rate": 0.0002,
956
+ "loss": 0.58,
957
+ "step": 1320
958
+ },
959
+ {
960
+ "epoch": 3.263803680981595,
961
+ "grad_norm": 1.1271566152572632,
962
+ "learning_rate": 0.0002,
963
+ "loss": 0.5425,
964
+ "step": 1330
965
+ },
966
+ {
967
+ "epoch": 3.2883435582822087,
968
+ "grad_norm": 1.2994354963302612,
969
+ "learning_rate": 0.0002,
970
+ "loss": 0.519,
971
+ "step": 1340
972
+ },
973
+ {
974
+ "epoch": 3.312883435582822,
975
+ "grad_norm": 1.0001686811447144,
976
+ "learning_rate": 0.0002,
977
+ "loss": 0.5521,
978
+ "step": 1350
979
+ },
980
+ {
981
+ "epoch": 3.3374233128834354,
982
+ "grad_norm": 1.6737695932388306,
983
+ "learning_rate": 0.0002,
984
+ "loss": 0.564,
985
+ "step": 1360
986
+ },
987
+ {
988
+ "epoch": 3.361963190184049,
989
+ "grad_norm": 1.1842162609100342,
990
+ "learning_rate": 0.0002,
991
+ "loss": 0.5529,
992
+ "step": 1370
993
+ },
994
+ {
995
+ "epoch": 3.3865030674846626,
996
+ "grad_norm": 1.1873128414154053,
997
+ "learning_rate": 0.0002,
998
+ "loss": 0.569,
999
+ "step": 1380
1000
+ },
1001
+ {
1002
+ "epoch": 3.411042944785276,
1003
+ "grad_norm": 1.4505162239074707,
1004
+ "learning_rate": 0.0002,
1005
+ "loss": 0.5199,
1006
+ "step": 1390
1007
+ },
1008
+ {
1009
+ "epoch": 3.4355828220858897,
1010
+ "grad_norm": 1.254621982574463,
1011
+ "learning_rate": 0.0002,
1012
+ "loss": 0.5536,
1013
+ "step": 1400
1014
+ },
1015
+ {
1016
+ "epoch": 3.460122699386503,
1017
+ "grad_norm": 1.5493544340133667,
1018
+ "learning_rate": 0.0002,
1019
+ "loss": 0.5547,
1020
+ "step": 1410
1021
+ },
1022
+ {
1023
+ "epoch": 3.4846625766871164,
1024
+ "grad_norm": 1.4435759782791138,
1025
+ "learning_rate": 0.0002,
1026
+ "loss": 0.542,
1027
+ "step": 1420
1028
+ },
1029
+ {
1030
+ "epoch": 3.5092024539877302,
1031
+ "grad_norm": 1.5885447263717651,
1032
+ "learning_rate": 0.0002,
1033
+ "loss": 0.6124,
1034
+ "step": 1430
1035
+ },
1036
+ {
1037
+ "epoch": 3.5337423312883436,
1038
+ "grad_norm": 1.3357222080230713,
1039
+ "learning_rate": 0.0002,
1040
+ "loss": 0.5737,
1041
+ "step": 1440
1042
+ },
1043
+ {
1044
+ "epoch": 3.558282208588957,
1045
+ "grad_norm": 1.8510551452636719,
1046
+ "learning_rate": 0.0002,
1047
+ "loss": 0.5903,
1048
+ "step": 1450
1049
+ },
1050
+ {
1051
+ "epoch": 3.5828220858895703,
1052
+ "grad_norm": 1.1081656217575073,
1053
+ "learning_rate": 0.0002,
1054
+ "loss": 0.5214,
1055
+ "step": 1460
1056
+ },
1057
+ {
1058
+ "epoch": 3.607361963190184,
1059
+ "grad_norm": 1.2849210500717163,
1060
+ "learning_rate": 0.0002,
1061
+ "loss": 0.5351,
1062
+ "step": 1470
1063
+ },
1064
+ {
1065
+ "epoch": 3.6319018404907975,
1066
+ "grad_norm": 1.2472909688949585,
1067
+ "learning_rate": 0.0002,
1068
+ "loss": 0.5364,
1069
+ "step": 1480
1070
+ },
1071
+ {
1072
+ "epoch": 3.6564417177914113,
1073
+ "grad_norm": 1.1466434001922607,
1074
+ "learning_rate": 0.0002,
1075
+ "loss": 0.5371,
1076
+ "step": 1490
1077
+ },
1078
+ {
1079
+ "epoch": 3.6809815950920246,
1080
+ "grad_norm": 1.325461506843567,
1081
+ "learning_rate": 0.0002,
1082
+ "loss": 0.565,
1083
+ "step": 1500
1084
+ },
1085
+ {
1086
+ "epoch": 3.705521472392638,
1087
+ "grad_norm": 1.4214563369750977,
1088
+ "learning_rate": 0.0002,
1089
+ "loss": 0.6154,
1090
+ "step": 1510
1091
+ },
1092
+ {
1093
+ "epoch": 3.7300613496932513,
1094
+ "grad_norm": 1.1496703624725342,
1095
+ "learning_rate": 0.0002,
1096
+ "loss": 0.5726,
1097
+ "step": 1520
1098
+ },
1099
+ {
1100
+ "epoch": 3.754601226993865,
1101
+ "grad_norm": 1.205261468887329,
1102
+ "learning_rate": 0.0002,
1103
+ "loss": 0.5687,
1104
+ "step": 1530
1105
+ },
1106
+ {
1107
+ "epoch": 3.7791411042944785,
1108
+ "grad_norm": 1.6516913175582886,
1109
+ "learning_rate": 0.0002,
1110
+ "loss": 0.5593,
1111
+ "step": 1540
1112
+ },
1113
+ {
1114
+ "epoch": 3.8036809815950923,
1115
+ "grad_norm": 1.7035053968429565,
1116
+ "learning_rate": 0.0002,
1117
+ "loss": 0.5767,
1118
+ "step": 1550
1119
+ },
1120
+ {
1121
+ "epoch": 3.8282208588957056,
1122
+ "grad_norm": 1.463699460029602,
1123
+ "learning_rate": 0.0002,
1124
+ "loss": 0.5948,
1125
+ "step": 1560
1126
+ },
1127
+ {
1128
+ "epoch": 3.852760736196319,
1129
+ "grad_norm": 1.7970601320266724,
1130
+ "learning_rate": 0.0002,
1131
+ "loss": 0.5326,
1132
+ "step": 1570
1133
+ },
1134
+ {
1135
+ "epoch": 3.8773006134969323,
1136
+ "grad_norm": 1.2967402935028076,
1137
+ "learning_rate": 0.0002,
1138
+ "loss": 0.5919,
1139
+ "step": 1580
1140
+ },
1141
+ {
1142
+ "epoch": 3.901840490797546,
1143
+ "grad_norm": 1.0639182329177856,
1144
+ "learning_rate": 0.0002,
1145
+ "loss": 0.5502,
1146
+ "step": 1590
1147
+ },
1148
+ {
1149
+ "epoch": 3.9263803680981595,
1150
+ "grad_norm": 1.4388368129730225,
1151
+ "learning_rate": 0.0002,
1152
+ "loss": 0.5281,
1153
+ "step": 1600
1154
+ },
1155
+ {
1156
+ "epoch": 3.950920245398773,
1157
+ "grad_norm": 1.2425099611282349,
1158
+ "learning_rate": 0.0002,
1159
+ "loss": 0.6305,
1160
+ "step": 1610
1161
+ },
1162
+ {
1163
+ "epoch": 3.9754601226993866,
1164
+ "grad_norm": 1.3989970684051514,
1165
+ "learning_rate": 0.0002,
1166
+ "loss": 0.5548,
1167
+ "step": 1620
1168
+ },
1169
+ {
1170
+ "epoch": 4.0,
1171
+ "grad_norm": 0.9850553274154663,
1172
+ "learning_rate": 0.0002,
1173
+ "loss": 0.5661,
1174
+ "step": 1630
1175
+ },
1176
+ {
1177
+ "epoch": 4.0,
1178
+ "eval_loss": 1.5340977907180786,
1179
+ "eval_runtime": 79.7233,
1180
+ "eval_samples_per_second": 5.72,
1181
+ "eval_steps_per_second": 0.715,
1182
+ "step": 1630
1183
+ },
1184
+ {
1185
+ "epoch": 4.024539877300613,
1186
+ "grad_norm": 2.1861188411712646,
1187
+ "learning_rate": 0.0002,
1188
+ "loss": 0.4365,
1189
+ "step": 1640
1190
+ },
1191
+ {
1192
+ "epoch": 4.049079754601227,
1193
+ "grad_norm": 1.4574151039123535,
1194
+ "learning_rate": 0.0002,
1195
+ "loss": 0.3987,
1196
+ "step": 1650
1197
+ },
1198
+ {
1199
+ "epoch": 4.07361963190184,
1200
+ "grad_norm": 1.093583345413208,
1201
+ "learning_rate": 0.0002,
1202
+ "loss": 0.404,
1203
+ "step": 1660
1204
+ },
1205
+ {
1206
+ "epoch": 4.098159509202454,
1207
+ "grad_norm": 1.4852519035339355,
1208
+ "learning_rate": 0.0002,
1209
+ "loss": 0.4493,
1210
+ "step": 1670
1211
+ },
1212
+ {
1213
+ "epoch": 4.122699386503068,
1214
+ "grad_norm": 1.9289690256118774,
1215
+ "learning_rate": 0.0002,
1216
+ "loss": 0.3941,
1217
+ "step": 1680
1218
+ },
1219
+ {
1220
+ "epoch": 4.147239263803681,
1221
+ "grad_norm": 1.286780834197998,
1222
+ "learning_rate": 0.0002,
1223
+ "loss": 0.4015,
1224
+ "step": 1690
1225
+ },
1226
+ {
1227
+ "epoch": 4.171779141104294,
1228
+ "grad_norm": 1.1915839910507202,
1229
+ "learning_rate": 0.0002,
1230
+ "loss": 0.396,
1231
+ "step": 1700
1232
+ },
1233
+ {
1234
+ "epoch": 4.196319018404908,
1235
+ "grad_norm": 0.9827993512153625,
1236
+ "learning_rate": 0.0002,
1237
+ "loss": 0.4053,
1238
+ "step": 1710
1239
+ },
1240
+ {
1241
+ "epoch": 4.220858895705521,
1242
+ "grad_norm": 1.314813494682312,
1243
+ "learning_rate": 0.0002,
1244
+ "loss": 0.4341,
1245
+ "step": 1720
1246
+ },
1247
+ {
1248
+ "epoch": 4.245398773006135,
1249
+ "grad_norm": 1.6890170574188232,
1250
+ "learning_rate": 0.0002,
1251
+ "loss": 0.4187,
1252
+ "step": 1730
1253
+ },
1254
+ {
1255
+ "epoch": 4.269938650306749,
1256
+ "grad_norm": 1.5559035539627075,
1257
+ "learning_rate": 0.0002,
1258
+ "loss": 0.4047,
1259
+ "step": 1740
1260
+ },
1261
+ {
1262
+ "epoch": 4.294478527607362,
1263
+ "grad_norm": 1.8186208009719849,
1264
+ "learning_rate": 0.0002,
1265
+ "loss": 0.4398,
1266
+ "step": 1750
1267
+ },
1268
+ {
1269
+ "epoch": 4.319018404907975,
1270
+ "grad_norm": 0.9572193026542664,
1271
+ "learning_rate": 0.0002,
1272
+ "loss": 0.4223,
1273
+ "step": 1760
1274
+ },
1275
+ {
1276
+ "epoch": 4.343558282208589,
1277
+ "grad_norm": 2.1470448970794678,
1278
+ "learning_rate": 0.0002,
1279
+ "loss": 0.5141,
1280
+ "step": 1770
1281
+ },
1282
+ {
1283
+ "epoch": 4.368098159509202,
1284
+ "grad_norm": 1.2788262367248535,
1285
+ "learning_rate": 0.0002,
1286
+ "loss": 0.4051,
1287
+ "step": 1780
1288
+ },
1289
+ {
1290
+ "epoch": 4.392638036809816,
1291
+ "grad_norm": 1.8074915409088135,
1292
+ "learning_rate": 0.0002,
1293
+ "loss": 0.4574,
1294
+ "step": 1790
1295
+ },
1296
+ {
1297
+ "epoch": 4.41717791411043,
1298
+ "grad_norm": 0.9725378751754761,
1299
+ "learning_rate": 0.0002,
1300
+ "loss": 0.4195,
1301
+ "step": 1800
1302
+ },
1303
+ {
1304
+ "epoch": 4.441717791411043,
1305
+ "grad_norm": 1.7154884338378906,
1306
+ "learning_rate": 0.0002,
1307
+ "loss": 0.4267,
1308
+ "step": 1810
1309
+ },
1310
+ {
1311
+ "epoch": 4.466257668711656,
1312
+ "grad_norm": 1.07939612865448,
1313
+ "learning_rate": 0.0002,
1314
+ "loss": 0.4059,
1315
+ "step": 1820
1316
+ },
1317
+ {
1318
+ "epoch": 4.49079754601227,
1319
+ "grad_norm": 1.1510107517242432,
1320
+ "learning_rate": 0.0002,
1321
+ "loss": 0.4572,
1322
+ "step": 1830
1323
+ },
1324
+ {
1325
+ "epoch": 4.515337423312883,
1326
+ "grad_norm": 1.2309428453445435,
1327
+ "learning_rate": 0.0002,
1328
+ "loss": 0.4053,
1329
+ "step": 1840
1330
+ },
1331
+ {
1332
+ "epoch": 4.539877300613497,
1333
+ "grad_norm": 1.31099271774292,
1334
+ "learning_rate": 0.0002,
1335
+ "loss": 0.4275,
1336
+ "step": 1850
1337
+ },
1338
+ {
1339
+ "epoch": 4.564417177914111,
1340
+ "grad_norm": 1.2938907146453857,
1341
+ "learning_rate": 0.0002,
1342
+ "loss": 0.4755,
1343
+ "step": 1860
1344
+ },
1345
+ {
1346
+ "epoch": 4.588957055214724,
1347
+ "grad_norm": 1.6019647121429443,
1348
+ "learning_rate": 0.0002,
1349
+ "loss": 0.478,
1350
+ "step": 1870
1351
+ },
1352
+ {
1353
+ "epoch": 4.613496932515337,
1354
+ "grad_norm": 1.9093713760375977,
1355
+ "learning_rate": 0.0002,
1356
+ "loss": 0.4492,
1357
+ "step": 1880
1358
+ },
1359
+ {
1360
+ "epoch": 4.638036809815951,
1361
+ "grad_norm": 1.4761801958084106,
1362
+ "learning_rate": 0.0002,
1363
+ "loss": 0.4522,
1364
+ "step": 1890
1365
+ },
1366
+ {
1367
+ "epoch": 4.662576687116564,
1368
+ "grad_norm": 1.2435506582260132,
1369
+ "learning_rate": 0.0002,
1370
+ "loss": 0.5078,
1371
+ "step": 1900
1372
+ },
1373
+ {
1374
+ "epoch": 4.6871165644171775,
1375
+ "grad_norm": 1.5027297735214233,
1376
+ "learning_rate": 0.0002,
1377
+ "loss": 0.4656,
1378
+ "step": 1910
1379
+ },
1380
+ {
1381
+ "epoch": 4.711656441717792,
1382
+ "grad_norm": 1.323907494544983,
1383
+ "learning_rate": 0.0002,
1384
+ "loss": 0.4428,
1385
+ "step": 1920
1386
+ },
1387
+ {
1388
+ "epoch": 4.736196319018405,
1389
+ "grad_norm": 1.1643304824829102,
1390
+ "learning_rate": 0.0002,
1391
+ "loss": 0.4113,
1392
+ "step": 1930
1393
+ },
1394
+ {
1395
+ "epoch": 4.7607361963190185,
1396
+ "grad_norm": 1.4745224714279175,
1397
+ "learning_rate": 0.0002,
1398
+ "loss": 0.4548,
1399
+ "step": 1940
1400
+ },
1401
+ {
1402
+ "epoch": 4.785276073619632,
1403
+ "grad_norm": 1.6811035871505737,
1404
+ "learning_rate": 0.0002,
1405
+ "loss": 0.4447,
1406
+ "step": 1950
1407
+ },
1408
+ {
1409
+ "epoch": 4.809815950920245,
1410
+ "grad_norm": 1.0878573656082153,
1411
+ "learning_rate": 0.0002,
1412
+ "loss": 0.4669,
1413
+ "step": 1960
1414
+ },
1415
+ {
1416
+ "epoch": 4.8343558282208585,
1417
+ "grad_norm": 1.640516996383667,
1418
+ "learning_rate": 0.0002,
1419
+ "loss": 0.4589,
1420
+ "step": 1970
1421
+ },
1422
+ {
1423
+ "epoch": 4.858895705521473,
1424
+ "grad_norm": 1.305409550666809,
1425
+ "learning_rate": 0.0002,
1426
+ "loss": 0.4534,
1427
+ "step": 1980
1428
+ },
1429
+ {
1430
+ "epoch": 4.883435582822086,
1431
+ "grad_norm": 1.5608975887298584,
1432
+ "learning_rate": 0.0002,
1433
+ "loss": 0.4512,
1434
+ "step": 1990
1435
+ },
1436
+ {
1437
+ "epoch": 4.9079754601226995,
1438
+ "grad_norm": 1.3681490421295166,
1439
+ "learning_rate": 0.0002,
1440
+ "loss": 0.4602,
1441
+ "step": 2000
1442
+ },
1443
+ {
1444
+ "epoch": 4.932515337423313,
1445
+ "grad_norm": 1.241847276687622,
1446
+ "learning_rate": 0.0002,
1447
+ "loss": 0.4445,
1448
+ "step": 2010
1449
+ },
1450
+ {
1451
+ "epoch": 4.957055214723926,
1452
+ "grad_norm": 1.1561694145202637,
1453
+ "learning_rate": 0.0002,
1454
+ "loss": 0.502,
1455
+ "step": 2020
1456
+ },
1457
+ {
1458
+ "epoch": 4.9815950920245395,
1459
+ "grad_norm": 1.8284252882003784,
1460
+ "learning_rate": 0.0002,
1461
+ "loss": 0.4586,
1462
+ "step": 2030
1463
+ },
1464
+ {
1465
+ "epoch": 4.99877300613497,
1466
+ "eval_loss": 1.702454686164856,
1467
+ "eval_runtime": 79.3705,
1468
+ "eval_samples_per_second": 5.745,
1469
+ "eval_steps_per_second": 0.718,
1470
+ "step": 2037
1471
+ }
1472
+ ],
1473
+ "logging_steps": 10,
1474
+ "max_steps": 3256,
1475
+ "num_input_tokens_seen": 0,
1476
+ "num_train_epochs": 8,
1477
+ "save_steps": 200,
1478
+ "stateful_callbacks": {
1479
+ "TrainerControl": {
1480
+ "args": {
1481
+ "should_epoch_stop": false,
1482
+ "should_evaluate": false,
1483
+ "should_log": false,
1484
+ "should_save": true,
1485
+ "should_training_stop": false
1486
+ },
1487
+ "attributes": {}
1488
+ }
1489
+ },
1490
+ "total_flos": 8.939475566592e+16,
1491
+ "train_batch_size": 1,
1492
+ "trial_name": null,
1493
+ "trial_params": null
1494
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2037/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0e586c733c860e8234b028525d14453b4a2a52ad2c815f3775cbbbef35878fb
3
+ size 5624
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3704a46f5053240d2273bfe6baeeae9fdb453b030065d89745894429a406be7
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04f1b8c8fdb1dbd30c49bb9d505ebd78d47da0e13cb2ebd77caeb79424e086ec
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09e18aecde89fbee1ed3f353f366a65d54be677d8ca152a01a71b721102d7a3c
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d1d0eb44bec42a7e4c96e25038586ef00bd6f82a0b4415f637c7063413fbe73
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-2445/trainer_state.json ADDED
@@ -0,0 +1,1789 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.3188884258270264,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_mmlu-routerbench-0shot-full-by-task_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.3-num-2942-sd-10000/checkpoint-407",
4
+ "epoch": 6.0,
5
+ "eval_steps": 10,
6
+ "global_step": 2445,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.024539877300613498,
13
+ "grad_norm": 1.0104172229766846,
14
+ "learning_rate": 0.0002,
15
+ "loss": 1.7717,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.049079754601226995,
20
+ "grad_norm": 0.8800041079521179,
21
+ "learning_rate": 0.0002,
22
+ "loss": 1.6041,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.0736196319018405,
27
+ "grad_norm": 1.337620496749878,
28
+ "learning_rate": 0.0002,
29
+ "loss": 1.4421,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.09815950920245399,
34
+ "grad_norm": 0.6757020354270935,
35
+ "learning_rate": 0.0002,
36
+ "loss": 1.5542,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.12269938650306748,
41
+ "grad_norm": 42.27006149291992,
42
+ "learning_rate": 0.0002,
43
+ "loss": 1.4365,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.147239263803681,
48
+ "grad_norm": 0.8157640099525452,
49
+ "learning_rate": 0.0002,
50
+ "loss": 1.1226,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.17177914110429449,
55
+ "grad_norm": 1.0711787939071655,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.1886,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.19631901840490798,
62
+ "grad_norm": 0.5880025029182434,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.1239,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.22085889570552147,
69
+ "grad_norm": 0.827833354473114,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.0696,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.24539877300613497,
76
+ "grad_norm": 0.579414963722229,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.0468,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.26993865030674846,
83
+ "grad_norm": 0.6620142459869385,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.0914,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.294478527607362,
90
+ "grad_norm": 0.5601297616958618,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.0873,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.31901840490797545,
97
+ "grad_norm": 0.5814566612243652,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.1652,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.34355828220858897,
104
+ "grad_norm": 0.6171417236328125,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.0915,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.36809815950920244,
111
+ "grad_norm": 0.6176294088363647,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.1572,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.39263803680981596,
118
+ "grad_norm": 0.8398241400718689,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.1135,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.4171779141104294,
125
+ "grad_norm": 0.5397658944129944,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.1235,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.44171779141104295,
132
+ "grad_norm": 0.7487576603889465,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.1438,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.4662576687116564,
139
+ "grad_norm": 0.4767085015773773,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.1178,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.49079754601226994,
146
+ "grad_norm": 0.6086363196372986,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.1222,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.5153374233128835,
153
+ "grad_norm": 0.6940106749534607,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.0346,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.5398773006134969,
160
+ "grad_norm": 0.775067150592804,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.1162,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.5644171779141104,
167
+ "grad_norm": 0.7273200154304504,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.1335,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.588957055214724,
174
+ "grad_norm": 0.5168078541755676,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.0606,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.6134969325153374,
181
+ "grad_norm": 0.6487783193588257,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.0792,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.6380368098159509,
188
+ "grad_norm": 1.0914227962493896,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.1642,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.6625766871165644,
195
+ "grad_norm": 1.0182702541351318,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.065,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.6871165644171779,
202
+ "grad_norm": 0.7045943140983582,
203
+ "learning_rate": 0.0002,
204
+ "loss": 0.9816,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.7116564417177914,
209
+ "grad_norm": 0.6228044033050537,
210
+ "learning_rate": 0.0002,
211
+ "loss": 0.9675,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.7361963190184049,
216
+ "grad_norm": 0.6161119341850281,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.076,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.7607361963190185,
223
+ "grad_norm": 0.8310935497283936,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.0597,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.7852760736196319,
230
+ "grad_norm": 0.6500546336174011,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.0817,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.8098159509202454,
237
+ "grad_norm": 0.9254736304283142,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.109,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.8343558282208589,
244
+ "grad_norm": 0.5892964005470276,
245
+ "learning_rate": 0.0002,
246
+ "loss": 0.9929,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.8588957055214724,
251
+ "grad_norm": 0.5500181913375854,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.0637,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.8834355828220859,
258
+ "grad_norm": 0.7814139127731323,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.0693,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.9079754601226994,
265
+ "grad_norm": 0.6288005113601685,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.059,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.9325153374233128,
272
+ "grad_norm": 0.5031183958053589,
273
+ "learning_rate": 0.0002,
274
+ "loss": 0.9904,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.9570552147239264,
279
+ "grad_norm": 0.8656964898109436,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.1183,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.9815950920245399,
286
+ "grad_norm": 0.6746202111244202,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.0296,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.9987730061349693,
293
+ "eval_loss": 1.3188884258270264,
294
+ "eval_runtime": 124.2158,
295
+ "eval_samples_per_second": 3.671,
296
+ "eval_steps_per_second": 0.459,
297
+ "step": 407
298
+ },
299
+ {
300
+ "epoch": 1.0061349693251533,
301
+ "grad_norm": 0.5244082808494568,
302
+ "learning_rate": 0.0002,
303
+ "loss": 0.9679,
304
+ "step": 410
305
+ },
306
+ {
307
+ "epoch": 1.030674846625767,
308
+ "grad_norm": 0.6792967319488525,
309
+ "learning_rate": 0.0002,
310
+ "loss": 0.97,
311
+ "step": 420
312
+ },
313
+ {
314
+ "epoch": 1.0552147239263803,
315
+ "grad_norm": 0.6114474534988403,
316
+ "learning_rate": 0.0002,
317
+ "loss": 0.8935,
318
+ "step": 430
319
+ },
320
+ {
321
+ "epoch": 1.0797546012269938,
322
+ "grad_norm": 0.6367565393447876,
323
+ "learning_rate": 0.0002,
324
+ "loss": 0.9469,
325
+ "step": 440
326
+ },
327
+ {
328
+ "epoch": 1.1042944785276074,
329
+ "grad_norm": 0.7007757425308228,
330
+ "learning_rate": 0.0002,
331
+ "loss": 0.9536,
332
+ "step": 450
333
+ },
334
+ {
335
+ "epoch": 1.1288343558282208,
336
+ "grad_norm": 0.9737136960029602,
337
+ "learning_rate": 0.0002,
338
+ "loss": 0.8806,
339
+ "step": 460
340
+ },
341
+ {
342
+ "epoch": 1.1533742331288344,
343
+ "grad_norm": 1.1624044179916382,
344
+ "learning_rate": 0.0002,
345
+ "loss": 0.9217,
346
+ "step": 470
347
+ },
348
+ {
349
+ "epoch": 1.177914110429448,
350
+ "grad_norm": 2.1017873287200928,
351
+ "learning_rate": 0.0002,
352
+ "loss": 0.9056,
353
+ "step": 480
354
+ },
355
+ {
356
+ "epoch": 1.2024539877300613,
357
+ "grad_norm": 0.7352198958396912,
358
+ "learning_rate": 0.0002,
359
+ "loss": 0.9945,
360
+ "step": 490
361
+ },
362
+ {
363
+ "epoch": 1.2269938650306749,
364
+ "grad_norm": 0.9491982460021973,
365
+ "learning_rate": 0.0002,
366
+ "loss": 0.9224,
367
+ "step": 500
368
+ },
369
+ {
370
+ "epoch": 1.2515337423312882,
371
+ "grad_norm": 1.0124034881591797,
372
+ "learning_rate": 0.0002,
373
+ "loss": 0.9079,
374
+ "step": 510
375
+ },
376
+ {
377
+ "epoch": 1.2760736196319018,
378
+ "grad_norm": 0.7620294094085693,
379
+ "learning_rate": 0.0002,
380
+ "loss": 0.9596,
381
+ "step": 520
382
+ },
383
+ {
384
+ "epoch": 1.3006134969325154,
385
+ "grad_norm": 0.7207106351852417,
386
+ "learning_rate": 0.0002,
387
+ "loss": 0.9095,
388
+ "step": 530
389
+ },
390
+ {
391
+ "epoch": 1.3251533742331287,
392
+ "grad_norm": 0.586559534072876,
393
+ "learning_rate": 0.0002,
394
+ "loss": 0.8588,
395
+ "step": 540
396
+ },
397
+ {
398
+ "epoch": 1.3496932515337423,
399
+ "grad_norm": 0.7113742828369141,
400
+ "learning_rate": 0.0002,
401
+ "loss": 0.9146,
402
+ "step": 550
403
+ },
404
+ {
405
+ "epoch": 1.3742331288343559,
406
+ "grad_norm": 0.9574087262153625,
407
+ "learning_rate": 0.0002,
408
+ "loss": 0.9504,
409
+ "step": 560
410
+ },
411
+ {
412
+ "epoch": 1.3987730061349692,
413
+ "grad_norm": 0.71551913022995,
414
+ "learning_rate": 0.0002,
415
+ "loss": 0.9124,
416
+ "step": 570
417
+ },
418
+ {
419
+ "epoch": 1.4233128834355828,
420
+ "grad_norm": 1.0000630617141724,
421
+ "learning_rate": 0.0002,
422
+ "loss": 0.8944,
423
+ "step": 580
424
+ },
425
+ {
426
+ "epoch": 1.4478527607361964,
427
+ "grad_norm": 0.6878040432929993,
428
+ "learning_rate": 0.0002,
429
+ "loss": 0.8707,
430
+ "step": 590
431
+ },
432
+ {
433
+ "epoch": 1.4723926380368098,
434
+ "grad_norm": 0.770113468170166,
435
+ "learning_rate": 0.0002,
436
+ "loss": 0.953,
437
+ "step": 600
438
+ },
439
+ {
440
+ "epoch": 1.4969325153374233,
441
+ "grad_norm": 0.7941587567329407,
442
+ "learning_rate": 0.0002,
443
+ "loss": 0.9293,
444
+ "step": 610
445
+ },
446
+ {
447
+ "epoch": 1.521472392638037,
448
+ "grad_norm": 0.971196711063385,
449
+ "learning_rate": 0.0002,
450
+ "loss": 0.9177,
451
+ "step": 620
452
+ },
453
+ {
454
+ "epoch": 1.5460122699386503,
455
+ "grad_norm": 0.6944937109947205,
456
+ "learning_rate": 0.0002,
457
+ "loss": 0.8605,
458
+ "step": 630
459
+ },
460
+ {
461
+ "epoch": 1.5705521472392638,
462
+ "grad_norm": 1.104216456413269,
463
+ "learning_rate": 0.0002,
464
+ "loss": 0.8922,
465
+ "step": 640
466
+ },
467
+ {
468
+ "epoch": 1.5950920245398774,
469
+ "grad_norm": 0.786145806312561,
470
+ "learning_rate": 0.0002,
471
+ "loss": 0.9264,
472
+ "step": 650
473
+ },
474
+ {
475
+ "epoch": 1.6196319018404908,
476
+ "grad_norm": 0.8748652935028076,
477
+ "learning_rate": 0.0002,
478
+ "loss": 0.8515,
479
+ "step": 660
480
+ },
481
+ {
482
+ "epoch": 1.6441717791411041,
483
+ "grad_norm": 0.6184355020523071,
484
+ "learning_rate": 0.0002,
485
+ "loss": 0.8818,
486
+ "step": 670
487
+ },
488
+ {
489
+ "epoch": 1.668711656441718,
490
+ "grad_norm": 1.0236579179763794,
491
+ "learning_rate": 0.0002,
492
+ "loss": 0.9484,
493
+ "step": 680
494
+ },
495
+ {
496
+ "epoch": 1.6932515337423313,
497
+ "grad_norm": 0.9815388917922974,
498
+ "learning_rate": 0.0002,
499
+ "loss": 0.9078,
500
+ "step": 690
501
+ },
502
+ {
503
+ "epoch": 1.7177914110429446,
504
+ "grad_norm": 0.6398373246192932,
505
+ "learning_rate": 0.0002,
506
+ "loss": 0.9036,
507
+ "step": 700
508
+ },
509
+ {
510
+ "epoch": 1.7423312883435584,
511
+ "grad_norm": 0.6157359480857849,
512
+ "learning_rate": 0.0002,
513
+ "loss": 0.8702,
514
+ "step": 710
515
+ },
516
+ {
517
+ "epoch": 1.7668711656441718,
518
+ "grad_norm": 0.7352675795555115,
519
+ "learning_rate": 0.0002,
520
+ "loss": 0.8712,
521
+ "step": 720
522
+ },
523
+ {
524
+ "epoch": 1.7914110429447851,
525
+ "grad_norm": 0.6840626001358032,
526
+ "learning_rate": 0.0002,
527
+ "loss": 0.8737,
528
+ "step": 730
529
+ },
530
+ {
531
+ "epoch": 1.8159509202453987,
532
+ "grad_norm": 0.8363635540008545,
533
+ "learning_rate": 0.0002,
534
+ "loss": 0.9113,
535
+ "step": 740
536
+ },
537
+ {
538
+ "epoch": 1.8404907975460123,
539
+ "grad_norm": 1.7173194885253906,
540
+ "learning_rate": 0.0002,
541
+ "loss": 0.973,
542
+ "step": 750
543
+ },
544
+ {
545
+ "epoch": 1.8650306748466257,
546
+ "grad_norm": 0.8277300000190735,
547
+ "learning_rate": 0.0002,
548
+ "loss": 0.9438,
549
+ "step": 760
550
+ },
551
+ {
552
+ "epoch": 1.8895705521472392,
553
+ "grad_norm": 0.6714297533035278,
554
+ "learning_rate": 0.0002,
555
+ "loss": 0.919,
556
+ "step": 770
557
+ },
558
+ {
559
+ "epoch": 1.9141104294478528,
560
+ "grad_norm": 0.7646296620368958,
561
+ "learning_rate": 0.0002,
562
+ "loss": 0.889,
563
+ "step": 780
564
+ },
565
+ {
566
+ "epoch": 1.9386503067484662,
567
+ "grad_norm": 0.9777507781982422,
568
+ "learning_rate": 0.0002,
569
+ "loss": 0.8433,
570
+ "step": 790
571
+ },
572
+ {
573
+ "epoch": 1.9631901840490797,
574
+ "grad_norm": 0.7732912302017212,
575
+ "learning_rate": 0.0002,
576
+ "loss": 0.9255,
577
+ "step": 800
578
+ },
579
+ {
580
+ "epoch": 1.9877300613496933,
581
+ "grad_norm": 0.7485368847846985,
582
+ "learning_rate": 0.0002,
583
+ "loss": 0.9556,
584
+ "step": 810
585
+ },
586
+ {
587
+ "epoch": 2.0,
588
+ "eval_loss": 1.335689663887024,
589
+ "eval_runtime": 80.1256,
590
+ "eval_samples_per_second": 5.691,
591
+ "eval_steps_per_second": 0.711,
592
+ "step": 815
593
+ },
594
+ {
595
+ "epoch": 2.0122699386503067,
596
+ "grad_norm": 0.7061107158660889,
597
+ "learning_rate": 0.0002,
598
+ "loss": 0.9555,
599
+ "step": 820
600
+ },
601
+ {
602
+ "epoch": 2.03680981595092,
603
+ "grad_norm": 1.101184368133545,
604
+ "learning_rate": 0.0002,
605
+ "loss": 0.7363,
606
+ "step": 830
607
+ },
608
+ {
609
+ "epoch": 2.061349693251534,
610
+ "grad_norm": 0.6724491119384766,
611
+ "learning_rate": 0.0002,
612
+ "loss": 0.7269,
613
+ "step": 840
614
+ },
615
+ {
616
+ "epoch": 2.085889570552147,
617
+ "grad_norm": 0.8159838318824768,
618
+ "learning_rate": 0.0002,
619
+ "loss": 0.6836,
620
+ "step": 850
621
+ },
622
+ {
623
+ "epoch": 2.1104294478527605,
624
+ "grad_norm": 0.9286916255950928,
625
+ "learning_rate": 0.0002,
626
+ "loss": 0.7237,
627
+ "step": 860
628
+ },
629
+ {
630
+ "epoch": 2.1349693251533743,
631
+ "grad_norm": 0.9122375845909119,
632
+ "learning_rate": 0.0002,
633
+ "loss": 0.7258,
634
+ "step": 870
635
+ },
636
+ {
637
+ "epoch": 2.1595092024539877,
638
+ "grad_norm": 0.9655355215072632,
639
+ "learning_rate": 0.0002,
640
+ "loss": 0.7164,
641
+ "step": 880
642
+ },
643
+ {
644
+ "epoch": 2.184049079754601,
645
+ "grad_norm": 1.1539593935012817,
646
+ "learning_rate": 0.0002,
647
+ "loss": 0.741,
648
+ "step": 890
649
+ },
650
+ {
651
+ "epoch": 2.208588957055215,
652
+ "grad_norm": 1.0535199642181396,
653
+ "learning_rate": 0.0002,
654
+ "loss": 0.7368,
655
+ "step": 900
656
+ },
657
+ {
658
+ "epoch": 2.233128834355828,
659
+ "grad_norm": 1.2841371297836304,
660
+ "learning_rate": 0.0002,
661
+ "loss": 0.6615,
662
+ "step": 910
663
+ },
664
+ {
665
+ "epoch": 2.2576687116564416,
666
+ "grad_norm": 0.8669798970222473,
667
+ "learning_rate": 0.0002,
668
+ "loss": 0.767,
669
+ "step": 920
670
+ },
671
+ {
672
+ "epoch": 2.2822085889570554,
673
+ "grad_norm": 0.8732201457023621,
674
+ "learning_rate": 0.0002,
675
+ "loss": 0.7303,
676
+ "step": 930
677
+ },
678
+ {
679
+ "epoch": 2.3067484662576687,
680
+ "grad_norm": 0.9955021739006042,
681
+ "learning_rate": 0.0002,
682
+ "loss": 0.7205,
683
+ "step": 940
684
+ },
685
+ {
686
+ "epoch": 2.331288343558282,
687
+ "grad_norm": 1.0610932111740112,
688
+ "learning_rate": 0.0002,
689
+ "loss": 0.6781,
690
+ "step": 950
691
+ },
692
+ {
693
+ "epoch": 2.355828220858896,
694
+ "grad_norm": 0.9506151080131531,
695
+ "learning_rate": 0.0002,
696
+ "loss": 0.729,
697
+ "step": 960
698
+ },
699
+ {
700
+ "epoch": 2.3803680981595092,
701
+ "grad_norm": 1.259052038192749,
702
+ "learning_rate": 0.0002,
703
+ "loss": 0.6784,
704
+ "step": 970
705
+ },
706
+ {
707
+ "epoch": 2.4049079754601226,
708
+ "grad_norm": 1.1822247505187988,
709
+ "learning_rate": 0.0002,
710
+ "loss": 0.6668,
711
+ "step": 980
712
+ },
713
+ {
714
+ "epoch": 2.4294478527607364,
715
+ "grad_norm": 0.6920015811920166,
716
+ "learning_rate": 0.0002,
717
+ "loss": 0.6623,
718
+ "step": 990
719
+ },
720
+ {
721
+ "epoch": 2.4539877300613497,
722
+ "grad_norm": 0.7560105323791504,
723
+ "learning_rate": 0.0002,
724
+ "loss": 0.6802,
725
+ "step": 1000
726
+ },
727
+ {
728
+ "epoch": 2.478527607361963,
729
+ "grad_norm": 0.8672356009483337,
730
+ "learning_rate": 0.0002,
731
+ "loss": 0.7685,
732
+ "step": 1010
733
+ },
734
+ {
735
+ "epoch": 2.5030674846625764,
736
+ "grad_norm": 1.1074872016906738,
737
+ "learning_rate": 0.0002,
738
+ "loss": 0.7058,
739
+ "step": 1020
740
+ },
741
+ {
742
+ "epoch": 2.5276073619631902,
743
+ "grad_norm": 1.1430137157440186,
744
+ "learning_rate": 0.0002,
745
+ "loss": 0.7746,
746
+ "step": 1030
747
+ },
748
+ {
749
+ "epoch": 2.5521472392638036,
750
+ "grad_norm": 1.6926707029342651,
751
+ "learning_rate": 0.0002,
752
+ "loss": 0.7444,
753
+ "step": 1040
754
+ },
755
+ {
756
+ "epoch": 2.5766871165644174,
757
+ "grad_norm": 1.0170048475265503,
758
+ "learning_rate": 0.0002,
759
+ "loss": 0.7131,
760
+ "step": 1050
761
+ },
762
+ {
763
+ "epoch": 2.6012269938650308,
764
+ "grad_norm": 1.1462562084197998,
765
+ "learning_rate": 0.0002,
766
+ "loss": 0.7275,
767
+ "step": 1060
768
+ },
769
+ {
770
+ "epoch": 2.625766871165644,
771
+ "grad_norm": 1.127669334411621,
772
+ "learning_rate": 0.0002,
773
+ "loss": 0.6736,
774
+ "step": 1070
775
+ },
776
+ {
777
+ "epoch": 2.6503067484662575,
778
+ "grad_norm": 0.9649022221565247,
779
+ "learning_rate": 0.0002,
780
+ "loss": 0.7218,
781
+ "step": 1080
782
+ },
783
+ {
784
+ "epoch": 2.6748466257668713,
785
+ "grad_norm": 0.9426548480987549,
786
+ "learning_rate": 0.0002,
787
+ "loss": 0.7651,
788
+ "step": 1090
789
+ },
790
+ {
791
+ "epoch": 2.6993865030674846,
792
+ "grad_norm": 1.1191051006317139,
793
+ "learning_rate": 0.0002,
794
+ "loss": 0.7829,
795
+ "step": 1100
796
+ },
797
+ {
798
+ "epoch": 2.7239263803680984,
799
+ "grad_norm": 2.229809284210205,
800
+ "learning_rate": 0.0002,
801
+ "loss": 0.7238,
802
+ "step": 1110
803
+ },
804
+ {
805
+ "epoch": 2.7484662576687118,
806
+ "grad_norm": 1.2478930950164795,
807
+ "learning_rate": 0.0002,
808
+ "loss": 0.6828,
809
+ "step": 1120
810
+ },
811
+ {
812
+ "epoch": 2.773006134969325,
813
+ "grad_norm": 0.9907709360122681,
814
+ "learning_rate": 0.0002,
815
+ "loss": 0.7194,
816
+ "step": 1130
817
+ },
818
+ {
819
+ "epoch": 2.7975460122699385,
820
+ "grad_norm": 1.1670643091201782,
821
+ "learning_rate": 0.0002,
822
+ "loss": 0.6531,
823
+ "step": 1140
824
+ },
825
+ {
826
+ "epoch": 2.8220858895705523,
827
+ "grad_norm": 1.1675913333892822,
828
+ "learning_rate": 0.0002,
829
+ "loss": 0.7076,
830
+ "step": 1150
831
+ },
832
+ {
833
+ "epoch": 2.8466257668711656,
834
+ "grad_norm": 0.9909353256225586,
835
+ "learning_rate": 0.0002,
836
+ "loss": 0.6915,
837
+ "step": 1160
838
+ },
839
+ {
840
+ "epoch": 2.871165644171779,
841
+ "grad_norm": 0.8759778141975403,
842
+ "learning_rate": 0.0002,
843
+ "loss": 0.7294,
844
+ "step": 1170
845
+ },
846
+ {
847
+ "epoch": 2.895705521472393,
848
+ "grad_norm": 0.8080666661262512,
849
+ "learning_rate": 0.0002,
850
+ "loss": 0.6451,
851
+ "step": 1180
852
+ },
853
+ {
854
+ "epoch": 2.920245398773006,
855
+ "grad_norm": 0.9743189811706543,
856
+ "learning_rate": 0.0002,
857
+ "loss": 0.7331,
858
+ "step": 1190
859
+ },
860
+ {
861
+ "epoch": 2.9447852760736195,
862
+ "grad_norm": 0.8573821187019348,
863
+ "learning_rate": 0.0002,
864
+ "loss": 0.7471,
865
+ "step": 1200
866
+ },
867
+ {
868
+ "epoch": 2.969325153374233,
869
+ "grad_norm": 1.0196788311004639,
870
+ "learning_rate": 0.0002,
871
+ "loss": 0.7396,
872
+ "step": 1210
873
+ },
874
+ {
875
+ "epoch": 2.9938650306748467,
876
+ "grad_norm": 0.8840402960777283,
877
+ "learning_rate": 0.0002,
878
+ "loss": 0.7288,
879
+ "step": 1220
880
+ },
881
+ {
882
+ "epoch": 2.9987730061349693,
883
+ "eval_loss": 1.4348119497299194,
884
+ "eval_runtime": 80.7583,
885
+ "eval_samples_per_second": 5.646,
886
+ "eval_steps_per_second": 0.706,
887
+ "step": 1222
888
+ },
889
+ {
890
+ "epoch": 3.01840490797546,
891
+ "grad_norm": 1.2376960515975952,
892
+ "learning_rate": 0.0002,
893
+ "loss": 0.5671,
894
+ "step": 1230
895
+ },
896
+ {
897
+ "epoch": 3.042944785276074,
898
+ "grad_norm": 0.9861388206481934,
899
+ "learning_rate": 0.0002,
900
+ "loss": 0.5176,
901
+ "step": 1240
902
+ },
903
+ {
904
+ "epoch": 3.067484662576687,
905
+ "grad_norm": 1.2193198204040527,
906
+ "learning_rate": 0.0002,
907
+ "loss": 0.5623,
908
+ "step": 1250
909
+ },
910
+ {
911
+ "epoch": 3.0920245398773005,
912
+ "grad_norm": 1.1927645206451416,
913
+ "learning_rate": 0.0002,
914
+ "loss": 0.5727,
915
+ "step": 1260
916
+ },
917
+ {
918
+ "epoch": 3.116564417177914,
919
+ "grad_norm": 1.0420559644699097,
920
+ "learning_rate": 0.0002,
921
+ "loss": 0.5296,
922
+ "step": 1270
923
+ },
924
+ {
925
+ "epoch": 3.1411042944785277,
926
+ "grad_norm": 1.014664649963379,
927
+ "learning_rate": 0.0002,
928
+ "loss": 0.5322,
929
+ "step": 1280
930
+ },
931
+ {
932
+ "epoch": 3.165644171779141,
933
+ "grad_norm": 1.3103076219558716,
934
+ "learning_rate": 0.0002,
935
+ "loss": 0.5519,
936
+ "step": 1290
937
+ },
938
+ {
939
+ "epoch": 3.190184049079755,
940
+ "grad_norm": 1.2735213041305542,
941
+ "learning_rate": 0.0002,
942
+ "loss": 0.5133,
943
+ "step": 1300
944
+ },
945
+ {
946
+ "epoch": 3.214723926380368,
947
+ "grad_norm": 1.147608995437622,
948
+ "learning_rate": 0.0002,
949
+ "loss": 0.514,
950
+ "step": 1310
951
+ },
952
+ {
953
+ "epoch": 3.2392638036809815,
954
+ "grad_norm": 0.922386884689331,
955
+ "learning_rate": 0.0002,
956
+ "loss": 0.58,
957
+ "step": 1320
958
+ },
959
+ {
960
+ "epoch": 3.263803680981595,
961
+ "grad_norm": 1.1271566152572632,
962
+ "learning_rate": 0.0002,
963
+ "loss": 0.5425,
964
+ "step": 1330
965
+ },
966
+ {
967
+ "epoch": 3.2883435582822087,
968
+ "grad_norm": 1.2994354963302612,
969
+ "learning_rate": 0.0002,
970
+ "loss": 0.519,
971
+ "step": 1340
972
+ },
973
+ {
974
+ "epoch": 3.312883435582822,
975
+ "grad_norm": 1.0001686811447144,
976
+ "learning_rate": 0.0002,
977
+ "loss": 0.5521,
978
+ "step": 1350
979
+ },
980
+ {
981
+ "epoch": 3.3374233128834354,
982
+ "grad_norm": 1.6737695932388306,
983
+ "learning_rate": 0.0002,
984
+ "loss": 0.564,
985
+ "step": 1360
986
+ },
987
+ {
988
+ "epoch": 3.361963190184049,
989
+ "grad_norm": 1.1842162609100342,
990
+ "learning_rate": 0.0002,
991
+ "loss": 0.5529,
992
+ "step": 1370
993
+ },
994
+ {
995
+ "epoch": 3.3865030674846626,
996
+ "grad_norm": 1.1873128414154053,
997
+ "learning_rate": 0.0002,
998
+ "loss": 0.569,
999
+ "step": 1380
1000
+ },
1001
+ {
1002
+ "epoch": 3.411042944785276,
1003
+ "grad_norm": 1.4505162239074707,
1004
+ "learning_rate": 0.0002,
1005
+ "loss": 0.5199,
1006
+ "step": 1390
1007
+ },
1008
+ {
1009
+ "epoch": 3.4355828220858897,
1010
+ "grad_norm": 1.254621982574463,
1011
+ "learning_rate": 0.0002,
1012
+ "loss": 0.5536,
1013
+ "step": 1400
1014
+ },
1015
+ {
1016
+ "epoch": 3.460122699386503,
1017
+ "grad_norm": 1.5493544340133667,
1018
+ "learning_rate": 0.0002,
1019
+ "loss": 0.5547,
1020
+ "step": 1410
1021
+ },
1022
+ {
1023
+ "epoch": 3.4846625766871164,
1024
+ "grad_norm": 1.4435759782791138,
1025
+ "learning_rate": 0.0002,
1026
+ "loss": 0.542,
1027
+ "step": 1420
1028
+ },
1029
+ {
1030
+ "epoch": 3.5092024539877302,
1031
+ "grad_norm": 1.5885447263717651,
1032
+ "learning_rate": 0.0002,
1033
+ "loss": 0.6124,
1034
+ "step": 1430
1035
+ },
1036
+ {
1037
+ "epoch": 3.5337423312883436,
1038
+ "grad_norm": 1.3357222080230713,
1039
+ "learning_rate": 0.0002,
1040
+ "loss": 0.5737,
1041
+ "step": 1440
1042
+ },
1043
+ {
1044
+ "epoch": 3.558282208588957,
1045
+ "grad_norm": 1.8510551452636719,
1046
+ "learning_rate": 0.0002,
1047
+ "loss": 0.5903,
1048
+ "step": 1450
1049
+ },
1050
+ {
1051
+ "epoch": 3.5828220858895703,
1052
+ "grad_norm": 1.1081656217575073,
1053
+ "learning_rate": 0.0002,
1054
+ "loss": 0.5214,
1055
+ "step": 1460
1056
+ },
1057
+ {
1058
+ "epoch": 3.607361963190184,
1059
+ "grad_norm": 1.2849210500717163,
1060
+ "learning_rate": 0.0002,
1061
+ "loss": 0.5351,
1062
+ "step": 1470
1063
+ },
1064
+ {
1065
+ "epoch": 3.6319018404907975,
1066
+ "grad_norm": 1.2472909688949585,
1067
+ "learning_rate": 0.0002,
1068
+ "loss": 0.5364,
1069
+ "step": 1480
1070
+ },
1071
+ {
1072
+ "epoch": 3.6564417177914113,
1073
+ "grad_norm": 1.1466434001922607,
1074
+ "learning_rate": 0.0002,
1075
+ "loss": 0.5371,
1076
+ "step": 1490
1077
+ },
1078
+ {
1079
+ "epoch": 3.6809815950920246,
1080
+ "grad_norm": 1.325461506843567,
1081
+ "learning_rate": 0.0002,
1082
+ "loss": 0.565,
1083
+ "step": 1500
1084
+ },
1085
+ {
1086
+ "epoch": 3.705521472392638,
1087
+ "grad_norm": 1.4214563369750977,
1088
+ "learning_rate": 0.0002,
1089
+ "loss": 0.6154,
1090
+ "step": 1510
1091
+ },
1092
+ {
1093
+ "epoch": 3.7300613496932513,
1094
+ "grad_norm": 1.1496703624725342,
1095
+ "learning_rate": 0.0002,
1096
+ "loss": 0.5726,
1097
+ "step": 1520
1098
+ },
1099
+ {
1100
+ "epoch": 3.754601226993865,
1101
+ "grad_norm": 1.205261468887329,
1102
+ "learning_rate": 0.0002,
1103
+ "loss": 0.5687,
1104
+ "step": 1530
1105
+ },
1106
+ {
1107
+ "epoch": 3.7791411042944785,
1108
+ "grad_norm": 1.6516913175582886,
1109
+ "learning_rate": 0.0002,
1110
+ "loss": 0.5593,
1111
+ "step": 1540
1112
+ },
1113
+ {
1114
+ "epoch": 3.8036809815950923,
1115
+ "grad_norm": 1.7035053968429565,
1116
+ "learning_rate": 0.0002,
1117
+ "loss": 0.5767,
1118
+ "step": 1550
1119
+ },
1120
+ {
1121
+ "epoch": 3.8282208588957056,
1122
+ "grad_norm": 1.463699460029602,
1123
+ "learning_rate": 0.0002,
1124
+ "loss": 0.5948,
1125
+ "step": 1560
1126
+ },
1127
+ {
1128
+ "epoch": 3.852760736196319,
1129
+ "grad_norm": 1.7970601320266724,
1130
+ "learning_rate": 0.0002,
1131
+ "loss": 0.5326,
1132
+ "step": 1570
1133
+ },
1134
+ {
1135
+ "epoch": 3.8773006134969323,
1136
+ "grad_norm": 1.2967402935028076,
1137
+ "learning_rate": 0.0002,
1138
+ "loss": 0.5919,
1139
+ "step": 1580
1140
+ },
1141
+ {
1142
+ "epoch": 3.901840490797546,
1143
+ "grad_norm": 1.0639182329177856,
1144
+ "learning_rate": 0.0002,
1145
+ "loss": 0.5502,
1146
+ "step": 1590
1147
+ },
1148
+ {
1149
+ "epoch": 3.9263803680981595,
1150
+ "grad_norm": 1.4388368129730225,
1151
+ "learning_rate": 0.0002,
1152
+ "loss": 0.5281,
1153
+ "step": 1600
1154
+ },
1155
+ {
1156
+ "epoch": 3.950920245398773,
1157
+ "grad_norm": 1.2425099611282349,
1158
+ "learning_rate": 0.0002,
1159
+ "loss": 0.6305,
1160
+ "step": 1610
1161
+ },
1162
+ {
1163
+ "epoch": 3.9754601226993866,
1164
+ "grad_norm": 1.3989970684051514,
1165
+ "learning_rate": 0.0002,
1166
+ "loss": 0.5548,
1167
+ "step": 1620
1168
+ },
1169
+ {
1170
+ "epoch": 4.0,
1171
+ "grad_norm": 0.9850553274154663,
1172
+ "learning_rate": 0.0002,
1173
+ "loss": 0.5661,
1174
+ "step": 1630
1175
+ },
1176
+ {
1177
+ "epoch": 4.0,
1178
+ "eval_loss": 1.5340977907180786,
1179
+ "eval_runtime": 79.7233,
1180
+ "eval_samples_per_second": 5.72,
1181
+ "eval_steps_per_second": 0.715,
1182
+ "step": 1630
1183
+ },
1184
+ {
1185
+ "epoch": 4.024539877300613,
1186
+ "grad_norm": 2.1861188411712646,
1187
+ "learning_rate": 0.0002,
1188
+ "loss": 0.4365,
1189
+ "step": 1640
1190
+ },
1191
+ {
1192
+ "epoch": 4.049079754601227,
1193
+ "grad_norm": 1.4574151039123535,
1194
+ "learning_rate": 0.0002,
1195
+ "loss": 0.3987,
1196
+ "step": 1650
1197
+ },
1198
+ {
1199
+ "epoch": 4.07361963190184,
1200
+ "grad_norm": 1.093583345413208,
1201
+ "learning_rate": 0.0002,
1202
+ "loss": 0.404,
1203
+ "step": 1660
1204
+ },
1205
+ {
1206
+ "epoch": 4.098159509202454,
1207
+ "grad_norm": 1.4852519035339355,
1208
+ "learning_rate": 0.0002,
1209
+ "loss": 0.4493,
1210
+ "step": 1670
1211
+ },
1212
+ {
1213
+ "epoch": 4.122699386503068,
1214
+ "grad_norm": 1.9289690256118774,
1215
+ "learning_rate": 0.0002,
1216
+ "loss": 0.3941,
1217
+ "step": 1680
1218
+ },
1219
+ {
1220
+ "epoch": 4.147239263803681,
1221
+ "grad_norm": 1.286780834197998,
1222
+ "learning_rate": 0.0002,
1223
+ "loss": 0.4015,
1224
+ "step": 1690
1225
+ },
1226
+ {
1227
+ "epoch": 4.171779141104294,
1228
+ "grad_norm": 1.1915839910507202,
1229
+ "learning_rate": 0.0002,
1230
+ "loss": 0.396,
1231
+ "step": 1700
1232
+ },
1233
+ {
1234
+ "epoch": 4.196319018404908,
1235
+ "grad_norm": 0.9827993512153625,
1236
+ "learning_rate": 0.0002,
1237
+ "loss": 0.4053,
1238
+ "step": 1710
1239
+ },
1240
+ {
1241
+ "epoch": 4.220858895705521,
1242
+ "grad_norm": 1.314813494682312,
1243
+ "learning_rate": 0.0002,
1244
+ "loss": 0.4341,
1245
+ "step": 1720
1246
+ },
1247
+ {
1248
+ "epoch": 4.245398773006135,
1249
+ "grad_norm": 1.6890170574188232,
1250
+ "learning_rate": 0.0002,
1251
+ "loss": 0.4187,
1252
+ "step": 1730
1253
+ },
1254
+ {
1255
+ "epoch": 4.269938650306749,
1256
+ "grad_norm": 1.5559035539627075,
1257
+ "learning_rate": 0.0002,
1258
+ "loss": 0.4047,
1259
+ "step": 1740
1260
+ },
1261
+ {
1262
+ "epoch": 4.294478527607362,
1263
+ "grad_norm": 1.8186208009719849,
1264
+ "learning_rate": 0.0002,
1265
+ "loss": 0.4398,
1266
+ "step": 1750
1267
+ },
1268
+ {
1269
+ "epoch": 4.319018404907975,
1270
+ "grad_norm": 0.9572193026542664,
1271
+ "learning_rate": 0.0002,
1272
+ "loss": 0.4223,
1273
+ "step": 1760
1274
+ },
1275
+ {
1276
+ "epoch": 4.343558282208589,
1277
+ "grad_norm": 2.1470448970794678,
1278
+ "learning_rate": 0.0002,
1279
+ "loss": 0.5141,
1280
+ "step": 1770
1281
+ },
1282
+ {
1283
+ "epoch": 4.368098159509202,
1284
+ "grad_norm": 1.2788262367248535,
1285
+ "learning_rate": 0.0002,
1286
+ "loss": 0.4051,
1287
+ "step": 1780
1288
+ },
1289
+ {
1290
+ "epoch": 4.392638036809816,
1291
+ "grad_norm": 1.8074915409088135,
1292
+ "learning_rate": 0.0002,
1293
+ "loss": 0.4574,
1294
+ "step": 1790
1295
+ },
1296
+ {
1297
+ "epoch": 4.41717791411043,
1298
+ "grad_norm": 0.9725378751754761,
1299
+ "learning_rate": 0.0002,
1300
+ "loss": 0.4195,
1301
+ "step": 1800
1302
+ },
1303
+ {
1304
+ "epoch": 4.441717791411043,
1305
+ "grad_norm": 1.7154884338378906,
1306
+ "learning_rate": 0.0002,
1307
+ "loss": 0.4267,
1308
+ "step": 1810
1309
+ },
1310
+ {
1311
+ "epoch": 4.466257668711656,
1312
+ "grad_norm": 1.07939612865448,
1313
+ "learning_rate": 0.0002,
1314
+ "loss": 0.4059,
1315
+ "step": 1820
1316
+ },
1317
+ {
1318
+ "epoch": 4.49079754601227,
1319
+ "grad_norm": 1.1510107517242432,
1320
+ "learning_rate": 0.0002,
1321
+ "loss": 0.4572,
1322
+ "step": 1830
1323
+ },
1324
+ {
1325
+ "epoch": 4.515337423312883,
1326
+ "grad_norm": 1.2309428453445435,
1327
+ "learning_rate": 0.0002,
1328
+ "loss": 0.4053,
1329
+ "step": 1840
1330
+ },
1331
+ {
1332
+ "epoch": 4.539877300613497,
1333
+ "grad_norm": 1.31099271774292,
1334
+ "learning_rate": 0.0002,
1335
+ "loss": 0.4275,
1336
+ "step": 1850
1337
+ },
1338
+ {
1339
+ "epoch": 4.564417177914111,
1340
+ "grad_norm": 1.2938907146453857,
1341
+ "learning_rate": 0.0002,
1342
+ "loss": 0.4755,
1343
+ "step": 1860
1344
+ },
1345
+ {
1346
+ "epoch": 4.588957055214724,
1347
+ "grad_norm": 1.6019647121429443,
1348
+ "learning_rate": 0.0002,
1349
+ "loss": 0.478,
1350
+ "step": 1870
1351
+ },
1352
+ {
1353
+ "epoch": 4.613496932515337,
1354
+ "grad_norm": 1.9093713760375977,
1355
+ "learning_rate": 0.0002,
1356
+ "loss": 0.4492,
1357
+ "step": 1880
1358
+ },
1359
+ {
1360
+ "epoch": 4.638036809815951,
1361
+ "grad_norm": 1.4761801958084106,
1362
+ "learning_rate": 0.0002,
1363
+ "loss": 0.4522,
1364
+ "step": 1890
1365
+ },
1366
+ {
1367
+ "epoch": 4.662576687116564,
1368
+ "grad_norm": 1.2435506582260132,
1369
+ "learning_rate": 0.0002,
1370
+ "loss": 0.5078,
1371
+ "step": 1900
1372
+ },
1373
+ {
1374
+ "epoch": 4.6871165644171775,
1375
+ "grad_norm": 1.5027297735214233,
1376
+ "learning_rate": 0.0002,
1377
+ "loss": 0.4656,
1378
+ "step": 1910
1379
+ },
1380
+ {
1381
+ "epoch": 4.711656441717792,
1382
+ "grad_norm": 1.323907494544983,
1383
+ "learning_rate": 0.0002,
1384
+ "loss": 0.4428,
1385
+ "step": 1920
1386
+ },
1387
+ {
1388
+ "epoch": 4.736196319018405,
1389
+ "grad_norm": 1.1643304824829102,
1390
+ "learning_rate": 0.0002,
1391
+ "loss": 0.4113,
1392
+ "step": 1930
1393
+ },
1394
+ {
1395
+ "epoch": 4.7607361963190185,
1396
+ "grad_norm": 1.4745224714279175,
1397
+ "learning_rate": 0.0002,
1398
+ "loss": 0.4548,
1399
+ "step": 1940
1400
+ },
1401
+ {
1402
+ "epoch": 4.785276073619632,
1403
+ "grad_norm": 1.6811035871505737,
1404
+ "learning_rate": 0.0002,
1405
+ "loss": 0.4447,
1406
+ "step": 1950
1407
+ },
1408
+ {
1409
+ "epoch": 4.809815950920245,
1410
+ "grad_norm": 1.0878573656082153,
1411
+ "learning_rate": 0.0002,
1412
+ "loss": 0.4669,
1413
+ "step": 1960
1414
+ },
1415
+ {
1416
+ "epoch": 4.8343558282208585,
1417
+ "grad_norm": 1.640516996383667,
1418
+ "learning_rate": 0.0002,
1419
+ "loss": 0.4589,
1420
+ "step": 1970
1421
+ },
1422
+ {
1423
+ "epoch": 4.858895705521473,
1424
+ "grad_norm": 1.305409550666809,
1425
+ "learning_rate": 0.0002,
1426
+ "loss": 0.4534,
1427
+ "step": 1980
1428
+ },
1429
+ {
1430
+ "epoch": 4.883435582822086,
1431
+ "grad_norm": 1.5608975887298584,
1432
+ "learning_rate": 0.0002,
1433
+ "loss": 0.4512,
1434
+ "step": 1990
1435
+ },
1436
+ {
1437
+ "epoch": 4.9079754601226995,
1438
+ "grad_norm": 1.3681490421295166,
1439
+ "learning_rate": 0.0002,
1440
+ "loss": 0.4602,
1441
+ "step": 2000
1442
+ },
1443
+ {
1444
+ "epoch": 4.932515337423313,
1445
+ "grad_norm": 1.241847276687622,
1446
+ "learning_rate": 0.0002,
1447
+ "loss": 0.4445,
1448
+ "step": 2010
1449
+ },
1450
+ {
1451
+ "epoch": 4.957055214723926,
1452
+ "grad_norm": 1.1561694145202637,
1453
+ "learning_rate": 0.0002,
1454
+ "loss": 0.502,
1455
+ "step": 2020
1456
+ },
1457
+ {
1458
+ "epoch": 4.9815950920245395,
1459
+ "grad_norm": 1.8284252882003784,
1460
+ "learning_rate": 0.0002,
1461
+ "loss": 0.4586,
1462
+ "step": 2030
1463
+ },
1464
+ {
1465
+ "epoch": 4.99877300613497,
1466
+ "eval_loss": 1.702454686164856,
1467
+ "eval_runtime": 79.3705,
1468
+ "eval_samples_per_second": 5.745,
1469
+ "eval_steps_per_second": 0.718,
1470
+ "step": 2037
1471
+ },
1472
+ {
1473
+ "epoch": 5.006134969325154,
1474
+ "grad_norm": 0.8960777521133423,
1475
+ "learning_rate": 0.0002,
1476
+ "loss": 0.4039,
1477
+ "step": 2040
1478
+ },
1479
+ {
1480
+ "epoch": 5.030674846625767,
1481
+ "grad_norm": 2.3825552463531494,
1482
+ "learning_rate": 0.0002,
1483
+ "loss": 0.3437,
1484
+ "step": 2050
1485
+ },
1486
+ {
1487
+ "epoch": 5.0552147239263805,
1488
+ "grad_norm": 1.1818524599075317,
1489
+ "learning_rate": 0.0002,
1490
+ "loss": 0.34,
1491
+ "step": 2060
1492
+ },
1493
+ {
1494
+ "epoch": 5.079754601226994,
1495
+ "grad_norm": 1.327019214630127,
1496
+ "learning_rate": 0.0002,
1497
+ "loss": 0.3574,
1498
+ "step": 2070
1499
+ },
1500
+ {
1501
+ "epoch": 5.104294478527607,
1502
+ "grad_norm": 1.3264802694320679,
1503
+ "learning_rate": 0.0002,
1504
+ "loss": 0.3471,
1505
+ "step": 2080
1506
+ },
1507
+ {
1508
+ "epoch": 5.128834355828221,
1509
+ "grad_norm": 1.3847426176071167,
1510
+ "learning_rate": 0.0002,
1511
+ "loss": 0.3311,
1512
+ "step": 2090
1513
+ },
1514
+ {
1515
+ "epoch": 5.153374233128835,
1516
+ "grad_norm": 2.4007370471954346,
1517
+ "learning_rate": 0.0002,
1518
+ "loss": 0.3588,
1519
+ "step": 2100
1520
+ },
1521
+ {
1522
+ "epoch": 5.177914110429448,
1523
+ "grad_norm": 1.1784768104553223,
1524
+ "learning_rate": 0.0002,
1525
+ "loss": 0.3359,
1526
+ "step": 2110
1527
+ },
1528
+ {
1529
+ "epoch": 5.2024539877300615,
1530
+ "grad_norm": 1.4660961627960205,
1531
+ "learning_rate": 0.0002,
1532
+ "loss": 0.3955,
1533
+ "step": 2120
1534
+ },
1535
+ {
1536
+ "epoch": 5.226993865030675,
1537
+ "grad_norm": 2.423863410949707,
1538
+ "learning_rate": 0.0002,
1539
+ "loss": 0.3947,
1540
+ "step": 2130
1541
+ },
1542
+ {
1543
+ "epoch": 5.251533742331288,
1544
+ "grad_norm": 1.2838112115859985,
1545
+ "learning_rate": 0.0002,
1546
+ "loss": 0.3396,
1547
+ "step": 2140
1548
+ },
1549
+ {
1550
+ "epoch": 5.276073619631902,
1551
+ "grad_norm": 1.5166656970977783,
1552
+ "learning_rate": 0.0002,
1553
+ "loss": 0.3538,
1554
+ "step": 2150
1555
+ },
1556
+ {
1557
+ "epoch": 5.300613496932515,
1558
+ "grad_norm": 1.9416661262512207,
1559
+ "learning_rate": 0.0002,
1560
+ "loss": 0.3618,
1561
+ "step": 2160
1562
+ },
1563
+ {
1564
+ "epoch": 5.325153374233129,
1565
+ "grad_norm": 1.56295645236969,
1566
+ "learning_rate": 0.0002,
1567
+ "loss": 0.3592,
1568
+ "step": 2170
1569
+ },
1570
+ {
1571
+ "epoch": 5.3496932515337425,
1572
+ "grad_norm": 1.5476324558258057,
1573
+ "learning_rate": 0.0002,
1574
+ "loss": 0.3571,
1575
+ "step": 2180
1576
+ },
1577
+ {
1578
+ "epoch": 5.374233128834356,
1579
+ "grad_norm": 1.5130436420440674,
1580
+ "learning_rate": 0.0002,
1581
+ "loss": 0.3448,
1582
+ "step": 2190
1583
+ },
1584
+ {
1585
+ "epoch": 5.398773006134969,
1586
+ "grad_norm": 1.7863224744796753,
1587
+ "learning_rate": 0.0002,
1588
+ "loss": 0.3683,
1589
+ "step": 2200
1590
+ },
1591
+ {
1592
+ "epoch": 5.423312883435583,
1593
+ "grad_norm": 1.837112545967102,
1594
+ "learning_rate": 0.0002,
1595
+ "loss": 0.348,
1596
+ "step": 2210
1597
+ },
1598
+ {
1599
+ "epoch": 5.447852760736196,
1600
+ "grad_norm": 1.7759106159210205,
1601
+ "learning_rate": 0.0002,
1602
+ "loss": 0.3835,
1603
+ "step": 2220
1604
+ },
1605
+ {
1606
+ "epoch": 5.47239263803681,
1607
+ "grad_norm": 1.3154255151748657,
1608
+ "learning_rate": 0.0002,
1609
+ "loss": 0.3909,
1610
+ "step": 2230
1611
+ },
1612
+ {
1613
+ "epoch": 5.4969325153374236,
1614
+ "grad_norm": 1.8282175064086914,
1615
+ "learning_rate": 0.0002,
1616
+ "loss": 0.3792,
1617
+ "step": 2240
1618
+ },
1619
+ {
1620
+ "epoch": 5.521472392638037,
1621
+ "grad_norm": 1.486496090888977,
1622
+ "learning_rate": 0.0002,
1623
+ "loss": 0.3751,
1624
+ "step": 2250
1625
+ },
1626
+ {
1627
+ "epoch": 5.54601226993865,
1628
+ "grad_norm": 1.2023154497146606,
1629
+ "learning_rate": 0.0002,
1630
+ "loss": 0.3616,
1631
+ "step": 2260
1632
+ },
1633
+ {
1634
+ "epoch": 5.570552147239264,
1635
+ "grad_norm": 1.6753804683685303,
1636
+ "learning_rate": 0.0002,
1637
+ "loss": 0.3804,
1638
+ "step": 2270
1639
+ },
1640
+ {
1641
+ "epoch": 5.595092024539877,
1642
+ "grad_norm": 1.472532868385315,
1643
+ "learning_rate": 0.0002,
1644
+ "loss": 0.386,
1645
+ "step": 2280
1646
+ },
1647
+ {
1648
+ "epoch": 5.61963190184049,
1649
+ "grad_norm": 1.6524516344070435,
1650
+ "learning_rate": 0.0002,
1651
+ "loss": 0.3882,
1652
+ "step": 2290
1653
+ },
1654
+ {
1655
+ "epoch": 5.644171779141105,
1656
+ "grad_norm": 1.5600810050964355,
1657
+ "learning_rate": 0.0002,
1658
+ "loss": 0.3757,
1659
+ "step": 2300
1660
+ },
1661
+ {
1662
+ "epoch": 5.668711656441718,
1663
+ "grad_norm": 1.521317958831787,
1664
+ "learning_rate": 0.0002,
1665
+ "loss": 0.3974,
1666
+ "step": 2310
1667
+ },
1668
+ {
1669
+ "epoch": 5.693251533742331,
1670
+ "grad_norm": 1.3662383556365967,
1671
+ "learning_rate": 0.0002,
1672
+ "loss": 0.3625,
1673
+ "step": 2320
1674
+ },
1675
+ {
1676
+ "epoch": 5.717791411042945,
1677
+ "grad_norm": 1.0605283975601196,
1678
+ "learning_rate": 0.0002,
1679
+ "loss": 0.3192,
1680
+ "step": 2330
1681
+ },
1682
+ {
1683
+ "epoch": 5.742331288343558,
1684
+ "grad_norm": 1.3059141635894775,
1685
+ "learning_rate": 0.0002,
1686
+ "loss": 0.3721,
1687
+ "step": 2340
1688
+ },
1689
+ {
1690
+ "epoch": 5.766871165644172,
1691
+ "grad_norm": 1.697109341621399,
1692
+ "learning_rate": 0.0002,
1693
+ "loss": 0.3798,
1694
+ "step": 2350
1695
+ },
1696
+ {
1697
+ "epoch": 5.791411042944786,
1698
+ "grad_norm": 1.7123175859451294,
1699
+ "learning_rate": 0.0002,
1700
+ "loss": 0.3648,
1701
+ "step": 2360
1702
+ },
1703
+ {
1704
+ "epoch": 5.815950920245399,
1705
+ "grad_norm": 1.9613343477249146,
1706
+ "learning_rate": 0.0002,
1707
+ "loss": 0.3891,
1708
+ "step": 2370
1709
+ },
1710
+ {
1711
+ "epoch": 5.840490797546012,
1712
+ "grad_norm": 1.3213013410568237,
1713
+ "learning_rate": 0.0002,
1714
+ "loss": 0.3307,
1715
+ "step": 2380
1716
+ },
1717
+ {
1718
+ "epoch": 5.865030674846626,
1719
+ "grad_norm": 1.56651771068573,
1720
+ "learning_rate": 0.0002,
1721
+ "loss": 0.3987,
1722
+ "step": 2390
1723
+ },
1724
+ {
1725
+ "epoch": 5.889570552147239,
1726
+ "grad_norm": 1.8884061574935913,
1727
+ "learning_rate": 0.0002,
1728
+ "loss": 0.3714,
1729
+ "step": 2400
1730
+ },
1731
+ {
1732
+ "epoch": 5.914110429447852,
1733
+ "grad_norm": 1.8811849355697632,
1734
+ "learning_rate": 0.0002,
1735
+ "loss": 0.3654,
1736
+ "step": 2410
1737
+ },
1738
+ {
1739
+ "epoch": 5.938650306748467,
1740
+ "grad_norm": 1.3935836553573608,
1741
+ "learning_rate": 0.0002,
1742
+ "loss": 0.3823,
1743
+ "step": 2420
1744
+ },
1745
+ {
1746
+ "epoch": 5.96319018404908,
1747
+ "grad_norm": 1.6891478300094604,
1748
+ "learning_rate": 0.0002,
1749
+ "loss": 0.3814,
1750
+ "step": 2430
1751
+ },
1752
+ {
1753
+ "epoch": 5.987730061349693,
1754
+ "grad_norm": 1.5192315578460693,
1755
+ "learning_rate": 0.0002,
1756
+ "loss": 0.3738,
1757
+ "step": 2440
1758
+ },
1759
+ {
1760
+ "epoch": 6.0,
1761
+ "eval_loss": 1.783948540687561,
1762
+ "eval_runtime": 79.3389,
1763
+ "eval_samples_per_second": 5.747,
1764
+ "eval_steps_per_second": 0.718,
1765
+ "step": 2445
1766
+ }
1767
+ ],
1768
+ "logging_steps": 10,
1769
+ "max_steps": 3256,
1770
+ "num_input_tokens_seen": 0,
1771
+ "num_train_epochs": 8,
1772
+ "save_steps": 200,
1773
+ "stateful_callbacks": {
1774
+ "TrainerControl": {
1775
+ "args": {
1776
+ "should_epoch_stop": false,
1777
+ "should_evaluate": false,
1778
+ "should_log": false,
1779
+ "should_save": true,
1780
+ "should_training_stop": false
1781
+ },
1782
+ "attributes": {}
1783
+ }
1784
+ },
1785
+ "total_flos": 1.07273706799104e+17,
1786
+ "train_batch_size": 1,
1787
+ "trial_name": null,
1788
+ "trial_params": null
1789
+ }