MilaWang commited on
Commit
0f8dd66
·
verified ·
1 Parent(s): b1a7cb3

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/README.md +203 -0
  2. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/adapter_config.json +29 -0
  3. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/adapter_model.safetensors +3 -0
  4. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/README.md +203 -0
  5. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/adapter_config.json +29 -0
  6. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/adapter_model.safetensors +3 -0
  7. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/optimizer.pt +3 -0
  8. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/rng_state.pth +3 -0
  9. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/scheduler.pt +3 -0
  10. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/special_tokens_map.json +24 -0
  11. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/tokenizer.json +0 -0
  12. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/tokenizer.model +3 -0
  13. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/tokenizer_config.json +0 -0
  14. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/trainer_state.json +846 -0
  15. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/training_args.bin +3 -0
  16. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/README.md +203 -0
  17. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/adapter_config.json +29 -0
  18. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/adapter_model.safetensors +3 -0
  19. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/optimizer.pt +3 -0
  20. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/rng_state.pth +3 -0
  21. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/scheduler.pt +3 -0
  22. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/special_tokens_map.json +24 -0
  23. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/tokenizer.json +0 -0
  24. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/tokenizer.model +3 -0
  25. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/tokenizer_config.json +0 -0
  26. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/trainer_state.json +1666 -0
  27. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/training_args.bin +3 -0
  28. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/README.md +203 -0
  29. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/adapter_config.json +29 -0
  30. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/adapter_model.safetensors +3 -0
  31. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/optimizer.pt +3 -0
  32. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/rng_state.pth +3 -0
  33. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/scheduler.pt +3 -0
  34. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/special_tokens_map.json +24 -0
  35. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/tokenizer.json +0 -0
  36. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/tokenizer.model +3 -0
  37. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/tokenizer_config.json +0 -0
  38. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/trainer_state.json +2486 -0
  39. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/training_args.bin +3 -0
  40. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/README.md +203 -0
  41. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/adapter_config.json +29 -0
  42. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/adapter_model.safetensors +3 -0
  43. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/optimizer.pt +3 -0
  44. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/rng_state.pth +3 -0
  45. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/scheduler.pt +3 -0
  46. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/special_tokens_map.json +24 -0
  47. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/tokenizer.json +0 -0
  48. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/tokenizer.model +3 -0
  49. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/tokenizer_config.json +0 -0
  50. Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/trainer_state.json +3306 -0
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/README.md ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
203
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a396c86cea44bd83b9d8a41942862cab1058a81f7839cc727d2809918a91b7a
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/README.md ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
203
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a396c86cea44bd83b9d8a41942862cab1058a81f7839cc727d2809918a91b7a
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2887b3f056c0ab921703c8c30dcfb58942d353c14d60672daecade1be31a7507
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c032c2ea48bffa522b4314767c489a63854b7728f8a516755a0e0e5a2240712
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c93b6bb2ecd1834fe3da6e50e7142ce04534e75a95b0772916387b7fe3753b6
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/trainer_state.json ADDED
@@ -0,0 +1,846 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7723218202590942,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159",
4
+ "epoch": 1.0,
5
+ "eval_steps": 10,
6
+ "global_step": 1159,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008628127696289905,
13
+ "grad_norm": 1.7177482843399048,
14
+ "learning_rate": 0.0002,
15
+ "loss": 2.5586,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.01725625539257981,
20
+ "grad_norm": 2.8122410774230957,
21
+ "learning_rate": 0.0002,
22
+ "loss": 2.2918,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.025884383088869714,
27
+ "grad_norm": 1.6668062210083008,
28
+ "learning_rate": 0.0002,
29
+ "loss": 2.0885,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.03451251078515962,
34
+ "grad_norm": 1.745869755744934,
35
+ "learning_rate": 0.0002,
36
+ "loss": 2.0469,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.04314063848144953,
41
+ "grad_norm": 1.807971477508545,
42
+ "learning_rate": 0.0002,
43
+ "loss": 2.0754,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.05176876617773943,
48
+ "grad_norm": 2.4009974002838135,
49
+ "learning_rate": 0.0002,
50
+ "loss": 2.0867,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.060396893874029335,
55
+ "grad_norm": 2.0974676609039307,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.8575,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.06902502157031924,
62
+ "grad_norm": 1.7705916166305542,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.8921,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.07765314926660914,
69
+ "grad_norm": 1.4324289560317993,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.8119,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.08628127696289906,
76
+ "grad_norm": 1.2521991729736328,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.8728,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.09490940465918896,
83
+ "grad_norm": 1.3328145742416382,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.8168,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.10353753235547886,
90
+ "grad_norm": 2.2908742427825928,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.8236,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.11216566005176877,
97
+ "grad_norm": 1.540981411933899,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.8732,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.12079378774805867,
104
+ "grad_norm": 1.1785069704055786,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.8138,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.12942191544434858,
111
+ "grad_norm": 1.3138738870620728,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.8655,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.13805004314063848,
118
+ "grad_norm": 1.153215765953064,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.8418,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.14667817083692838,
125
+ "grad_norm": 1.2071360349655151,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.8284,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.15530629853321828,
132
+ "grad_norm": 1.3546127080917358,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.8645,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.16393442622950818,
139
+ "grad_norm": 1.1494425535202026,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.8699,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.1725625539257981,
146
+ "grad_norm": 0.982718825340271,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.7845,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.181190681622088,
153
+ "grad_norm": 1.1329727172851562,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.8237,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.1898188093183779,
160
+ "grad_norm": 1.1397384405136108,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.8516,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.1984469370146678,
167
+ "grad_norm": 1.2424808740615845,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.7504,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.2070750647109577,
174
+ "grad_norm": 1.1463897228240967,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.7626,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.21570319240724764,
181
+ "grad_norm": 1.2353036403656006,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.7977,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.22433132010353754,
188
+ "grad_norm": 1.0135247707366943,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.8274,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.23295944779982744,
195
+ "grad_norm": 1.1388282775878906,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.7678,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.24158757549611734,
202
+ "grad_norm": 1.1262438297271729,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.7895,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.25021570319240727,
209
+ "grad_norm": 1.0581450462341309,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.826,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.25884383088869717,
216
+ "grad_norm": 1.1737277507781982,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.7269,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.26747195858498707,
223
+ "grad_norm": 1.0906627178192139,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.7975,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.27610008628127697,
230
+ "grad_norm": 1.0010069608688354,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.7594,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.28472821397756687,
237
+ "grad_norm": 1.2149732112884521,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.7998,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.29335634167385677,
244
+ "grad_norm": 1.293990969657898,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.8079,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.30198446937014667,
251
+ "grad_norm": 1.0082058906555176,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.7629,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.31061259706643657,
258
+ "grad_norm": 1.0307148694992065,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.8001,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.31924072476272647,
265
+ "grad_norm": 0.9646756649017334,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.7456,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.32786885245901637,
272
+ "grad_norm": 1.105623722076416,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.7979,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.3364969801553063,
279
+ "grad_norm": 0.9365625977516174,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.7313,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.3451251078515962,
286
+ "grad_norm": 1.1378847360610962,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.809,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.3537532355478861,
293
+ "grad_norm": 1.1266193389892578,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.7857,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.362381363244176,
300
+ "grad_norm": 1.0886635780334473,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.8096,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.3710094909404659,
307
+ "grad_norm": 1.0463931560516357,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.7422,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.3796376186367558,
314
+ "grad_norm": 1.0923888683319092,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.7936,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.3882657463330457,
321
+ "grad_norm": 1.1386370658874512,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.7777,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.3968938740293356,
328
+ "grad_norm": 1.0098074674606323,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.7211,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.4055220017256255,
335
+ "grad_norm": 1.1237372159957886,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.7457,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.4141501294219154,
342
+ "grad_norm": 1.0218915939331055,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.854,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.4227782571182053,
349
+ "grad_norm": 0.9998831748962402,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.8548,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.4314063848144953,
356
+ "grad_norm": 1.0424970388412476,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.7159,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.4400345125107852,
363
+ "grad_norm": 0.903372585773468,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.788,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.4486626402070751,
370
+ "grad_norm": 1.0864766836166382,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.8293,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.457290767903365,
377
+ "grad_norm": 0.9694207310676575,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.8402,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.4659188955996549,
384
+ "grad_norm": 1.2796396017074585,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.7802,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.4745470232959448,
391
+ "grad_norm": 1.0316239595413208,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.7716,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.4831751509922347,
398
+ "grad_norm": 1.0445313453674316,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.7734,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.4918032786885246,
405
+ "grad_norm": 1.1078376770019531,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.8082,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.5004314063848145,
412
+ "grad_norm": 1.0551974773406982,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.7298,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.5090595340811044,
419
+ "grad_norm": 1.114853858947754,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.8673,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.5176876617773943,
426
+ "grad_norm": 1.0642707347869873,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.7684,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.5263157894736842,
433
+ "grad_norm": 1.088079810142517,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.8367,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.5349439171699741,
440
+ "grad_norm": 1.4029462337493896,
441
+ "learning_rate": 0.0002,
442
+ "loss": 1.775,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.543572044866264,
447
+ "grad_norm": 1.2136136293411255,
448
+ "learning_rate": 0.0002,
449
+ "loss": 1.7771,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.5522001725625539,
454
+ "grad_norm": 0.9642075896263123,
455
+ "learning_rate": 0.0002,
456
+ "loss": 1.8006,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.5608283002588438,
461
+ "grad_norm": 1.0879552364349365,
462
+ "learning_rate": 0.0002,
463
+ "loss": 1.7478,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.5694564279551337,
468
+ "grad_norm": 1.1766546964645386,
469
+ "learning_rate": 0.0002,
470
+ "loss": 1.8427,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.5780845556514237,
475
+ "grad_norm": 1.582840085029602,
476
+ "learning_rate": 0.0002,
477
+ "loss": 1.7129,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.5867126833477135,
482
+ "grad_norm": 1.0681092739105225,
483
+ "learning_rate": 0.0002,
484
+ "loss": 1.8093,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.5953408110440035,
489
+ "grad_norm": 1.103897213935852,
490
+ "learning_rate": 0.0002,
491
+ "loss": 1.8067,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.6039689387402933,
496
+ "grad_norm": 1.0974211692810059,
497
+ "learning_rate": 0.0002,
498
+ "loss": 1.7425,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.6125970664365833,
503
+ "grad_norm": 1.1002469062805176,
504
+ "learning_rate": 0.0002,
505
+ "loss": 1.784,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.6212251941328731,
510
+ "grad_norm": 1.0022329092025757,
511
+ "learning_rate": 0.0002,
512
+ "loss": 1.8106,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.6298533218291631,
517
+ "grad_norm": 1.0089571475982666,
518
+ "learning_rate": 0.0002,
519
+ "loss": 1.7647,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.6384814495254529,
524
+ "grad_norm": 0.9531904458999634,
525
+ "learning_rate": 0.0002,
526
+ "loss": 1.8033,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.6471095772217429,
531
+ "grad_norm": 1.162675380706787,
532
+ "learning_rate": 0.0002,
533
+ "loss": 1.7644,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.6557377049180327,
538
+ "grad_norm": 1.0488134622573853,
539
+ "learning_rate": 0.0002,
540
+ "loss": 1.7531,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.6643658326143227,
545
+ "grad_norm": 1.12964928150177,
546
+ "learning_rate": 0.0002,
547
+ "loss": 1.7583,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.6729939603106126,
552
+ "grad_norm": 1.0867345333099365,
553
+ "learning_rate": 0.0002,
554
+ "loss": 1.7765,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.6816220880069025,
559
+ "grad_norm": 1.1084282398223877,
560
+ "learning_rate": 0.0002,
561
+ "loss": 1.7797,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.6902502157031924,
566
+ "grad_norm": 0.9905423521995544,
567
+ "learning_rate": 0.0002,
568
+ "loss": 1.7792,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.6988783433994823,
573
+ "grad_norm": 1.18604576587677,
574
+ "learning_rate": 0.0002,
575
+ "loss": 1.7825,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.7075064710957722,
580
+ "grad_norm": 1.0819629430770874,
581
+ "learning_rate": 0.0002,
582
+ "loss": 1.8242,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.7161345987920621,
587
+ "grad_norm": 2.0091195106506348,
588
+ "learning_rate": 0.0002,
589
+ "loss": 1.7916,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.724762726488352,
594
+ "grad_norm": 1.0371277332305908,
595
+ "learning_rate": 0.0002,
596
+ "loss": 1.8186,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.7333908541846419,
601
+ "grad_norm": 1.217102289199829,
602
+ "learning_rate": 0.0002,
603
+ "loss": 1.7937,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.7420189818809318,
608
+ "grad_norm": 1.0528525114059448,
609
+ "learning_rate": 0.0002,
610
+ "loss": 1.7317,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.7506471095772217,
615
+ "grad_norm": 1.1398800611495972,
616
+ "learning_rate": 0.0002,
617
+ "loss": 1.7757,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.7592752372735116,
622
+ "grad_norm": 1.1546001434326172,
623
+ "learning_rate": 0.0002,
624
+ "loss": 1.8326,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.7679033649698016,
629
+ "grad_norm": 1.0745750665664673,
630
+ "learning_rate": 0.0002,
631
+ "loss": 1.7178,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.7765314926660914,
636
+ "grad_norm": 1.1739161014556885,
637
+ "learning_rate": 0.0002,
638
+ "loss": 1.7718,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.7851596203623814,
643
+ "grad_norm": 1.1932017803192139,
644
+ "learning_rate": 0.0002,
645
+ "loss": 1.7764,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.7937877480586712,
650
+ "grad_norm": 1.143064022064209,
651
+ "learning_rate": 0.0002,
652
+ "loss": 1.7192,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.8024158757549612,
657
+ "grad_norm": 1.200974464416504,
658
+ "learning_rate": 0.0002,
659
+ "loss": 1.7342,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.811044003451251,
664
+ "grad_norm": 1.0878669023513794,
665
+ "learning_rate": 0.0002,
666
+ "loss": 1.7399,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.819672131147541,
671
+ "grad_norm": 1.0516951084136963,
672
+ "learning_rate": 0.0002,
673
+ "loss": 1.8019,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.8283002588438308,
678
+ "grad_norm": 1.2017741203308105,
679
+ "learning_rate": 0.0002,
680
+ "loss": 1.7645,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.8369283865401208,
685
+ "grad_norm": 0.9762169718742371,
686
+ "learning_rate": 0.0002,
687
+ "loss": 1.7367,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.8455565142364107,
692
+ "grad_norm": 1.0837513208389282,
693
+ "learning_rate": 0.0002,
694
+ "loss": 1.7802,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.8541846419327006,
699
+ "grad_norm": 1.155504822731018,
700
+ "learning_rate": 0.0002,
701
+ "loss": 1.8094,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.8628127696289906,
706
+ "grad_norm": 1.067771315574646,
707
+ "learning_rate": 0.0002,
708
+ "loss": 1.7633,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.8714408973252804,
713
+ "grad_norm": 1.2283565998077393,
714
+ "learning_rate": 0.0002,
715
+ "loss": 1.7993,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.8800690250215704,
720
+ "grad_norm": 1.1549772024154663,
721
+ "learning_rate": 0.0002,
722
+ "loss": 1.7362,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.8886971527178602,
727
+ "grad_norm": 1.0022625923156738,
728
+ "learning_rate": 0.0002,
729
+ "loss": 1.7583,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.8973252804141502,
734
+ "grad_norm": 1.0237284898757935,
735
+ "learning_rate": 0.0002,
736
+ "loss": 1.7718,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.90595340811044,
741
+ "grad_norm": 1.1863008737564087,
742
+ "learning_rate": 0.0002,
743
+ "loss": 1.7457,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.91458153580673,
748
+ "grad_norm": 1.001204013824463,
749
+ "learning_rate": 0.0002,
750
+ "loss": 1.6951,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.9232096635030198,
755
+ "grad_norm": 1.2686481475830078,
756
+ "learning_rate": 0.0002,
757
+ "loss": 1.7506,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.9318377911993098,
762
+ "grad_norm": 1.0700076818466187,
763
+ "learning_rate": 0.0002,
764
+ "loss": 1.7064,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.9404659188955996,
769
+ "grad_norm": 1.05950927734375,
770
+ "learning_rate": 0.0002,
771
+ "loss": 1.8015,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.9490940465918896,
776
+ "grad_norm": 0.9669114947319031,
777
+ "learning_rate": 0.0002,
778
+ "loss": 1.8155,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.9577221742881795,
783
+ "grad_norm": 1.1823079586029053,
784
+ "learning_rate": 0.0002,
785
+ "loss": 1.8074,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.9663503019844694,
790
+ "grad_norm": 1.0857175588607788,
791
+ "learning_rate": 0.0002,
792
+ "loss": 1.7636,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.9749784296807593,
797
+ "grad_norm": 1.1258848905563354,
798
+ "learning_rate": 0.0002,
799
+ "loss": 1.822,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.9836065573770492,
804
+ "grad_norm": 1.16336989402771,
805
+ "learning_rate": 0.0002,
806
+ "loss": 1.8167,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.9922346850733391,
811
+ "grad_norm": 1.118432879447937,
812
+ "learning_rate": 0.0002,
813
+ "loss": 1.7402,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 1.0,
818
+ "eval_loss": 1.7723218202590942,
819
+ "eval_runtime": 158.8593,
820
+ "eval_samples_per_second": 3.355,
821
+ "eval_steps_per_second": 0.422,
822
+ "step": 1159
823
+ }
824
+ ],
825
+ "logging_steps": 10,
826
+ "max_steps": 9272,
827
+ "num_input_tokens_seen": 0,
828
+ "num_train_epochs": 8,
829
+ "save_steps": 200,
830
+ "stateful_callbacks": {
831
+ "TrainerControl": {
832
+ "args": {
833
+ "should_epoch_stop": false,
834
+ "should_evaluate": false,
835
+ "should_log": false,
836
+ "should_save": true,
837
+ "should_training_stop": false
838
+ },
839
+ "attributes": {}
840
+ }
841
+ },
842
+ "total_flos": 5.08508082536448e+16,
843
+ "train_batch_size": 1,
844
+ "trial_name": null,
845
+ "trial_params": null
846
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87c51db54c9eeeb9c31c1d5d10a2ca49db936f9c0e6c5697c8941ee541bc7c94
3
+ size 5688
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/README.md ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
203
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c75103b2c75c2dff928c26b9642800c9637f7b7afc2381be000c736e8ce0c540
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de11a0742ba08e13f1dfa52f4090ddda5e39ed7e48c969b2b8642ccfc0ab309b
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:481b38ae17fbc851d1b1a141d13a25a8e96e39f13f5d4e3bb5d3591b6b680034
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9343f114ec70aae86a46eac6c101eab59fee4d553a4199f8b437d813e37e38bf
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/trainer_state.json ADDED
@@ -0,0 +1,1666 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7723218202590942,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159",
4
+ "epoch": 2.0,
5
+ "eval_steps": 10,
6
+ "global_step": 2318,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008628127696289905,
13
+ "grad_norm": 1.7177482843399048,
14
+ "learning_rate": 0.0002,
15
+ "loss": 2.5586,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.01725625539257981,
20
+ "grad_norm": 2.8122410774230957,
21
+ "learning_rate": 0.0002,
22
+ "loss": 2.2918,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.025884383088869714,
27
+ "grad_norm": 1.6668062210083008,
28
+ "learning_rate": 0.0002,
29
+ "loss": 2.0885,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.03451251078515962,
34
+ "grad_norm": 1.745869755744934,
35
+ "learning_rate": 0.0002,
36
+ "loss": 2.0469,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.04314063848144953,
41
+ "grad_norm": 1.807971477508545,
42
+ "learning_rate": 0.0002,
43
+ "loss": 2.0754,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.05176876617773943,
48
+ "grad_norm": 2.4009974002838135,
49
+ "learning_rate": 0.0002,
50
+ "loss": 2.0867,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.060396893874029335,
55
+ "grad_norm": 2.0974676609039307,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.8575,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.06902502157031924,
62
+ "grad_norm": 1.7705916166305542,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.8921,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.07765314926660914,
69
+ "grad_norm": 1.4324289560317993,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.8119,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.08628127696289906,
76
+ "grad_norm": 1.2521991729736328,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.8728,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.09490940465918896,
83
+ "grad_norm": 1.3328145742416382,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.8168,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.10353753235547886,
90
+ "grad_norm": 2.2908742427825928,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.8236,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.11216566005176877,
97
+ "grad_norm": 1.540981411933899,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.8732,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.12079378774805867,
104
+ "grad_norm": 1.1785069704055786,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.8138,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.12942191544434858,
111
+ "grad_norm": 1.3138738870620728,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.8655,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.13805004314063848,
118
+ "grad_norm": 1.153215765953064,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.8418,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.14667817083692838,
125
+ "grad_norm": 1.2071360349655151,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.8284,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.15530629853321828,
132
+ "grad_norm": 1.3546127080917358,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.8645,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.16393442622950818,
139
+ "grad_norm": 1.1494425535202026,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.8699,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.1725625539257981,
146
+ "grad_norm": 0.982718825340271,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.7845,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.181190681622088,
153
+ "grad_norm": 1.1329727172851562,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.8237,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.1898188093183779,
160
+ "grad_norm": 1.1397384405136108,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.8516,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.1984469370146678,
167
+ "grad_norm": 1.2424808740615845,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.7504,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.2070750647109577,
174
+ "grad_norm": 1.1463897228240967,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.7626,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.21570319240724764,
181
+ "grad_norm": 1.2353036403656006,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.7977,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.22433132010353754,
188
+ "grad_norm": 1.0135247707366943,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.8274,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.23295944779982744,
195
+ "grad_norm": 1.1388282775878906,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.7678,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.24158757549611734,
202
+ "grad_norm": 1.1262438297271729,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.7895,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.25021570319240727,
209
+ "grad_norm": 1.0581450462341309,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.826,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.25884383088869717,
216
+ "grad_norm": 1.1737277507781982,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.7269,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.26747195858498707,
223
+ "grad_norm": 1.0906627178192139,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.7975,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.27610008628127697,
230
+ "grad_norm": 1.0010069608688354,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.7594,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.28472821397756687,
237
+ "grad_norm": 1.2149732112884521,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.7998,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.29335634167385677,
244
+ "grad_norm": 1.293990969657898,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.8079,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.30198446937014667,
251
+ "grad_norm": 1.0082058906555176,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.7629,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.31061259706643657,
258
+ "grad_norm": 1.0307148694992065,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.8001,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.31924072476272647,
265
+ "grad_norm": 0.9646756649017334,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.7456,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.32786885245901637,
272
+ "grad_norm": 1.105623722076416,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.7979,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.3364969801553063,
279
+ "grad_norm": 0.9365625977516174,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.7313,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.3451251078515962,
286
+ "grad_norm": 1.1378847360610962,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.809,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.3537532355478861,
293
+ "grad_norm": 1.1266193389892578,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.7857,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.362381363244176,
300
+ "grad_norm": 1.0886635780334473,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.8096,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.3710094909404659,
307
+ "grad_norm": 1.0463931560516357,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.7422,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.3796376186367558,
314
+ "grad_norm": 1.0923888683319092,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.7936,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.3882657463330457,
321
+ "grad_norm": 1.1386370658874512,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.7777,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.3968938740293356,
328
+ "grad_norm": 1.0098074674606323,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.7211,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.4055220017256255,
335
+ "grad_norm": 1.1237372159957886,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.7457,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.4141501294219154,
342
+ "grad_norm": 1.0218915939331055,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.854,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.4227782571182053,
349
+ "grad_norm": 0.9998831748962402,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.8548,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.4314063848144953,
356
+ "grad_norm": 1.0424970388412476,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.7159,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.4400345125107852,
363
+ "grad_norm": 0.903372585773468,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.788,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.4486626402070751,
370
+ "grad_norm": 1.0864766836166382,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.8293,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.457290767903365,
377
+ "grad_norm": 0.9694207310676575,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.8402,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.4659188955996549,
384
+ "grad_norm": 1.2796396017074585,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.7802,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.4745470232959448,
391
+ "grad_norm": 1.0316239595413208,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.7716,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.4831751509922347,
398
+ "grad_norm": 1.0445313453674316,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.7734,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.4918032786885246,
405
+ "grad_norm": 1.1078376770019531,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.8082,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.5004314063848145,
412
+ "grad_norm": 1.0551974773406982,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.7298,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.5090595340811044,
419
+ "grad_norm": 1.114853858947754,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.8673,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.5176876617773943,
426
+ "grad_norm": 1.0642707347869873,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.7684,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.5263157894736842,
433
+ "grad_norm": 1.088079810142517,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.8367,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.5349439171699741,
440
+ "grad_norm": 1.4029462337493896,
441
+ "learning_rate": 0.0002,
442
+ "loss": 1.775,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.543572044866264,
447
+ "grad_norm": 1.2136136293411255,
448
+ "learning_rate": 0.0002,
449
+ "loss": 1.7771,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.5522001725625539,
454
+ "grad_norm": 0.9642075896263123,
455
+ "learning_rate": 0.0002,
456
+ "loss": 1.8006,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.5608283002588438,
461
+ "grad_norm": 1.0879552364349365,
462
+ "learning_rate": 0.0002,
463
+ "loss": 1.7478,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.5694564279551337,
468
+ "grad_norm": 1.1766546964645386,
469
+ "learning_rate": 0.0002,
470
+ "loss": 1.8427,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.5780845556514237,
475
+ "grad_norm": 1.582840085029602,
476
+ "learning_rate": 0.0002,
477
+ "loss": 1.7129,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.5867126833477135,
482
+ "grad_norm": 1.0681092739105225,
483
+ "learning_rate": 0.0002,
484
+ "loss": 1.8093,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.5953408110440035,
489
+ "grad_norm": 1.103897213935852,
490
+ "learning_rate": 0.0002,
491
+ "loss": 1.8067,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.6039689387402933,
496
+ "grad_norm": 1.0974211692810059,
497
+ "learning_rate": 0.0002,
498
+ "loss": 1.7425,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.6125970664365833,
503
+ "grad_norm": 1.1002469062805176,
504
+ "learning_rate": 0.0002,
505
+ "loss": 1.784,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.6212251941328731,
510
+ "grad_norm": 1.0022329092025757,
511
+ "learning_rate": 0.0002,
512
+ "loss": 1.8106,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.6298533218291631,
517
+ "grad_norm": 1.0089571475982666,
518
+ "learning_rate": 0.0002,
519
+ "loss": 1.7647,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.6384814495254529,
524
+ "grad_norm": 0.9531904458999634,
525
+ "learning_rate": 0.0002,
526
+ "loss": 1.8033,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.6471095772217429,
531
+ "grad_norm": 1.162675380706787,
532
+ "learning_rate": 0.0002,
533
+ "loss": 1.7644,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.6557377049180327,
538
+ "grad_norm": 1.0488134622573853,
539
+ "learning_rate": 0.0002,
540
+ "loss": 1.7531,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.6643658326143227,
545
+ "grad_norm": 1.12964928150177,
546
+ "learning_rate": 0.0002,
547
+ "loss": 1.7583,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.6729939603106126,
552
+ "grad_norm": 1.0867345333099365,
553
+ "learning_rate": 0.0002,
554
+ "loss": 1.7765,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.6816220880069025,
559
+ "grad_norm": 1.1084282398223877,
560
+ "learning_rate": 0.0002,
561
+ "loss": 1.7797,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.6902502157031924,
566
+ "grad_norm": 0.9905423521995544,
567
+ "learning_rate": 0.0002,
568
+ "loss": 1.7792,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.6988783433994823,
573
+ "grad_norm": 1.18604576587677,
574
+ "learning_rate": 0.0002,
575
+ "loss": 1.7825,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.7075064710957722,
580
+ "grad_norm": 1.0819629430770874,
581
+ "learning_rate": 0.0002,
582
+ "loss": 1.8242,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.7161345987920621,
587
+ "grad_norm": 2.0091195106506348,
588
+ "learning_rate": 0.0002,
589
+ "loss": 1.7916,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.724762726488352,
594
+ "grad_norm": 1.0371277332305908,
595
+ "learning_rate": 0.0002,
596
+ "loss": 1.8186,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.7333908541846419,
601
+ "grad_norm": 1.217102289199829,
602
+ "learning_rate": 0.0002,
603
+ "loss": 1.7937,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.7420189818809318,
608
+ "grad_norm": 1.0528525114059448,
609
+ "learning_rate": 0.0002,
610
+ "loss": 1.7317,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.7506471095772217,
615
+ "grad_norm": 1.1398800611495972,
616
+ "learning_rate": 0.0002,
617
+ "loss": 1.7757,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.7592752372735116,
622
+ "grad_norm": 1.1546001434326172,
623
+ "learning_rate": 0.0002,
624
+ "loss": 1.8326,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.7679033649698016,
629
+ "grad_norm": 1.0745750665664673,
630
+ "learning_rate": 0.0002,
631
+ "loss": 1.7178,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.7765314926660914,
636
+ "grad_norm": 1.1739161014556885,
637
+ "learning_rate": 0.0002,
638
+ "loss": 1.7718,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.7851596203623814,
643
+ "grad_norm": 1.1932017803192139,
644
+ "learning_rate": 0.0002,
645
+ "loss": 1.7764,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.7937877480586712,
650
+ "grad_norm": 1.143064022064209,
651
+ "learning_rate": 0.0002,
652
+ "loss": 1.7192,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.8024158757549612,
657
+ "grad_norm": 1.200974464416504,
658
+ "learning_rate": 0.0002,
659
+ "loss": 1.7342,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.811044003451251,
664
+ "grad_norm": 1.0878669023513794,
665
+ "learning_rate": 0.0002,
666
+ "loss": 1.7399,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.819672131147541,
671
+ "grad_norm": 1.0516951084136963,
672
+ "learning_rate": 0.0002,
673
+ "loss": 1.8019,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.8283002588438308,
678
+ "grad_norm": 1.2017741203308105,
679
+ "learning_rate": 0.0002,
680
+ "loss": 1.7645,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.8369283865401208,
685
+ "grad_norm": 0.9762169718742371,
686
+ "learning_rate": 0.0002,
687
+ "loss": 1.7367,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.8455565142364107,
692
+ "grad_norm": 1.0837513208389282,
693
+ "learning_rate": 0.0002,
694
+ "loss": 1.7802,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.8541846419327006,
699
+ "grad_norm": 1.155504822731018,
700
+ "learning_rate": 0.0002,
701
+ "loss": 1.8094,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.8628127696289906,
706
+ "grad_norm": 1.067771315574646,
707
+ "learning_rate": 0.0002,
708
+ "loss": 1.7633,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.8714408973252804,
713
+ "grad_norm": 1.2283565998077393,
714
+ "learning_rate": 0.0002,
715
+ "loss": 1.7993,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.8800690250215704,
720
+ "grad_norm": 1.1549772024154663,
721
+ "learning_rate": 0.0002,
722
+ "loss": 1.7362,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.8886971527178602,
727
+ "grad_norm": 1.0022625923156738,
728
+ "learning_rate": 0.0002,
729
+ "loss": 1.7583,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.8973252804141502,
734
+ "grad_norm": 1.0237284898757935,
735
+ "learning_rate": 0.0002,
736
+ "loss": 1.7718,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.90595340811044,
741
+ "grad_norm": 1.1863008737564087,
742
+ "learning_rate": 0.0002,
743
+ "loss": 1.7457,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.91458153580673,
748
+ "grad_norm": 1.001204013824463,
749
+ "learning_rate": 0.0002,
750
+ "loss": 1.6951,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.9232096635030198,
755
+ "grad_norm": 1.2686481475830078,
756
+ "learning_rate": 0.0002,
757
+ "loss": 1.7506,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.9318377911993098,
762
+ "grad_norm": 1.0700076818466187,
763
+ "learning_rate": 0.0002,
764
+ "loss": 1.7064,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.9404659188955996,
769
+ "grad_norm": 1.05950927734375,
770
+ "learning_rate": 0.0002,
771
+ "loss": 1.8015,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.9490940465918896,
776
+ "grad_norm": 0.9669114947319031,
777
+ "learning_rate": 0.0002,
778
+ "loss": 1.8155,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.9577221742881795,
783
+ "grad_norm": 1.1823079586029053,
784
+ "learning_rate": 0.0002,
785
+ "loss": 1.8074,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.9663503019844694,
790
+ "grad_norm": 1.0857175588607788,
791
+ "learning_rate": 0.0002,
792
+ "loss": 1.7636,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.9749784296807593,
797
+ "grad_norm": 1.1258848905563354,
798
+ "learning_rate": 0.0002,
799
+ "loss": 1.822,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.9836065573770492,
804
+ "grad_norm": 1.16336989402771,
805
+ "learning_rate": 0.0002,
806
+ "loss": 1.8167,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.9922346850733391,
811
+ "grad_norm": 1.118432879447937,
812
+ "learning_rate": 0.0002,
813
+ "loss": 1.7402,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 1.0,
818
+ "eval_loss": 1.7723218202590942,
819
+ "eval_runtime": 158.8593,
820
+ "eval_samples_per_second": 3.355,
821
+ "eval_steps_per_second": 0.422,
822
+ "step": 1159
823
+ },
824
+ {
825
+ "epoch": 1.000862812769629,
826
+ "grad_norm": 1.1056718826293945,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.7863,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.009490940465919,
833
+ "grad_norm": 1.0352667570114136,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.672,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.0181190681622088,
840
+ "grad_norm": 1.0315937995910645,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.6718,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.0267471958584986,
847
+ "grad_norm": 1.369126558303833,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.6937,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.0353753235547887,
854
+ "grad_norm": 1.330876350402832,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.6732,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.0440034512510785,
861
+ "grad_norm": 1.406552791595459,
862
+ "learning_rate": 0.0002,
863
+ "loss": 1.6497,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.0526315789473684,
868
+ "grad_norm": 1.1256251335144043,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.6873,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 1.0612597066436584,
875
+ "grad_norm": 1.315566897392273,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.6765,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 1.0698878343399483,
882
+ "grad_norm": 1.2100263833999634,
883
+ "learning_rate": 0.0002,
884
+ "loss": 1.6763,
885
+ "step": 1240
886
+ },
887
+ {
888
+ "epoch": 1.0785159620362381,
889
+ "grad_norm": 1.2762185335159302,
890
+ "learning_rate": 0.0002,
891
+ "loss": 1.6496,
892
+ "step": 1250
893
+ },
894
+ {
895
+ "epoch": 1.087144089732528,
896
+ "grad_norm": 1.2971566915512085,
897
+ "learning_rate": 0.0002,
898
+ "loss": 1.6826,
899
+ "step": 1260
900
+ },
901
+ {
902
+ "epoch": 1.095772217428818,
903
+ "grad_norm": 1.3685089349746704,
904
+ "learning_rate": 0.0002,
905
+ "loss": 1.6721,
906
+ "step": 1270
907
+ },
908
+ {
909
+ "epoch": 1.1044003451251079,
910
+ "grad_norm": 1.3135347366333008,
911
+ "learning_rate": 0.0002,
912
+ "loss": 1.6399,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.1130284728213977,
917
+ "grad_norm": 1.4514861106872559,
918
+ "learning_rate": 0.0002,
919
+ "loss": 1.641,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 1.1216566005176876,
924
+ "grad_norm": 1.5077004432678223,
925
+ "learning_rate": 0.0002,
926
+ "loss": 1.6443,
927
+ "step": 1300
928
+ },
929
+ {
930
+ "epoch": 1.1302847282139776,
931
+ "grad_norm": 1.4807840585708618,
932
+ "learning_rate": 0.0002,
933
+ "loss": 1.6406,
934
+ "step": 1310
935
+ },
936
+ {
937
+ "epoch": 1.1389128559102675,
938
+ "grad_norm": 1.2386537790298462,
939
+ "learning_rate": 0.0002,
940
+ "loss": 1.7022,
941
+ "step": 1320
942
+ },
943
+ {
944
+ "epoch": 1.1475409836065573,
945
+ "grad_norm": 1.2637739181518555,
946
+ "learning_rate": 0.0002,
947
+ "loss": 1.6265,
948
+ "step": 1330
949
+ },
950
+ {
951
+ "epoch": 1.1561691113028472,
952
+ "grad_norm": 1.2472519874572754,
953
+ "learning_rate": 0.0002,
954
+ "loss": 1.7103,
955
+ "step": 1340
956
+ },
957
+ {
958
+ "epoch": 1.1647972389991372,
959
+ "grad_norm": 1.290644884109497,
960
+ "learning_rate": 0.0002,
961
+ "loss": 1.676,
962
+ "step": 1350
963
+ },
964
+ {
965
+ "epoch": 1.173425366695427,
966
+ "grad_norm": 1.3227870464324951,
967
+ "learning_rate": 0.0002,
968
+ "loss": 1.6713,
969
+ "step": 1360
970
+ },
971
+ {
972
+ "epoch": 1.182053494391717,
973
+ "grad_norm": 1.3311200141906738,
974
+ "learning_rate": 0.0002,
975
+ "loss": 1.7158,
976
+ "step": 1370
977
+ },
978
+ {
979
+ "epoch": 1.190681622088007,
980
+ "grad_norm": 1.2624584436416626,
981
+ "learning_rate": 0.0002,
982
+ "loss": 1.6501,
983
+ "step": 1380
984
+ },
985
+ {
986
+ "epoch": 1.1993097497842968,
987
+ "grad_norm": 1.4712986946105957,
988
+ "learning_rate": 0.0002,
989
+ "loss": 1.6398,
990
+ "step": 1390
991
+ },
992
+ {
993
+ "epoch": 1.2079378774805867,
994
+ "grad_norm": 1.416508674621582,
995
+ "learning_rate": 0.0002,
996
+ "loss": 1.6818,
997
+ "step": 1400
998
+ },
999
+ {
1000
+ "epoch": 1.2165660051768765,
1001
+ "grad_norm": 1.367967963218689,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 1.7184,
1004
+ "step": 1410
1005
+ },
1006
+ {
1007
+ "epoch": 1.2251941328731666,
1008
+ "grad_norm": 1.3865700960159302,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 1.6834,
1011
+ "step": 1420
1012
+ },
1013
+ {
1014
+ "epoch": 1.2338222605694564,
1015
+ "grad_norm": 2.076512336730957,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 1.7532,
1018
+ "step": 1430
1019
+ },
1020
+ {
1021
+ "epoch": 1.2424503882657463,
1022
+ "grad_norm": 1.305572509765625,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 1.7448,
1025
+ "step": 1440
1026
+ },
1027
+ {
1028
+ "epoch": 1.2510785159620363,
1029
+ "grad_norm": 1.2752642631530762,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 1.7422,
1032
+ "step": 1450
1033
+ },
1034
+ {
1035
+ "epoch": 1.2597066436583262,
1036
+ "grad_norm": 1.1802726984024048,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 1.7121,
1039
+ "step": 1460
1040
+ },
1041
+ {
1042
+ "epoch": 1.268334771354616,
1043
+ "grad_norm": 1.2195663452148438,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 1.7617,
1046
+ "step": 1470
1047
+ },
1048
+ {
1049
+ "epoch": 1.2769628990509059,
1050
+ "grad_norm": 1.3073176145553589,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 1.6022,
1053
+ "step": 1480
1054
+ },
1055
+ {
1056
+ "epoch": 1.2855910267471957,
1057
+ "grad_norm": 1.2829731702804565,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 1.6472,
1060
+ "step": 1490
1061
+ },
1062
+ {
1063
+ "epoch": 1.2942191544434858,
1064
+ "grad_norm": 1.361060619354248,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 1.6076,
1067
+ "step": 1500
1068
+ },
1069
+ {
1070
+ "epoch": 1.3028472821397756,
1071
+ "grad_norm": 1.4285917282104492,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 1.7059,
1074
+ "step": 1510
1075
+ },
1076
+ {
1077
+ "epoch": 1.3114754098360657,
1078
+ "grad_norm": 1.186866283416748,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 1.696,
1081
+ "step": 1520
1082
+ },
1083
+ {
1084
+ "epoch": 1.3201035375323555,
1085
+ "grad_norm": 1.2615889310836792,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 1.6707,
1088
+ "step": 1530
1089
+ },
1090
+ {
1091
+ "epoch": 1.3287316652286454,
1092
+ "grad_norm": 1.2732815742492676,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 1.5797,
1095
+ "step": 1540
1096
+ },
1097
+ {
1098
+ "epoch": 1.3373597929249352,
1099
+ "grad_norm": 1.4152132272720337,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 1.6623,
1102
+ "step": 1550
1103
+ },
1104
+ {
1105
+ "epoch": 1.345987920621225,
1106
+ "grad_norm": 1.1730318069458008,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 1.6649,
1109
+ "step": 1560
1110
+ },
1111
+ {
1112
+ "epoch": 1.3546160483175151,
1113
+ "grad_norm": 1.2282229661941528,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 1.7247,
1116
+ "step": 1570
1117
+ },
1118
+ {
1119
+ "epoch": 1.363244176013805,
1120
+ "grad_norm": 1.227974534034729,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 1.7125,
1123
+ "step": 1580
1124
+ },
1125
+ {
1126
+ "epoch": 1.3718723037100948,
1127
+ "grad_norm": 1.3480374813079834,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 1.622,
1130
+ "step": 1590
1131
+ },
1132
+ {
1133
+ "epoch": 1.380500431406385,
1134
+ "grad_norm": 1.3460094928741455,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 1.7126,
1137
+ "step": 1600
1138
+ },
1139
+ {
1140
+ "epoch": 1.3891285591026747,
1141
+ "grad_norm": 1.254465937614441,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 1.6845,
1144
+ "step": 1610
1145
+ },
1146
+ {
1147
+ "epoch": 1.3977566867989646,
1148
+ "grad_norm": 1.4135496616363525,
1149
+ "learning_rate": 0.0002,
1150
+ "loss": 1.643,
1151
+ "step": 1620
1152
+ },
1153
+ {
1154
+ "epoch": 1.4063848144952544,
1155
+ "grad_norm": 1.277063012123108,
1156
+ "learning_rate": 0.0002,
1157
+ "loss": 1.6392,
1158
+ "step": 1630
1159
+ },
1160
+ {
1161
+ "epoch": 1.4150129421915445,
1162
+ "grad_norm": 1.5031940937042236,
1163
+ "learning_rate": 0.0002,
1164
+ "loss": 1.7338,
1165
+ "step": 1640
1166
+ },
1167
+ {
1168
+ "epoch": 1.4236410698878343,
1169
+ "grad_norm": 1.3918952941894531,
1170
+ "learning_rate": 0.0002,
1171
+ "loss": 1.6229,
1172
+ "step": 1650
1173
+ },
1174
+ {
1175
+ "epoch": 1.4322691975841242,
1176
+ "grad_norm": 1.5893778800964355,
1177
+ "learning_rate": 0.0002,
1178
+ "loss": 1.6893,
1179
+ "step": 1660
1180
+ },
1181
+ {
1182
+ "epoch": 1.4408973252804143,
1183
+ "grad_norm": 1.4636809825897217,
1184
+ "learning_rate": 0.0002,
1185
+ "loss": 1.7129,
1186
+ "step": 1670
1187
+ },
1188
+ {
1189
+ "epoch": 1.449525452976704,
1190
+ "grad_norm": 1.1985419988632202,
1191
+ "learning_rate": 0.0002,
1192
+ "loss": 1.6481,
1193
+ "step": 1680
1194
+ },
1195
+ {
1196
+ "epoch": 1.458153580672994,
1197
+ "grad_norm": 1.509252905845642,
1198
+ "learning_rate": 0.0002,
1199
+ "loss": 1.7322,
1200
+ "step": 1690
1201
+ },
1202
+ {
1203
+ "epoch": 1.4667817083692838,
1204
+ "grad_norm": 1.4157838821411133,
1205
+ "learning_rate": 0.0002,
1206
+ "loss": 1.6653,
1207
+ "step": 1700
1208
+ },
1209
+ {
1210
+ "epoch": 1.4754098360655736,
1211
+ "grad_norm": 1.3481059074401855,
1212
+ "learning_rate": 0.0002,
1213
+ "loss": 1.7111,
1214
+ "step": 1710
1215
+ },
1216
+ {
1217
+ "epoch": 1.4840379637618637,
1218
+ "grad_norm": 1.4127949476242065,
1219
+ "learning_rate": 0.0002,
1220
+ "loss": 1.6488,
1221
+ "step": 1720
1222
+ },
1223
+ {
1224
+ "epoch": 1.4926660914581535,
1225
+ "grad_norm": 1.3087295293807983,
1226
+ "learning_rate": 0.0002,
1227
+ "loss": 1.6336,
1228
+ "step": 1730
1229
+ },
1230
+ {
1231
+ "epoch": 1.5012942191544436,
1232
+ "grad_norm": 1.4421851634979248,
1233
+ "learning_rate": 0.0002,
1234
+ "loss": 1.7226,
1235
+ "step": 1740
1236
+ },
1237
+ {
1238
+ "epoch": 1.5099223468507335,
1239
+ "grad_norm": 1.3953148126602173,
1240
+ "learning_rate": 0.0002,
1241
+ "loss": 1.7006,
1242
+ "step": 1750
1243
+ },
1244
+ {
1245
+ "epoch": 1.5185504745470233,
1246
+ "grad_norm": 1.4613851308822632,
1247
+ "learning_rate": 0.0002,
1248
+ "loss": 1.6281,
1249
+ "step": 1760
1250
+ },
1251
+ {
1252
+ "epoch": 1.5271786022433131,
1253
+ "grad_norm": 1.2866744995117188,
1254
+ "learning_rate": 0.0002,
1255
+ "loss": 1.6404,
1256
+ "step": 1770
1257
+ },
1258
+ {
1259
+ "epoch": 1.535806729939603,
1260
+ "grad_norm": 1.2769535779953003,
1261
+ "learning_rate": 0.0002,
1262
+ "loss": 1.628,
1263
+ "step": 1780
1264
+ },
1265
+ {
1266
+ "epoch": 1.544434857635893,
1267
+ "grad_norm": 1.371022343635559,
1268
+ "learning_rate": 0.0002,
1269
+ "loss": 1.6439,
1270
+ "step": 1790
1271
+ },
1272
+ {
1273
+ "epoch": 1.553062985332183,
1274
+ "grad_norm": 1.4434700012207031,
1275
+ "learning_rate": 0.0002,
1276
+ "loss": 1.6363,
1277
+ "step": 1800
1278
+ },
1279
+ {
1280
+ "epoch": 1.561691113028473,
1281
+ "grad_norm": 1.269386887550354,
1282
+ "learning_rate": 0.0002,
1283
+ "loss": 1.6606,
1284
+ "step": 1810
1285
+ },
1286
+ {
1287
+ "epoch": 1.5703192407247628,
1288
+ "grad_norm": 1.2668766975402832,
1289
+ "learning_rate": 0.0002,
1290
+ "loss": 1.6493,
1291
+ "step": 1820
1292
+ },
1293
+ {
1294
+ "epoch": 1.5789473684210527,
1295
+ "grad_norm": 1.4857951402664185,
1296
+ "learning_rate": 0.0002,
1297
+ "loss": 1.7124,
1298
+ "step": 1830
1299
+ },
1300
+ {
1301
+ "epoch": 1.5875754961173425,
1302
+ "grad_norm": 1.330338954925537,
1303
+ "learning_rate": 0.0002,
1304
+ "loss": 1.6474,
1305
+ "step": 1840
1306
+ },
1307
+ {
1308
+ "epoch": 1.5962036238136323,
1309
+ "grad_norm": 1.3832308053970337,
1310
+ "learning_rate": 0.0002,
1311
+ "loss": 1.6412,
1312
+ "step": 1850
1313
+ },
1314
+ {
1315
+ "epoch": 1.6048317515099222,
1316
+ "grad_norm": 1.2697869539260864,
1317
+ "learning_rate": 0.0002,
1318
+ "loss": 1.6988,
1319
+ "step": 1860
1320
+ },
1321
+ {
1322
+ "epoch": 1.6134598792062123,
1323
+ "grad_norm": 1.338875412940979,
1324
+ "learning_rate": 0.0002,
1325
+ "loss": 1.6651,
1326
+ "step": 1870
1327
+ },
1328
+ {
1329
+ "epoch": 1.6220880069025023,
1330
+ "grad_norm": 1.4077556133270264,
1331
+ "learning_rate": 0.0002,
1332
+ "loss": 1.7319,
1333
+ "step": 1880
1334
+ },
1335
+ {
1336
+ "epoch": 1.6307161345987922,
1337
+ "grad_norm": 1.40274178981781,
1338
+ "learning_rate": 0.0002,
1339
+ "loss": 1.644,
1340
+ "step": 1890
1341
+ },
1342
+ {
1343
+ "epoch": 1.639344262295082,
1344
+ "grad_norm": 1.416042447090149,
1345
+ "learning_rate": 0.0002,
1346
+ "loss": 1.6648,
1347
+ "step": 1900
1348
+ },
1349
+ {
1350
+ "epoch": 1.6479723899913719,
1351
+ "grad_norm": 1.4196866750717163,
1352
+ "learning_rate": 0.0002,
1353
+ "loss": 1.729,
1354
+ "step": 1910
1355
+ },
1356
+ {
1357
+ "epoch": 1.6566005176876617,
1358
+ "grad_norm": 1.378732681274414,
1359
+ "learning_rate": 0.0002,
1360
+ "loss": 1.7381,
1361
+ "step": 1920
1362
+ },
1363
+ {
1364
+ "epoch": 1.6652286453839515,
1365
+ "grad_norm": 1.544751524925232,
1366
+ "learning_rate": 0.0002,
1367
+ "loss": 1.7804,
1368
+ "step": 1930
1369
+ },
1370
+ {
1371
+ "epoch": 1.6738567730802416,
1372
+ "grad_norm": 1.4318190813064575,
1373
+ "learning_rate": 0.0002,
1374
+ "loss": 1.6563,
1375
+ "step": 1940
1376
+ },
1377
+ {
1378
+ "epoch": 1.6824849007765315,
1379
+ "grad_norm": 1.3794575929641724,
1380
+ "learning_rate": 0.0002,
1381
+ "loss": 1.6806,
1382
+ "step": 1950
1383
+ },
1384
+ {
1385
+ "epoch": 1.6911130284728215,
1386
+ "grad_norm": 1.6301822662353516,
1387
+ "learning_rate": 0.0002,
1388
+ "loss": 1.6707,
1389
+ "step": 1960
1390
+ },
1391
+ {
1392
+ "epoch": 1.6997411561691114,
1393
+ "grad_norm": 1.3090870380401611,
1394
+ "learning_rate": 0.0002,
1395
+ "loss": 1.6945,
1396
+ "step": 1970
1397
+ },
1398
+ {
1399
+ "epoch": 1.7083692838654012,
1400
+ "grad_norm": 1.4537303447723389,
1401
+ "learning_rate": 0.0002,
1402
+ "loss": 1.6018,
1403
+ "step": 1980
1404
+ },
1405
+ {
1406
+ "epoch": 1.716997411561691,
1407
+ "grad_norm": 1.3618766069412231,
1408
+ "learning_rate": 0.0002,
1409
+ "loss": 1.7225,
1410
+ "step": 1990
1411
+ },
1412
+ {
1413
+ "epoch": 1.725625539257981,
1414
+ "grad_norm": 1.398790955543518,
1415
+ "learning_rate": 0.0002,
1416
+ "loss": 1.6948,
1417
+ "step": 2000
1418
+ },
1419
+ {
1420
+ "epoch": 1.734253666954271,
1421
+ "grad_norm": 1.4606391191482544,
1422
+ "learning_rate": 0.0002,
1423
+ "loss": 1.6963,
1424
+ "step": 2010
1425
+ },
1426
+ {
1427
+ "epoch": 1.7428817946505608,
1428
+ "grad_norm": 1.602010726928711,
1429
+ "learning_rate": 0.0002,
1430
+ "loss": 1.727,
1431
+ "step": 2020
1432
+ },
1433
+ {
1434
+ "epoch": 1.7515099223468509,
1435
+ "grad_norm": 1.4865907430648804,
1436
+ "learning_rate": 0.0002,
1437
+ "loss": 1.7238,
1438
+ "step": 2030
1439
+ },
1440
+ {
1441
+ "epoch": 1.7601380500431407,
1442
+ "grad_norm": 1.5954750776290894,
1443
+ "learning_rate": 0.0002,
1444
+ "loss": 1.713,
1445
+ "step": 2040
1446
+ },
1447
+ {
1448
+ "epoch": 1.7687661777394306,
1449
+ "grad_norm": 1.3561054468154907,
1450
+ "learning_rate": 0.0002,
1451
+ "loss": 1.6794,
1452
+ "step": 2050
1453
+ },
1454
+ {
1455
+ "epoch": 1.7773943054357204,
1456
+ "grad_norm": 1.4540512561798096,
1457
+ "learning_rate": 0.0002,
1458
+ "loss": 1.7058,
1459
+ "step": 2060
1460
+ },
1461
+ {
1462
+ "epoch": 1.7860224331320103,
1463
+ "grad_norm": 1.2661199569702148,
1464
+ "learning_rate": 0.0002,
1465
+ "loss": 1.6187,
1466
+ "step": 2070
1467
+ },
1468
+ {
1469
+ "epoch": 1.7946505608283,
1470
+ "grad_norm": 2.188016176223755,
1471
+ "learning_rate": 0.0002,
1472
+ "loss": 1.6998,
1473
+ "step": 2080
1474
+ },
1475
+ {
1476
+ "epoch": 1.8032786885245902,
1477
+ "grad_norm": 1.4326417446136475,
1478
+ "learning_rate": 0.0002,
1479
+ "loss": 1.6909,
1480
+ "step": 2090
1481
+ },
1482
+ {
1483
+ "epoch": 1.8119068162208802,
1484
+ "grad_norm": 2.2382805347442627,
1485
+ "learning_rate": 0.0002,
1486
+ "loss": 1.7765,
1487
+ "step": 2100
1488
+ },
1489
+ {
1490
+ "epoch": 1.82053494391717,
1491
+ "grad_norm": 1.396160364151001,
1492
+ "learning_rate": 0.0002,
1493
+ "loss": 1.7034,
1494
+ "step": 2110
1495
+ },
1496
+ {
1497
+ "epoch": 1.82916307161346,
1498
+ "grad_norm": 1.3848069906234741,
1499
+ "learning_rate": 0.0002,
1500
+ "loss": 1.629,
1501
+ "step": 2120
1502
+ },
1503
+ {
1504
+ "epoch": 1.8377911993097498,
1505
+ "grad_norm": 1.6975245475769043,
1506
+ "learning_rate": 0.0002,
1507
+ "loss": 1.6153,
1508
+ "step": 2130
1509
+ },
1510
+ {
1511
+ "epoch": 1.8464193270060396,
1512
+ "grad_norm": 1.476306676864624,
1513
+ "learning_rate": 0.0002,
1514
+ "loss": 1.6631,
1515
+ "step": 2140
1516
+ },
1517
+ {
1518
+ "epoch": 1.8550474547023295,
1519
+ "grad_norm": 1.5690935850143433,
1520
+ "learning_rate": 0.0002,
1521
+ "loss": 1.646,
1522
+ "step": 2150
1523
+ },
1524
+ {
1525
+ "epoch": 1.8636755823986195,
1526
+ "grad_norm": 1.4900702238082886,
1527
+ "learning_rate": 0.0002,
1528
+ "loss": 1.6989,
1529
+ "step": 2160
1530
+ },
1531
+ {
1532
+ "epoch": 1.8723037100949094,
1533
+ "grad_norm": 1.4173238277435303,
1534
+ "learning_rate": 0.0002,
1535
+ "loss": 1.657,
1536
+ "step": 2170
1537
+ },
1538
+ {
1539
+ "epoch": 1.8809318377911994,
1540
+ "grad_norm": 1.3687001466751099,
1541
+ "learning_rate": 0.0002,
1542
+ "loss": 1.6587,
1543
+ "step": 2180
1544
+ },
1545
+ {
1546
+ "epoch": 1.8895599654874893,
1547
+ "grad_norm": 1.371954321861267,
1548
+ "learning_rate": 0.0002,
1549
+ "loss": 1.6209,
1550
+ "step": 2190
1551
+ },
1552
+ {
1553
+ "epoch": 1.8981880931837791,
1554
+ "grad_norm": 1.5397378206253052,
1555
+ "learning_rate": 0.0002,
1556
+ "loss": 1.6749,
1557
+ "step": 2200
1558
+ },
1559
+ {
1560
+ "epoch": 1.906816220880069,
1561
+ "grad_norm": 1.7145664691925049,
1562
+ "learning_rate": 0.0002,
1563
+ "loss": 1.7149,
1564
+ "step": 2210
1565
+ },
1566
+ {
1567
+ "epoch": 1.9154443485763588,
1568
+ "grad_norm": 1.5490705966949463,
1569
+ "learning_rate": 0.0002,
1570
+ "loss": 1.6663,
1571
+ "step": 2220
1572
+ },
1573
+ {
1574
+ "epoch": 1.9240724762726489,
1575
+ "grad_norm": 1.3237485885620117,
1576
+ "learning_rate": 0.0002,
1577
+ "loss": 1.7056,
1578
+ "step": 2230
1579
+ },
1580
+ {
1581
+ "epoch": 1.9327006039689387,
1582
+ "grad_norm": 1.4739165306091309,
1583
+ "learning_rate": 0.0002,
1584
+ "loss": 1.7613,
1585
+ "step": 2240
1586
+ },
1587
+ {
1588
+ "epoch": 1.9413287316652288,
1589
+ "grad_norm": 1.7177914381027222,
1590
+ "learning_rate": 0.0002,
1591
+ "loss": 1.601,
1592
+ "step": 2250
1593
+ },
1594
+ {
1595
+ "epoch": 1.9499568593615186,
1596
+ "grad_norm": 1.3587760925292969,
1597
+ "learning_rate": 0.0002,
1598
+ "loss": 1.6733,
1599
+ "step": 2260
1600
+ },
1601
+ {
1602
+ "epoch": 1.9585849870578085,
1603
+ "grad_norm": 1.3180559873580933,
1604
+ "learning_rate": 0.0002,
1605
+ "loss": 1.6511,
1606
+ "step": 2270
1607
+ },
1608
+ {
1609
+ "epoch": 1.9672131147540983,
1610
+ "grad_norm": 1.9988678693771362,
1611
+ "learning_rate": 0.0002,
1612
+ "loss": 1.5875,
1613
+ "step": 2280
1614
+ },
1615
+ {
1616
+ "epoch": 1.9758412424503882,
1617
+ "grad_norm": 1.4148619174957275,
1618
+ "learning_rate": 0.0002,
1619
+ "loss": 1.6516,
1620
+ "step": 2290
1621
+ },
1622
+ {
1623
+ "epoch": 1.984469370146678,
1624
+ "grad_norm": 1.6429015398025513,
1625
+ "learning_rate": 0.0002,
1626
+ "loss": 1.6649,
1627
+ "step": 2300
1628
+ },
1629
+ {
1630
+ "epoch": 1.993097497842968,
1631
+ "grad_norm": 1.6742682456970215,
1632
+ "learning_rate": 0.0002,
1633
+ "loss": 1.6504,
1634
+ "step": 2310
1635
+ },
1636
+ {
1637
+ "epoch": 2.0,
1638
+ "eval_loss": 1.7843003273010254,
1639
+ "eval_runtime": 155.4967,
1640
+ "eval_samples_per_second": 3.428,
1641
+ "eval_steps_per_second": 0.431,
1642
+ "step": 2318
1643
+ }
1644
+ ],
1645
+ "logging_steps": 10,
1646
+ "max_steps": 9272,
1647
+ "num_input_tokens_seen": 0,
1648
+ "num_train_epochs": 8,
1649
+ "save_steps": 200,
1650
+ "stateful_callbacks": {
1651
+ "TrainerControl": {
1652
+ "args": {
1653
+ "should_epoch_stop": false,
1654
+ "should_evaluate": false,
1655
+ "should_log": false,
1656
+ "should_save": true,
1657
+ "should_training_stop": false
1658
+ },
1659
+ "attributes": {}
1660
+ }
1661
+ },
1662
+ "total_flos": 1.017016165072896e+17,
1663
+ "train_batch_size": 1,
1664
+ "trial_name": null,
1665
+ "trial_params": null
1666
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-2318/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87c51db54c9eeeb9c31c1d5d10a2ca49db936f9c0e6c5697c8941ee541bc7c94
3
+ size 5688
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/README.md ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
203
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:474f22de69858081a1f0c48a1c61d5aa767ea78b5a9f1bc22a235f5ef12e3664
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7ebc430cb9a17f716b864cf5af7b82317e310c46a4d0a8a9d35f85328075ade
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ac358ec4e63c78d3c1b56c7db81c82cfa7ad16a246072dbf1a7a16b964411cd
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e7414ec39ae7be46fb129cd4f9dc2e9ade69a04c642c601ff8624fdaf00ebee
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/trainer_state.json ADDED
@@ -0,0 +1,2486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7723218202590942,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159",
4
+ "epoch": 3.0,
5
+ "eval_steps": 10,
6
+ "global_step": 3477,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008628127696289905,
13
+ "grad_norm": 1.7177482843399048,
14
+ "learning_rate": 0.0002,
15
+ "loss": 2.5586,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.01725625539257981,
20
+ "grad_norm": 2.8122410774230957,
21
+ "learning_rate": 0.0002,
22
+ "loss": 2.2918,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.025884383088869714,
27
+ "grad_norm": 1.6668062210083008,
28
+ "learning_rate": 0.0002,
29
+ "loss": 2.0885,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.03451251078515962,
34
+ "grad_norm": 1.745869755744934,
35
+ "learning_rate": 0.0002,
36
+ "loss": 2.0469,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.04314063848144953,
41
+ "grad_norm": 1.807971477508545,
42
+ "learning_rate": 0.0002,
43
+ "loss": 2.0754,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.05176876617773943,
48
+ "grad_norm": 2.4009974002838135,
49
+ "learning_rate": 0.0002,
50
+ "loss": 2.0867,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.060396893874029335,
55
+ "grad_norm": 2.0974676609039307,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.8575,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.06902502157031924,
62
+ "grad_norm": 1.7705916166305542,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.8921,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.07765314926660914,
69
+ "grad_norm": 1.4324289560317993,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.8119,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.08628127696289906,
76
+ "grad_norm": 1.2521991729736328,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.8728,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.09490940465918896,
83
+ "grad_norm": 1.3328145742416382,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.8168,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.10353753235547886,
90
+ "grad_norm": 2.2908742427825928,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.8236,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.11216566005176877,
97
+ "grad_norm": 1.540981411933899,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.8732,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.12079378774805867,
104
+ "grad_norm": 1.1785069704055786,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.8138,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.12942191544434858,
111
+ "grad_norm": 1.3138738870620728,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.8655,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.13805004314063848,
118
+ "grad_norm": 1.153215765953064,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.8418,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.14667817083692838,
125
+ "grad_norm": 1.2071360349655151,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.8284,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.15530629853321828,
132
+ "grad_norm": 1.3546127080917358,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.8645,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.16393442622950818,
139
+ "grad_norm": 1.1494425535202026,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.8699,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.1725625539257981,
146
+ "grad_norm": 0.982718825340271,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.7845,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.181190681622088,
153
+ "grad_norm": 1.1329727172851562,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.8237,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.1898188093183779,
160
+ "grad_norm": 1.1397384405136108,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.8516,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.1984469370146678,
167
+ "grad_norm": 1.2424808740615845,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.7504,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.2070750647109577,
174
+ "grad_norm": 1.1463897228240967,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.7626,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.21570319240724764,
181
+ "grad_norm": 1.2353036403656006,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.7977,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.22433132010353754,
188
+ "grad_norm": 1.0135247707366943,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.8274,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.23295944779982744,
195
+ "grad_norm": 1.1388282775878906,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.7678,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.24158757549611734,
202
+ "grad_norm": 1.1262438297271729,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.7895,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.25021570319240727,
209
+ "grad_norm": 1.0581450462341309,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.826,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.25884383088869717,
216
+ "grad_norm": 1.1737277507781982,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.7269,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.26747195858498707,
223
+ "grad_norm": 1.0906627178192139,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.7975,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.27610008628127697,
230
+ "grad_norm": 1.0010069608688354,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.7594,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.28472821397756687,
237
+ "grad_norm": 1.2149732112884521,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.7998,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.29335634167385677,
244
+ "grad_norm": 1.293990969657898,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.8079,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.30198446937014667,
251
+ "grad_norm": 1.0082058906555176,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.7629,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.31061259706643657,
258
+ "grad_norm": 1.0307148694992065,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.8001,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.31924072476272647,
265
+ "grad_norm": 0.9646756649017334,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.7456,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.32786885245901637,
272
+ "grad_norm": 1.105623722076416,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.7979,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.3364969801553063,
279
+ "grad_norm": 0.9365625977516174,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.7313,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.3451251078515962,
286
+ "grad_norm": 1.1378847360610962,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.809,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.3537532355478861,
293
+ "grad_norm": 1.1266193389892578,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.7857,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.362381363244176,
300
+ "grad_norm": 1.0886635780334473,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.8096,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.3710094909404659,
307
+ "grad_norm": 1.0463931560516357,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.7422,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.3796376186367558,
314
+ "grad_norm": 1.0923888683319092,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.7936,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.3882657463330457,
321
+ "grad_norm": 1.1386370658874512,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.7777,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.3968938740293356,
328
+ "grad_norm": 1.0098074674606323,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.7211,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.4055220017256255,
335
+ "grad_norm": 1.1237372159957886,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.7457,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.4141501294219154,
342
+ "grad_norm": 1.0218915939331055,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.854,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.4227782571182053,
349
+ "grad_norm": 0.9998831748962402,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.8548,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.4314063848144953,
356
+ "grad_norm": 1.0424970388412476,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.7159,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.4400345125107852,
363
+ "grad_norm": 0.903372585773468,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.788,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.4486626402070751,
370
+ "grad_norm": 1.0864766836166382,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.8293,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.457290767903365,
377
+ "grad_norm": 0.9694207310676575,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.8402,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.4659188955996549,
384
+ "grad_norm": 1.2796396017074585,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.7802,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.4745470232959448,
391
+ "grad_norm": 1.0316239595413208,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.7716,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.4831751509922347,
398
+ "grad_norm": 1.0445313453674316,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.7734,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.4918032786885246,
405
+ "grad_norm": 1.1078376770019531,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.8082,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.5004314063848145,
412
+ "grad_norm": 1.0551974773406982,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.7298,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.5090595340811044,
419
+ "grad_norm": 1.114853858947754,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.8673,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.5176876617773943,
426
+ "grad_norm": 1.0642707347869873,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.7684,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.5263157894736842,
433
+ "grad_norm": 1.088079810142517,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.8367,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.5349439171699741,
440
+ "grad_norm": 1.4029462337493896,
441
+ "learning_rate": 0.0002,
442
+ "loss": 1.775,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.543572044866264,
447
+ "grad_norm": 1.2136136293411255,
448
+ "learning_rate": 0.0002,
449
+ "loss": 1.7771,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.5522001725625539,
454
+ "grad_norm": 0.9642075896263123,
455
+ "learning_rate": 0.0002,
456
+ "loss": 1.8006,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.5608283002588438,
461
+ "grad_norm": 1.0879552364349365,
462
+ "learning_rate": 0.0002,
463
+ "loss": 1.7478,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.5694564279551337,
468
+ "grad_norm": 1.1766546964645386,
469
+ "learning_rate": 0.0002,
470
+ "loss": 1.8427,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.5780845556514237,
475
+ "grad_norm": 1.582840085029602,
476
+ "learning_rate": 0.0002,
477
+ "loss": 1.7129,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.5867126833477135,
482
+ "grad_norm": 1.0681092739105225,
483
+ "learning_rate": 0.0002,
484
+ "loss": 1.8093,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.5953408110440035,
489
+ "grad_norm": 1.103897213935852,
490
+ "learning_rate": 0.0002,
491
+ "loss": 1.8067,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.6039689387402933,
496
+ "grad_norm": 1.0974211692810059,
497
+ "learning_rate": 0.0002,
498
+ "loss": 1.7425,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.6125970664365833,
503
+ "grad_norm": 1.1002469062805176,
504
+ "learning_rate": 0.0002,
505
+ "loss": 1.784,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.6212251941328731,
510
+ "grad_norm": 1.0022329092025757,
511
+ "learning_rate": 0.0002,
512
+ "loss": 1.8106,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.6298533218291631,
517
+ "grad_norm": 1.0089571475982666,
518
+ "learning_rate": 0.0002,
519
+ "loss": 1.7647,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.6384814495254529,
524
+ "grad_norm": 0.9531904458999634,
525
+ "learning_rate": 0.0002,
526
+ "loss": 1.8033,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.6471095772217429,
531
+ "grad_norm": 1.162675380706787,
532
+ "learning_rate": 0.0002,
533
+ "loss": 1.7644,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.6557377049180327,
538
+ "grad_norm": 1.0488134622573853,
539
+ "learning_rate": 0.0002,
540
+ "loss": 1.7531,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.6643658326143227,
545
+ "grad_norm": 1.12964928150177,
546
+ "learning_rate": 0.0002,
547
+ "loss": 1.7583,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.6729939603106126,
552
+ "grad_norm": 1.0867345333099365,
553
+ "learning_rate": 0.0002,
554
+ "loss": 1.7765,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.6816220880069025,
559
+ "grad_norm": 1.1084282398223877,
560
+ "learning_rate": 0.0002,
561
+ "loss": 1.7797,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.6902502157031924,
566
+ "grad_norm": 0.9905423521995544,
567
+ "learning_rate": 0.0002,
568
+ "loss": 1.7792,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.6988783433994823,
573
+ "grad_norm": 1.18604576587677,
574
+ "learning_rate": 0.0002,
575
+ "loss": 1.7825,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.7075064710957722,
580
+ "grad_norm": 1.0819629430770874,
581
+ "learning_rate": 0.0002,
582
+ "loss": 1.8242,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.7161345987920621,
587
+ "grad_norm": 2.0091195106506348,
588
+ "learning_rate": 0.0002,
589
+ "loss": 1.7916,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.724762726488352,
594
+ "grad_norm": 1.0371277332305908,
595
+ "learning_rate": 0.0002,
596
+ "loss": 1.8186,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.7333908541846419,
601
+ "grad_norm": 1.217102289199829,
602
+ "learning_rate": 0.0002,
603
+ "loss": 1.7937,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.7420189818809318,
608
+ "grad_norm": 1.0528525114059448,
609
+ "learning_rate": 0.0002,
610
+ "loss": 1.7317,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.7506471095772217,
615
+ "grad_norm": 1.1398800611495972,
616
+ "learning_rate": 0.0002,
617
+ "loss": 1.7757,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.7592752372735116,
622
+ "grad_norm": 1.1546001434326172,
623
+ "learning_rate": 0.0002,
624
+ "loss": 1.8326,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.7679033649698016,
629
+ "grad_norm": 1.0745750665664673,
630
+ "learning_rate": 0.0002,
631
+ "loss": 1.7178,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.7765314926660914,
636
+ "grad_norm": 1.1739161014556885,
637
+ "learning_rate": 0.0002,
638
+ "loss": 1.7718,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.7851596203623814,
643
+ "grad_norm": 1.1932017803192139,
644
+ "learning_rate": 0.0002,
645
+ "loss": 1.7764,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.7937877480586712,
650
+ "grad_norm": 1.143064022064209,
651
+ "learning_rate": 0.0002,
652
+ "loss": 1.7192,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.8024158757549612,
657
+ "grad_norm": 1.200974464416504,
658
+ "learning_rate": 0.0002,
659
+ "loss": 1.7342,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.811044003451251,
664
+ "grad_norm": 1.0878669023513794,
665
+ "learning_rate": 0.0002,
666
+ "loss": 1.7399,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.819672131147541,
671
+ "grad_norm": 1.0516951084136963,
672
+ "learning_rate": 0.0002,
673
+ "loss": 1.8019,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.8283002588438308,
678
+ "grad_norm": 1.2017741203308105,
679
+ "learning_rate": 0.0002,
680
+ "loss": 1.7645,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.8369283865401208,
685
+ "grad_norm": 0.9762169718742371,
686
+ "learning_rate": 0.0002,
687
+ "loss": 1.7367,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.8455565142364107,
692
+ "grad_norm": 1.0837513208389282,
693
+ "learning_rate": 0.0002,
694
+ "loss": 1.7802,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.8541846419327006,
699
+ "grad_norm": 1.155504822731018,
700
+ "learning_rate": 0.0002,
701
+ "loss": 1.8094,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.8628127696289906,
706
+ "grad_norm": 1.067771315574646,
707
+ "learning_rate": 0.0002,
708
+ "loss": 1.7633,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.8714408973252804,
713
+ "grad_norm": 1.2283565998077393,
714
+ "learning_rate": 0.0002,
715
+ "loss": 1.7993,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.8800690250215704,
720
+ "grad_norm": 1.1549772024154663,
721
+ "learning_rate": 0.0002,
722
+ "loss": 1.7362,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.8886971527178602,
727
+ "grad_norm": 1.0022625923156738,
728
+ "learning_rate": 0.0002,
729
+ "loss": 1.7583,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.8973252804141502,
734
+ "grad_norm": 1.0237284898757935,
735
+ "learning_rate": 0.0002,
736
+ "loss": 1.7718,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.90595340811044,
741
+ "grad_norm": 1.1863008737564087,
742
+ "learning_rate": 0.0002,
743
+ "loss": 1.7457,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.91458153580673,
748
+ "grad_norm": 1.001204013824463,
749
+ "learning_rate": 0.0002,
750
+ "loss": 1.6951,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.9232096635030198,
755
+ "grad_norm": 1.2686481475830078,
756
+ "learning_rate": 0.0002,
757
+ "loss": 1.7506,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.9318377911993098,
762
+ "grad_norm": 1.0700076818466187,
763
+ "learning_rate": 0.0002,
764
+ "loss": 1.7064,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.9404659188955996,
769
+ "grad_norm": 1.05950927734375,
770
+ "learning_rate": 0.0002,
771
+ "loss": 1.8015,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.9490940465918896,
776
+ "grad_norm": 0.9669114947319031,
777
+ "learning_rate": 0.0002,
778
+ "loss": 1.8155,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.9577221742881795,
783
+ "grad_norm": 1.1823079586029053,
784
+ "learning_rate": 0.0002,
785
+ "loss": 1.8074,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.9663503019844694,
790
+ "grad_norm": 1.0857175588607788,
791
+ "learning_rate": 0.0002,
792
+ "loss": 1.7636,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.9749784296807593,
797
+ "grad_norm": 1.1258848905563354,
798
+ "learning_rate": 0.0002,
799
+ "loss": 1.822,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.9836065573770492,
804
+ "grad_norm": 1.16336989402771,
805
+ "learning_rate": 0.0002,
806
+ "loss": 1.8167,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.9922346850733391,
811
+ "grad_norm": 1.118432879447937,
812
+ "learning_rate": 0.0002,
813
+ "loss": 1.7402,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 1.0,
818
+ "eval_loss": 1.7723218202590942,
819
+ "eval_runtime": 158.8593,
820
+ "eval_samples_per_second": 3.355,
821
+ "eval_steps_per_second": 0.422,
822
+ "step": 1159
823
+ },
824
+ {
825
+ "epoch": 1.000862812769629,
826
+ "grad_norm": 1.1056718826293945,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.7863,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.009490940465919,
833
+ "grad_norm": 1.0352667570114136,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.672,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.0181190681622088,
840
+ "grad_norm": 1.0315937995910645,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.6718,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.0267471958584986,
847
+ "grad_norm": 1.369126558303833,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.6937,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.0353753235547887,
854
+ "grad_norm": 1.330876350402832,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.6732,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.0440034512510785,
861
+ "grad_norm": 1.406552791595459,
862
+ "learning_rate": 0.0002,
863
+ "loss": 1.6497,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.0526315789473684,
868
+ "grad_norm": 1.1256251335144043,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.6873,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 1.0612597066436584,
875
+ "grad_norm": 1.315566897392273,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.6765,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 1.0698878343399483,
882
+ "grad_norm": 1.2100263833999634,
883
+ "learning_rate": 0.0002,
884
+ "loss": 1.6763,
885
+ "step": 1240
886
+ },
887
+ {
888
+ "epoch": 1.0785159620362381,
889
+ "grad_norm": 1.2762185335159302,
890
+ "learning_rate": 0.0002,
891
+ "loss": 1.6496,
892
+ "step": 1250
893
+ },
894
+ {
895
+ "epoch": 1.087144089732528,
896
+ "grad_norm": 1.2971566915512085,
897
+ "learning_rate": 0.0002,
898
+ "loss": 1.6826,
899
+ "step": 1260
900
+ },
901
+ {
902
+ "epoch": 1.095772217428818,
903
+ "grad_norm": 1.3685089349746704,
904
+ "learning_rate": 0.0002,
905
+ "loss": 1.6721,
906
+ "step": 1270
907
+ },
908
+ {
909
+ "epoch": 1.1044003451251079,
910
+ "grad_norm": 1.3135347366333008,
911
+ "learning_rate": 0.0002,
912
+ "loss": 1.6399,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.1130284728213977,
917
+ "grad_norm": 1.4514861106872559,
918
+ "learning_rate": 0.0002,
919
+ "loss": 1.641,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 1.1216566005176876,
924
+ "grad_norm": 1.5077004432678223,
925
+ "learning_rate": 0.0002,
926
+ "loss": 1.6443,
927
+ "step": 1300
928
+ },
929
+ {
930
+ "epoch": 1.1302847282139776,
931
+ "grad_norm": 1.4807840585708618,
932
+ "learning_rate": 0.0002,
933
+ "loss": 1.6406,
934
+ "step": 1310
935
+ },
936
+ {
937
+ "epoch": 1.1389128559102675,
938
+ "grad_norm": 1.2386537790298462,
939
+ "learning_rate": 0.0002,
940
+ "loss": 1.7022,
941
+ "step": 1320
942
+ },
943
+ {
944
+ "epoch": 1.1475409836065573,
945
+ "grad_norm": 1.2637739181518555,
946
+ "learning_rate": 0.0002,
947
+ "loss": 1.6265,
948
+ "step": 1330
949
+ },
950
+ {
951
+ "epoch": 1.1561691113028472,
952
+ "grad_norm": 1.2472519874572754,
953
+ "learning_rate": 0.0002,
954
+ "loss": 1.7103,
955
+ "step": 1340
956
+ },
957
+ {
958
+ "epoch": 1.1647972389991372,
959
+ "grad_norm": 1.290644884109497,
960
+ "learning_rate": 0.0002,
961
+ "loss": 1.676,
962
+ "step": 1350
963
+ },
964
+ {
965
+ "epoch": 1.173425366695427,
966
+ "grad_norm": 1.3227870464324951,
967
+ "learning_rate": 0.0002,
968
+ "loss": 1.6713,
969
+ "step": 1360
970
+ },
971
+ {
972
+ "epoch": 1.182053494391717,
973
+ "grad_norm": 1.3311200141906738,
974
+ "learning_rate": 0.0002,
975
+ "loss": 1.7158,
976
+ "step": 1370
977
+ },
978
+ {
979
+ "epoch": 1.190681622088007,
980
+ "grad_norm": 1.2624584436416626,
981
+ "learning_rate": 0.0002,
982
+ "loss": 1.6501,
983
+ "step": 1380
984
+ },
985
+ {
986
+ "epoch": 1.1993097497842968,
987
+ "grad_norm": 1.4712986946105957,
988
+ "learning_rate": 0.0002,
989
+ "loss": 1.6398,
990
+ "step": 1390
991
+ },
992
+ {
993
+ "epoch": 1.2079378774805867,
994
+ "grad_norm": 1.416508674621582,
995
+ "learning_rate": 0.0002,
996
+ "loss": 1.6818,
997
+ "step": 1400
998
+ },
999
+ {
1000
+ "epoch": 1.2165660051768765,
1001
+ "grad_norm": 1.367967963218689,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 1.7184,
1004
+ "step": 1410
1005
+ },
1006
+ {
1007
+ "epoch": 1.2251941328731666,
1008
+ "grad_norm": 1.3865700960159302,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 1.6834,
1011
+ "step": 1420
1012
+ },
1013
+ {
1014
+ "epoch": 1.2338222605694564,
1015
+ "grad_norm": 2.076512336730957,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 1.7532,
1018
+ "step": 1430
1019
+ },
1020
+ {
1021
+ "epoch": 1.2424503882657463,
1022
+ "grad_norm": 1.305572509765625,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 1.7448,
1025
+ "step": 1440
1026
+ },
1027
+ {
1028
+ "epoch": 1.2510785159620363,
1029
+ "grad_norm": 1.2752642631530762,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 1.7422,
1032
+ "step": 1450
1033
+ },
1034
+ {
1035
+ "epoch": 1.2597066436583262,
1036
+ "grad_norm": 1.1802726984024048,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 1.7121,
1039
+ "step": 1460
1040
+ },
1041
+ {
1042
+ "epoch": 1.268334771354616,
1043
+ "grad_norm": 1.2195663452148438,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 1.7617,
1046
+ "step": 1470
1047
+ },
1048
+ {
1049
+ "epoch": 1.2769628990509059,
1050
+ "grad_norm": 1.3073176145553589,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 1.6022,
1053
+ "step": 1480
1054
+ },
1055
+ {
1056
+ "epoch": 1.2855910267471957,
1057
+ "grad_norm": 1.2829731702804565,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 1.6472,
1060
+ "step": 1490
1061
+ },
1062
+ {
1063
+ "epoch": 1.2942191544434858,
1064
+ "grad_norm": 1.361060619354248,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 1.6076,
1067
+ "step": 1500
1068
+ },
1069
+ {
1070
+ "epoch": 1.3028472821397756,
1071
+ "grad_norm": 1.4285917282104492,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 1.7059,
1074
+ "step": 1510
1075
+ },
1076
+ {
1077
+ "epoch": 1.3114754098360657,
1078
+ "grad_norm": 1.186866283416748,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 1.696,
1081
+ "step": 1520
1082
+ },
1083
+ {
1084
+ "epoch": 1.3201035375323555,
1085
+ "grad_norm": 1.2615889310836792,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 1.6707,
1088
+ "step": 1530
1089
+ },
1090
+ {
1091
+ "epoch": 1.3287316652286454,
1092
+ "grad_norm": 1.2732815742492676,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 1.5797,
1095
+ "step": 1540
1096
+ },
1097
+ {
1098
+ "epoch": 1.3373597929249352,
1099
+ "grad_norm": 1.4152132272720337,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 1.6623,
1102
+ "step": 1550
1103
+ },
1104
+ {
1105
+ "epoch": 1.345987920621225,
1106
+ "grad_norm": 1.1730318069458008,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 1.6649,
1109
+ "step": 1560
1110
+ },
1111
+ {
1112
+ "epoch": 1.3546160483175151,
1113
+ "grad_norm": 1.2282229661941528,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 1.7247,
1116
+ "step": 1570
1117
+ },
1118
+ {
1119
+ "epoch": 1.363244176013805,
1120
+ "grad_norm": 1.227974534034729,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 1.7125,
1123
+ "step": 1580
1124
+ },
1125
+ {
1126
+ "epoch": 1.3718723037100948,
1127
+ "grad_norm": 1.3480374813079834,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 1.622,
1130
+ "step": 1590
1131
+ },
1132
+ {
1133
+ "epoch": 1.380500431406385,
1134
+ "grad_norm": 1.3460094928741455,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 1.7126,
1137
+ "step": 1600
1138
+ },
1139
+ {
1140
+ "epoch": 1.3891285591026747,
1141
+ "grad_norm": 1.254465937614441,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 1.6845,
1144
+ "step": 1610
1145
+ },
1146
+ {
1147
+ "epoch": 1.3977566867989646,
1148
+ "grad_norm": 1.4135496616363525,
1149
+ "learning_rate": 0.0002,
1150
+ "loss": 1.643,
1151
+ "step": 1620
1152
+ },
1153
+ {
1154
+ "epoch": 1.4063848144952544,
1155
+ "grad_norm": 1.277063012123108,
1156
+ "learning_rate": 0.0002,
1157
+ "loss": 1.6392,
1158
+ "step": 1630
1159
+ },
1160
+ {
1161
+ "epoch": 1.4150129421915445,
1162
+ "grad_norm": 1.5031940937042236,
1163
+ "learning_rate": 0.0002,
1164
+ "loss": 1.7338,
1165
+ "step": 1640
1166
+ },
1167
+ {
1168
+ "epoch": 1.4236410698878343,
1169
+ "grad_norm": 1.3918952941894531,
1170
+ "learning_rate": 0.0002,
1171
+ "loss": 1.6229,
1172
+ "step": 1650
1173
+ },
1174
+ {
1175
+ "epoch": 1.4322691975841242,
1176
+ "grad_norm": 1.5893778800964355,
1177
+ "learning_rate": 0.0002,
1178
+ "loss": 1.6893,
1179
+ "step": 1660
1180
+ },
1181
+ {
1182
+ "epoch": 1.4408973252804143,
1183
+ "grad_norm": 1.4636809825897217,
1184
+ "learning_rate": 0.0002,
1185
+ "loss": 1.7129,
1186
+ "step": 1670
1187
+ },
1188
+ {
1189
+ "epoch": 1.449525452976704,
1190
+ "grad_norm": 1.1985419988632202,
1191
+ "learning_rate": 0.0002,
1192
+ "loss": 1.6481,
1193
+ "step": 1680
1194
+ },
1195
+ {
1196
+ "epoch": 1.458153580672994,
1197
+ "grad_norm": 1.509252905845642,
1198
+ "learning_rate": 0.0002,
1199
+ "loss": 1.7322,
1200
+ "step": 1690
1201
+ },
1202
+ {
1203
+ "epoch": 1.4667817083692838,
1204
+ "grad_norm": 1.4157838821411133,
1205
+ "learning_rate": 0.0002,
1206
+ "loss": 1.6653,
1207
+ "step": 1700
1208
+ },
1209
+ {
1210
+ "epoch": 1.4754098360655736,
1211
+ "grad_norm": 1.3481059074401855,
1212
+ "learning_rate": 0.0002,
1213
+ "loss": 1.7111,
1214
+ "step": 1710
1215
+ },
1216
+ {
1217
+ "epoch": 1.4840379637618637,
1218
+ "grad_norm": 1.4127949476242065,
1219
+ "learning_rate": 0.0002,
1220
+ "loss": 1.6488,
1221
+ "step": 1720
1222
+ },
1223
+ {
1224
+ "epoch": 1.4926660914581535,
1225
+ "grad_norm": 1.3087295293807983,
1226
+ "learning_rate": 0.0002,
1227
+ "loss": 1.6336,
1228
+ "step": 1730
1229
+ },
1230
+ {
1231
+ "epoch": 1.5012942191544436,
1232
+ "grad_norm": 1.4421851634979248,
1233
+ "learning_rate": 0.0002,
1234
+ "loss": 1.7226,
1235
+ "step": 1740
1236
+ },
1237
+ {
1238
+ "epoch": 1.5099223468507335,
1239
+ "grad_norm": 1.3953148126602173,
1240
+ "learning_rate": 0.0002,
1241
+ "loss": 1.7006,
1242
+ "step": 1750
1243
+ },
1244
+ {
1245
+ "epoch": 1.5185504745470233,
1246
+ "grad_norm": 1.4613851308822632,
1247
+ "learning_rate": 0.0002,
1248
+ "loss": 1.6281,
1249
+ "step": 1760
1250
+ },
1251
+ {
1252
+ "epoch": 1.5271786022433131,
1253
+ "grad_norm": 1.2866744995117188,
1254
+ "learning_rate": 0.0002,
1255
+ "loss": 1.6404,
1256
+ "step": 1770
1257
+ },
1258
+ {
1259
+ "epoch": 1.535806729939603,
1260
+ "grad_norm": 1.2769535779953003,
1261
+ "learning_rate": 0.0002,
1262
+ "loss": 1.628,
1263
+ "step": 1780
1264
+ },
1265
+ {
1266
+ "epoch": 1.544434857635893,
1267
+ "grad_norm": 1.371022343635559,
1268
+ "learning_rate": 0.0002,
1269
+ "loss": 1.6439,
1270
+ "step": 1790
1271
+ },
1272
+ {
1273
+ "epoch": 1.553062985332183,
1274
+ "grad_norm": 1.4434700012207031,
1275
+ "learning_rate": 0.0002,
1276
+ "loss": 1.6363,
1277
+ "step": 1800
1278
+ },
1279
+ {
1280
+ "epoch": 1.561691113028473,
1281
+ "grad_norm": 1.269386887550354,
1282
+ "learning_rate": 0.0002,
1283
+ "loss": 1.6606,
1284
+ "step": 1810
1285
+ },
1286
+ {
1287
+ "epoch": 1.5703192407247628,
1288
+ "grad_norm": 1.2668766975402832,
1289
+ "learning_rate": 0.0002,
1290
+ "loss": 1.6493,
1291
+ "step": 1820
1292
+ },
1293
+ {
1294
+ "epoch": 1.5789473684210527,
1295
+ "grad_norm": 1.4857951402664185,
1296
+ "learning_rate": 0.0002,
1297
+ "loss": 1.7124,
1298
+ "step": 1830
1299
+ },
1300
+ {
1301
+ "epoch": 1.5875754961173425,
1302
+ "grad_norm": 1.330338954925537,
1303
+ "learning_rate": 0.0002,
1304
+ "loss": 1.6474,
1305
+ "step": 1840
1306
+ },
1307
+ {
1308
+ "epoch": 1.5962036238136323,
1309
+ "grad_norm": 1.3832308053970337,
1310
+ "learning_rate": 0.0002,
1311
+ "loss": 1.6412,
1312
+ "step": 1850
1313
+ },
1314
+ {
1315
+ "epoch": 1.6048317515099222,
1316
+ "grad_norm": 1.2697869539260864,
1317
+ "learning_rate": 0.0002,
1318
+ "loss": 1.6988,
1319
+ "step": 1860
1320
+ },
1321
+ {
1322
+ "epoch": 1.6134598792062123,
1323
+ "grad_norm": 1.338875412940979,
1324
+ "learning_rate": 0.0002,
1325
+ "loss": 1.6651,
1326
+ "step": 1870
1327
+ },
1328
+ {
1329
+ "epoch": 1.6220880069025023,
1330
+ "grad_norm": 1.4077556133270264,
1331
+ "learning_rate": 0.0002,
1332
+ "loss": 1.7319,
1333
+ "step": 1880
1334
+ },
1335
+ {
1336
+ "epoch": 1.6307161345987922,
1337
+ "grad_norm": 1.40274178981781,
1338
+ "learning_rate": 0.0002,
1339
+ "loss": 1.644,
1340
+ "step": 1890
1341
+ },
1342
+ {
1343
+ "epoch": 1.639344262295082,
1344
+ "grad_norm": 1.416042447090149,
1345
+ "learning_rate": 0.0002,
1346
+ "loss": 1.6648,
1347
+ "step": 1900
1348
+ },
1349
+ {
1350
+ "epoch": 1.6479723899913719,
1351
+ "grad_norm": 1.4196866750717163,
1352
+ "learning_rate": 0.0002,
1353
+ "loss": 1.729,
1354
+ "step": 1910
1355
+ },
1356
+ {
1357
+ "epoch": 1.6566005176876617,
1358
+ "grad_norm": 1.378732681274414,
1359
+ "learning_rate": 0.0002,
1360
+ "loss": 1.7381,
1361
+ "step": 1920
1362
+ },
1363
+ {
1364
+ "epoch": 1.6652286453839515,
1365
+ "grad_norm": 1.544751524925232,
1366
+ "learning_rate": 0.0002,
1367
+ "loss": 1.7804,
1368
+ "step": 1930
1369
+ },
1370
+ {
1371
+ "epoch": 1.6738567730802416,
1372
+ "grad_norm": 1.4318190813064575,
1373
+ "learning_rate": 0.0002,
1374
+ "loss": 1.6563,
1375
+ "step": 1940
1376
+ },
1377
+ {
1378
+ "epoch": 1.6824849007765315,
1379
+ "grad_norm": 1.3794575929641724,
1380
+ "learning_rate": 0.0002,
1381
+ "loss": 1.6806,
1382
+ "step": 1950
1383
+ },
1384
+ {
1385
+ "epoch": 1.6911130284728215,
1386
+ "grad_norm": 1.6301822662353516,
1387
+ "learning_rate": 0.0002,
1388
+ "loss": 1.6707,
1389
+ "step": 1960
1390
+ },
1391
+ {
1392
+ "epoch": 1.6997411561691114,
1393
+ "grad_norm": 1.3090870380401611,
1394
+ "learning_rate": 0.0002,
1395
+ "loss": 1.6945,
1396
+ "step": 1970
1397
+ },
1398
+ {
1399
+ "epoch": 1.7083692838654012,
1400
+ "grad_norm": 1.4537303447723389,
1401
+ "learning_rate": 0.0002,
1402
+ "loss": 1.6018,
1403
+ "step": 1980
1404
+ },
1405
+ {
1406
+ "epoch": 1.716997411561691,
1407
+ "grad_norm": 1.3618766069412231,
1408
+ "learning_rate": 0.0002,
1409
+ "loss": 1.7225,
1410
+ "step": 1990
1411
+ },
1412
+ {
1413
+ "epoch": 1.725625539257981,
1414
+ "grad_norm": 1.398790955543518,
1415
+ "learning_rate": 0.0002,
1416
+ "loss": 1.6948,
1417
+ "step": 2000
1418
+ },
1419
+ {
1420
+ "epoch": 1.734253666954271,
1421
+ "grad_norm": 1.4606391191482544,
1422
+ "learning_rate": 0.0002,
1423
+ "loss": 1.6963,
1424
+ "step": 2010
1425
+ },
1426
+ {
1427
+ "epoch": 1.7428817946505608,
1428
+ "grad_norm": 1.602010726928711,
1429
+ "learning_rate": 0.0002,
1430
+ "loss": 1.727,
1431
+ "step": 2020
1432
+ },
1433
+ {
1434
+ "epoch": 1.7515099223468509,
1435
+ "grad_norm": 1.4865907430648804,
1436
+ "learning_rate": 0.0002,
1437
+ "loss": 1.7238,
1438
+ "step": 2030
1439
+ },
1440
+ {
1441
+ "epoch": 1.7601380500431407,
1442
+ "grad_norm": 1.5954750776290894,
1443
+ "learning_rate": 0.0002,
1444
+ "loss": 1.713,
1445
+ "step": 2040
1446
+ },
1447
+ {
1448
+ "epoch": 1.7687661777394306,
1449
+ "grad_norm": 1.3561054468154907,
1450
+ "learning_rate": 0.0002,
1451
+ "loss": 1.6794,
1452
+ "step": 2050
1453
+ },
1454
+ {
1455
+ "epoch": 1.7773943054357204,
1456
+ "grad_norm": 1.4540512561798096,
1457
+ "learning_rate": 0.0002,
1458
+ "loss": 1.7058,
1459
+ "step": 2060
1460
+ },
1461
+ {
1462
+ "epoch": 1.7860224331320103,
1463
+ "grad_norm": 1.2661199569702148,
1464
+ "learning_rate": 0.0002,
1465
+ "loss": 1.6187,
1466
+ "step": 2070
1467
+ },
1468
+ {
1469
+ "epoch": 1.7946505608283,
1470
+ "grad_norm": 2.188016176223755,
1471
+ "learning_rate": 0.0002,
1472
+ "loss": 1.6998,
1473
+ "step": 2080
1474
+ },
1475
+ {
1476
+ "epoch": 1.8032786885245902,
1477
+ "grad_norm": 1.4326417446136475,
1478
+ "learning_rate": 0.0002,
1479
+ "loss": 1.6909,
1480
+ "step": 2090
1481
+ },
1482
+ {
1483
+ "epoch": 1.8119068162208802,
1484
+ "grad_norm": 2.2382805347442627,
1485
+ "learning_rate": 0.0002,
1486
+ "loss": 1.7765,
1487
+ "step": 2100
1488
+ },
1489
+ {
1490
+ "epoch": 1.82053494391717,
1491
+ "grad_norm": 1.396160364151001,
1492
+ "learning_rate": 0.0002,
1493
+ "loss": 1.7034,
1494
+ "step": 2110
1495
+ },
1496
+ {
1497
+ "epoch": 1.82916307161346,
1498
+ "grad_norm": 1.3848069906234741,
1499
+ "learning_rate": 0.0002,
1500
+ "loss": 1.629,
1501
+ "step": 2120
1502
+ },
1503
+ {
1504
+ "epoch": 1.8377911993097498,
1505
+ "grad_norm": 1.6975245475769043,
1506
+ "learning_rate": 0.0002,
1507
+ "loss": 1.6153,
1508
+ "step": 2130
1509
+ },
1510
+ {
1511
+ "epoch": 1.8464193270060396,
1512
+ "grad_norm": 1.476306676864624,
1513
+ "learning_rate": 0.0002,
1514
+ "loss": 1.6631,
1515
+ "step": 2140
1516
+ },
1517
+ {
1518
+ "epoch": 1.8550474547023295,
1519
+ "grad_norm": 1.5690935850143433,
1520
+ "learning_rate": 0.0002,
1521
+ "loss": 1.646,
1522
+ "step": 2150
1523
+ },
1524
+ {
1525
+ "epoch": 1.8636755823986195,
1526
+ "grad_norm": 1.4900702238082886,
1527
+ "learning_rate": 0.0002,
1528
+ "loss": 1.6989,
1529
+ "step": 2160
1530
+ },
1531
+ {
1532
+ "epoch": 1.8723037100949094,
1533
+ "grad_norm": 1.4173238277435303,
1534
+ "learning_rate": 0.0002,
1535
+ "loss": 1.657,
1536
+ "step": 2170
1537
+ },
1538
+ {
1539
+ "epoch": 1.8809318377911994,
1540
+ "grad_norm": 1.3687001466751099,
1541
+ "learning_rate": 0.0002,
1542
+ "loss": 1.6587,
1543
+ "step": 2180
1544
+ },
1545
+ {
1546
+ "epoch": 1.8895599654874893,
1547
+ "grad_norm": 1.371954321861267,
1548
+ "learning_rate": 0.0002,
1549
+ "loss": 1.6209,
1550
+ "step": 2190
1551
+ },
1552
+ {
1553
+ "epoch": 1.8981880931837791,
1554
+ "grad_norm": 1.5397378206253052,
1555
+ "learning_rate": 0.0002,
1556
+ "loss": 1.6749,
1557
+ "step": 2200
1558
+ },
1559
+ {
1560
+ "epoch": 1.906816220880069,
1561
+ "grad_norm": 1.7145664691925049,
1562
+ "learning_rate": 0.0002,
1563
+ "loss": 1.7149,
1564
+ "step": 2210
1565
+ },
1566
+ {
1567
+ "epoch": 1.9154443485763588,
1568
+ "grad_norm": 1.5490705966949463,
1569
+ "learning_rate": 0.0002,
1570
+ "loss": 1.6663,
1571
+ "step": 2220
1572
+ },
1573
+ {
1574
+ "epoch": 1.9240724762726489,
1575
+ "grad_norm": 1.3237485885620117,
1576
+ "learning_rate": 0.0002,
1577
+ "loss": 1.7056,
1578
+ "step": 2230
1579
+ },
1580
+ {
1581
+ "epoch": 1.9327006039689387,
1582
+ "grad_norm": 1.4739165306091309,
1583
+ "learning_rate": 0.0002,
1584
+ "loss": 1.7613,
1585
+ "step": 2240
1586
+ },
1587
+ {
1588
+ "epoch": 1.9413287316652288,
1589
+ "grad_norm": 1.7177914381027222,
1590
+ "learning_rate": 0.0002,
1591
+ "loss": 1.601,
1592
+ "step": 2250
1593
+ },
1594
+ {
1595
+ "epoch": 1.9499568593615186,
1596
+ "grad_norm": 1.3587760925292969,
1597
+ "learning_rate": 0.0002,
1598
+ "loss": 1.6733,
1599
+ "step": 2260
1600
+ },
1601
+ {
1602
+ "epoch": 1.9585849870578085,
1603
+ "grad_norm": 1.3180559873580933,
1604
+ "learning_rate": 0.0002,
1605
+ "loss": 1.6511,
1606
+ "step": 2270
1607
+ },
1608
+ {
1609
+ "epoch": 1.9672131147540983,
1610
+ "grad_norm": 1.9988678693771362,
1611
+ "learning_rate": 0.0002,
1612
+ "loss": 1.5875,
1613
+ "step": 2280
1614
+ },
1615
+ {
1616
+ "epoch": 1.9758412424503882,
1617
+ "grad_norm": 1.4148619174957275,
1618
+ "learning_rate": 0.0002,
1619
+ "loss": 1.6516,
1620
+ "step": 2290
1621
+ },
1622
+ {
1623
+ "epoch": 1.984469370146678,
1624
+ "grad_norm": 1.6429015398025513,
1625
+ "learning_rate": 0.0002,
1626
+ "loss": 1.6649,
1627
+ "step": 2300
1628
+ },
1629
+ {
1630
+ "epoch": 1.993097497842968,
1631
+ "grad_norm": 1.6742682456970215,
1632
+ "learning_rate": 0.0002,
1633
+ "loss": 1.6504,
1634
+ "step": 2310
1635
+ },
1636
+ {
1637
+ "epoch": 2.0,
1638
+ "eval_loss": 1.7843003273010254,
1639
+ "eval_runtime": 155.4967,
1640
+ "eval_samples_per_second": 3.428,
1641
+ "eval_steps_per_second": 0.431,
1642
+ "step": 2318
1643
+ },
1644
+ {
1645
+ "epoch": 2.001725625539258,
1646
+ "grad_norm": 1.399217128753662,
1647
+ "learning_rate": 0.0002,
1648
+ "loss": 1.6082,
1649
+ "step": 2320
1650
+ },
1651
+ {
1652
+ "epoch": 2.010353753235548,
1653
+ "grad_norm": 1.7028861045837402,
1654
+ "learning_rate": 0.0002,
1655
+ "loss": 1.4883,
1656
+ "step": 2330
1657
+ },
1658
+ {
1659
+ "epoch": 2.018981880931838,
1660
+ "grad_norm": 1.506859540939331,
1661
+ "learning_rate": 0.0002,
1662
+ "loss": 1.4019,
1663
+ "step": 2340
1664
+ },
1665
+ {
1666
+ "epoch": 2.0276100086281277,
1667
+ "grad_norm": 1.3946882486343384,
1668
+ "learning_rate": 0.0002,
1669
+ "loss": 1.482,
1670
+ "step": 2350
1671
+ },
1672
+ {
1673
+ "epoch": 2.0362381363244175,
1674
+ "grad_norm": 1.5871425867080688,
1675
+ "learning_rate": 0.0002,
1676
+ "loss": 1.5225,
1677
+ "step": 2360
1678
+ },
1679
+ {
1680
+ "epoch": 2.0448662640207074,
1681
+ "grad_norm": 1.636025309562683,
1682
+ "learning_rate": 0.0002,
1683
+ "loss": 1.5915,
1684
+ "step": 2370
1685
+ },
1686
+ {
1687
+ "epoch": 2.053494391716997,
1688
+ "grad_norm": 1.971501111984253,
1689
+ "learning_rate": 0.0002,
1690
+ "loss": 1.5434,
1691
+ "step": 2380
1692
+ },
1693
+ {
1694
+ "epoch": 2.0621225194132875,
1695
+ "grad_norm": 1.5961263179779053,
1696
+ "learning_rate": 0.0002,
1697
+ "loss": 1.5265,
1698
+ "step": 2390
1699
+ },
1700
+ {
1701
+ "epoch": 2.0707506471095773,
1702
+ "grad_norm": 1.4916940927505493,
1703
+ "learning_rate": 0.0002,
1704
+ "loss": 1.446,
1705
+ "step": 2400
1706
+ },
1707
+ {
1708
+ "epoch": 2.079378774805867,
1709
+ "grad_norm": 1.6255263090133667,
1710
+ "learning_rate": 0.0002,
1711
+ "loss": 1.528,
1712
+ "step": 2410
1713
+ },
1714
+ {
1715
+ "epoch": 2.088006902502157,
1716
+ "grad_norm": 1.9251011610031128,
1717
+ "learning_rate": 0.0002,
1718
+ "loss": 1.6365,
1719
+ "step": 2420
1720
+ },
1721
+ {
1722
+ "epoch": 2.096635030198447,
1723
+ "grad_norm": 1.6198536157608032,
1724
+ "learning_rate": 0.0002,
1725
+ "loss": 1.5883,
1726
+ "step": 2430
1727
+ },
1728
+ {
1729
+ "epoch": 2.1052631578947367,
1730
+ "grad_norm": 1.6935237646102905,
1731
+ "learning_rate": 0.0002,
1732
+ "loss": 1.4984,
1733
+ "step": 2440
1734
+ },
1735
+ {
1736
+ "epoch": 2.1138912855910266,
1737
+ "grad_norm": 1.5107334852218628,
1738
+ "learning_rate": 0.0002,
1739
+ "loss": 1.5477,
1740
+ "step": 2450
1741
+ },
1742
+ {
1743
+ "epoch": 2.122519413287317,
1744
+ "grad_norm": 1.801699161529541,
1745
+ "learning_rate": 0.0002,
1746
+ "loss": 1.4898,
1747
+ "step": 2460
1748
+ },
1749
+ {
1750
+ "epoch": 2.1311475409836067,
1751
+ "grad_norm": 1.6194193363189697,
1752
+ "learning_rate": 0.0002,
1753
+ "loss": 1.5471,
1754
+ "step": 2470
1755
+ },
1756
+ {
1757
+ "epoch": 2.1397756686798965,
1758
+ "grad_norm": 1.896286964416504,
1759
+ "learning_rate": 0.0002,
1760
+ "loss": 1.4619,
1761
+ "step": 2480
1762
+ },
1763
+ {
1764
+ "epoch": 2.1484037963761864,
1765
+ "grad_norm": 1.9456146955490112,
1766
+ "learning_rate": 0.0002,
1767
+ "loss": 1.5496,
1768
+ "step": 2490
1769
+ },
1770
+ {
1771
+ "epoch": 2.1570319240724762,
1772
+ "grad_norm": 23.566476821899414,
1773
+ "learning_rate": 0.0002,
1774
+ "loss": 1.5449,
1775
+ "step": 2500
1776
+ },
1777
+ {
1778
+ "epoch": 2.165660051768766,
1779
+ "grad_norm": 1.7737925052642822,
1780
+ "learning_rate": 0.0002,
1781
+ "loss": 1.5675,
1782
+ "step": 2510
1783
+ },
1784
+ {
1785
+ "epoch": 2.174288179465056,
1786
+ "grad_norm": 1.7305291891098022,
1787
+ "learning_rate": 0.0002,
1788
+ "loss": 1.4775,
1789
+ "step": 2520
1790
+ },
1791
+ {
1792
+ "epoch": 2.1829163071613458,
1793
+ "grad_norm": 2.130882978439331,
1794
+ "learning_rate": 0.0002,
1795
+ "loss": 1.5051,
1796
+ "step": 2530
1797
+ },
1798
+ {
1799
+ "epoch": 2.191544434857636,
1800
+ "grad_norm": 1.790124535560608,
1801
+ "learning_rate": 0.0002,
1802
+ "loss": 1.4675,
1803
+ "step": 2540
1804
+ },
1805
+ {
1806
+ "epoch": 2.200172562553926,
1807
+ "grad_norm": 1.8408042192459106,
1808
+ "learning_rate": 0.0002,
1809
+ "loss": 1.5208,
1810
+ "step": 2550
1811
+ },
1812
+ {
1813
+ "epoch": 2.2088006902502157,
1814
+ "grad_norm": 1.7635295391082764,
1815
+ "learning_rate": 0.0002,
1816
+ "loss": 1.4732,
1817
+ "step": 2560
1818
+ },
1819
+ {
1820
+ "epoch": 2.2174288179465056,
1821
+ "grad_norm": 1.7026700973510742,
1822
+ "learning_rate": 0.0002,
1823
+ "loss": 1.4604,
1824
+ "step": 2570
1825
+ },
1826
+ {
1827
+ "epoch": 2.2260569456427954,
1828
+ "grad_norm": 1.881218433380127,
1829
+ "learning_rate": 0.0002,
1830
+ "loss": 1.5223,
1831
+ "step": 2580
1832
+ },
1833
+ {
1834
+ "epoch": 2.2346850733390853,
1835
+ "grad_norm": 1.9007751941680908,
1836
+ "learning_rate": 0.0002,
1837
+ "loss": 1.4422,
1838
+ "step": 2590
1839
+ },
1840
+ {
1841
+ "epoch": 2.243313201035375,
1842
+ "grad_norm": 1.7862553596496582,
1843
+ "learning_rate": 0.0002,
1844
+ "loss": 1.4695,
1845
+ "step": 2600
1846
+ },
1847
+ {
1848
+ "epoch": 2.2519413287316654,
1849
+ "grad_norm": 1.7117811441421509,
1850
+ "learning_rate": 0.0002,
1851
+ "loss": 1.4731,
1852
+ "step": 2610
1853
+ },
1854
+ {
1855
+ "epoch": 2.2605694564279553,
1856
+ "grad_norm": 1.7809374332427979,
1857
+ "learning_rate": 0.0002,
1858
+ "loss": 1.4951,
1859
+ "step": 2620
1860
+ },
1861
+ {
1862
+ "epoch": 2.269197584124245,
1863
+ "grad_norm": 1.7089564800262451,
1864
+ "learning_rate": 0.0002,
1865
+ "loss": 1.4744,
1866
+ "step": 2630
1867
+ },
1868
+ {
1869
+ "epoch": 2.277825711820535,
1870
+ "grad_norm": 1.7662888765335083,
1871
+ "learning_rate": 0.0002,
1872
+ "loss": 1.5186,
1873
+ "step": 2640
1874
+ },
1875
+ {
1876
+ "epoch": 2.286453839516825,
1877
+ "grad_norm": 1.8892756700515747,
1878
+ "learning_rate": 0.0002,
1879
+ "loss": 1.5468,
1880
+ "step": 2650
1881
+ },
1882
+ {
1883
+ "epoch": 2.2950819672131146,
1884
+ "grad_norm": 1.678238034248352,
1885
+ "learning_rate": 0.0002,
1886
+ "loss": 1.5266,
1887
+ "step": 2660
1888
+ },
1889
+ {
1890
+ "epoch": 2.3037100949094045,
1891
+ "grad_norm": 1.865786075592041,
1892
+ "learning_rate": 0.0002,
1893
+ "loss": 1.4897,
1894
+ "step": 2670
1895
+ },
1896
+ {
1897
+ "epoch": 2.3123382226056943,
1898
+ "grad_norm": 1.9744012355804443,
1899
+ "learning_rate": 0.0002,
1900
+ "loss": 1.5578,
1901
+ "step": 2680
1902
+ },
1903
+ {
1904
+ "epoch": 2.3209663503019846,
1905
+ "grad_norm": 1.884690284729004,
1906
+ "learning_rate": 0.0002,
1907
+ "loss": 1.5021,
1908
+ "step": 2690
1909
+ },
1910
+ {
1911
+ "epoch": 2.3295944779982745,
1912
+ "grad_norm": 1.6391639709472656,
1913
+ "learning_rate": 0.0002,
1914
+ "loss": 1.6071,
1915
+ "step": 2700
1916
+ },
1917
+ {
1918
+ "epoch": 2.3382226056945643,
1919
+ "grad_norm": 1.7777862548828125,
1920
+ "learning_rate": 0.0002,
1921
+ "loss": 1.5721,
1922
+ "step": 2710
1923
+ },
1924
+ {
1925
+ "epoch": 2.346850733390854,
1926
+ "grad_norm": 1.6615192890167236,
1927
+ "learning_rate": 0.0002,
1928
+ "loss": 1.5633,
1929
+ "step": 2720
1930
+ },
1931
+ {
1932
+ "epoch": 2.355478861087144,
1933
+ "grad_norm": 2.2202742099761963,
1934
+ "learning_rate": 0.0002,
1935
+ "loss": 1.5213,
1936
+ "step": 2730
1937
+ },
1938
+ {
1939
+ "epoch": 2.364106988783434,
1940
+ "grad_norm": 2.1986732482910156,
1941
+ "learning_rate": 0.0002,
1942
+ "loss": 1.5443,
1943
+ "step": 2740
1944
+ },
1945
+ {
1946
+ "epoch": 2.372735116479724,
1947
+ "grad_norm": 1.7847017049789429,
1948
+ "learning_rate": 0.0002,
1949
+ "loss": 1.5834,
1950
+ "step": 2750
1951
+ },
1952
+ {
1953
+ "epoch": 2.381363244176014,
1954
+ "grad_norm": 1.8832756280899048,
1955
+ "learning_rate": 0.0002,
1956
+ "loss": 1.4946,
1957
+ "step": 2760
1958
+ },
1959
+ {
1960
+ "epoch": 2.389991371872304,
1961
+ "grad_norm": 1.8374940156936646,
1962
+ "learning_rate": 0.0002,
1963
+ "loss": 1.5725,
1964
+ "step": 2770
1965
+ },
1966
+ {
1967
+ "epoch": 2.3986194995685937,
1968
+ "grad_norm": 1.741965413093567,
1969
+ "learning_rate": 0.0002,
1970
+ "loss": 1.5181,
1971
+ "step": 2780
1972
+ },
1973
+ {
1974
+ "epoch": 2.4072476272648835,
1975
+ "grad_norm": 1.789699673652649,
1976
+ "learning_rate": 0.0002,
1977
+ "loss": 1.5571,
1978
+ "step": 2790
1979
+ },
1980
+ {
1981
+ "epoch": 2.4158757549611733,
1982
+ "grad_norm": 2.0495948791503906,
1983
+ "learning_rate": 0.0002,
1984
+ "loss": 1.4763,
1985
+ "step": 2800
1986
+ },
1987
+ {
1988
+ "epoch": 2.424503882657463,
1989
+ "grad_norm": 1.7399765253067017,
1990
+ "learning_rate": 0.0002,
1991
+ "loss": 1.5129,
1992
+ "step": 2810
1993
+ },
1994
+ {
1995
+ "epoch": 2.433132010353753,
1996
+ "grad_norm": 1.9142578840255737,
1997
+ "learning_rate": 0.0002,
1998
+ "loss": 1.556,
1999
+ "step": 2820
2000
+ },
2001
+ {
2002
+ "epoch": 2.4417601380500433,
2003
+ "grad_norm": 1.920663595199585,
2004
+ "learning_rate": 0.0002,
2005
+ "loss": 1.4848,
2006
+ "step": 2830
2007
+ },
2008
+ {
2009
+ "epoch": 2.450388265746333,
2010
+ "grad_norm": 1.7982150316238403,
2011
+ "learning_rate": 0.0002,
2012
+ "loss": 1.5411,
2013
+ "step": 2840
2014
+ },
2015
+ {
2016
+ "epoch": 2.459016393442623,
2017
+ "grad_norm": 1.7665464878082275,
2018
+ "learning_rate": 0.0002,
2019
+ "loss": 1.5802,
2020
+ "step": 2850
2021
+ },
2022
+ {
2023
+ "epoch": 2.467644521138913,
2024
+ "grad_norm": 1.9115102291107178,
2025
+ "learning_rate": 0.0002,
2026
+ "loss": 1.5433,
2027
+ "step": 2860
2028
+ },
2029
+ {
2030
+ "epoch": 2.4762726488352027,
2031
+ "grad_norm": 1.9024899005889893,
2032
+ "learning_rate": 0.0002,
2033
+ "loss": 1.4518,
2034
+ "step": 2870
2035
+ },
2036
+ {
2037
+ "epoch": 2.4849007765314925,
2038
+ "grad_norm": 1.7804782390594482,
2039
+ "learning_rate": 0.0002,
2040
+ "loss": 1.4797,
2041
+ "step": 2880
2042
+ },
2043
+ {
2044
+ "epoch": 2.4935289042277824,
2045
+ "grad_norm": 2.0264487266540527,
2046
+ "learning_rate": 0.0002,
2047
+ "loss": 1.5182,
2048
+ "step": 2890
2049
+ },
2050
+ {
2051
+ "epoch": 2.5021570319240727,
2052
+ "grad_norm": 1.8650445938110352,
2053
+ "learning_rate": 0.0002,
2054
+ "loss": 1.4455,
2055
+ "step": 2900
2056
+ },
2057
+ {
2058
+ "epoch": 2.5107851596203625,
2059
+ "grad_norm": 2.0831475257873535,
2060
+ "learning_rate": 0.0002,
2061
+ "loss": 1.54,
2062
+ "step": 2910
2063
+ },
2064
+ {
2065
+ "epoch": 2.5194132873166524,
2066
+ "grad_norm": 1.9633755683898926,
2067
+ "learning_rate": 0.0002,
2068
+ "loss": 1.6014,
2069
+ "step": 2920
2070
+ },
2071
+ {
2072
+ "epoch": 2.528041415012942,
2073
+ "grad_norm": 2.2055106163024902,
2074
+ "learning_rate": 0.0002,
2075
+ "loss": 1.56,
2076
+ "step": 2930
2077
+ },
2078
+ {
2079
+ "epoch": 2.536669542709232,
2080
+ "grad_norm": 2.1060245037078857,
2081
+ "learning_rate": 0.0002,
2082
+ "loss": 1.492,
2083
+ "step": 2940
2084
+ },
2085
+ {
2086
+ "epoch": 2.545297670405522,
2087
+ "grad_norm": 2.0236003398895264,
2088
+ "learning_rate": 0.0002,
2089
+ "loss": 1.5688,
2090
+ "step": 2950
2091
+ },
2092
+ {
2093
+ "epoch": 2.5539257981018118,
2094
+ "grad_norm": 1.898287296295166,
2095
+ "learning_rate": 0.0002,
2096
+ "loss": 1.5186,
2097
+ "step": 2960
2098
+ },
2099
+ {
2100
+ "epoch": 2.5625539257981016,
2101
+ "grad_norm": 1.9526840448379517,
2102
+ "learning_rate": 0.0002,
2103
+ "loss": 1.5441,
2104
+ "step": 2970
2105
+ },
2106
+ {
2107
+ "epoch": 2.5711820534943914,
2108
+ "grad_norm": 1.9538743495941162,
2109
+ "learning_rate": 0.0002,
2110
+ "loss": 1.5608,
2111
+ "step": 2980
2112
+ },
2113
+ {
2114
+ "epoch": 2.5798101811906817,
2115
+ "grad_norm": 1.787394404411316,
2116
+ "learning_rate": 0.0002,
2117
+ "loss": 1.4356,
2118
+ "step": 2990
2119
+ },
2120
+ {
2121
+ "epoch": 2.5884383088869716,
2122
+ "grad_norm": 2.0792672634124756,
2123
+ "learning_rate": 0.0002,
2124
+ "loss": 1.5096,
2125
+ "step": 3000
2126
+ },
2127
+ {
2128
+ "epoch": 2.5970664365832614,
2129
+ "grad_norm": 1.760083556175232,
2130
+ "learning_rate": 0.0002,
2131
+ "loss": 1.5131,
2132
+ "step": 3010
2133
+ },
2134
+ {
2135
+ "epoch": 2.6056945642795513,
2136
+ "grad_norm": 1.8766807317733765,
2137
+ "learning_rate": 0.0002,
2138
+ "loss": 1.5553,
2139
+ "step": 3020
2140
+ },
2141
+ {
2142
+ "epoch": 2.614322691975841,
2143
+ "grad_norm": 1.9650694131851196,
2144
+ "learning_rate": 0.0002,
2145
+ "loss": 1.5381,
2146
+ "step": 3030
2147
+ },
2148
+ {
2149
+ "epoch": 2.6229508196721314,
2150
+ "grad_norm": 1.8143510818481445,
2151
+ "learning_rate": 0.0002,
2152
+ "loss": 1.5263,
2153
+ "step": 3040
2154
+ },
2155
+ {
2156
+ "epoch": 2.6315789473684212,
2157
+ "grad_norm": 2.5094006061553955,
2158
+ "learning_rate": 0.0002,
2159
+ "loss": 1.5187,
2160
+ "step": 3050
2161
+ },
2162
+ {
2163
+ "epoch": 2.640207075064711,
2164
+ "grad_norm": 1.852913737297058,
2165
+ "learning_rate": 0.0002,
2166
+ "loss": 1.4729,
2167
+ "step": 3060
2168
+ },
2169
+ {
2170
+ "epoch": 2.648835202761001,
2171
+ "grad_norm": 2.052318811416626,
2172
+ "learning_rate": 0.0002,
2173
+ "loss": 1.5563,
2174
+ "step": 3070
2175
+ },
2176
+ {
2177
+ "epoch": 2.6574633304572908,
2178
+ "grad_norm": 1.8995426893234253,
2179
+ "learning_rate": 0.0002,
2180
+ "loss": 1.5543,
2181
+ "step": 3080
2182
+ },
2183
+ {
2184
+ "epoch": 2.6660914581535806,
2185
+ "grad_norm": 1.979037880897522,
2186
+ "learning_rate": 0.0002,
2187
+ "loss": 1.5357,
2188
+ "step": 3090
2189
+ },
2190
+ {
2191
+ "epoch": 2.6747195858498705,
2192
+ "grad_norm": 1.8179038763046265,
2193
+ "learning_rate": 0.0002,
2194
+ "loss": 1.537,
2195
+ "step": 3100
2196
+ },
2197
+ {
2198
+ "epoch": 2.6833477135461603,
2199
+ "grad_norm": 1.8502779006958008,
2200
+ "learning_rate": 0.0002,
2201
+ "loss": 1.5929,
2202
+ "step": 3110
2203
+ },
2204
+ {
2205
+ "epoch": 2.69197584124245,
2206
+ "grad_norm": 2.0174338817596436,
2207
+ "learning_rate": 0.0002,
2208
+ "loss": 1.5139,
2209
+ "step": 3120
2210
+ },
2211
+ {
2212
+ "epoch": 2.7006039689387404,
2213
+ "grad_norm": 2.1845622062683105,
2214
+ "learning_rate": 0.0002,
2215
+ "loss": 1.5609,
2216
+ "step": 3130
2217
+ },
2218
+ {
2219
+ "epoch": 2.7092320966350303,
2220
+ "grad_norm": 2.1443305015563965,
2221
+ "learning_rate": 0.0002,
2222
+ "loss": 1.5083,
2223
+ "step": 3140
2224
+ },
2225
+ {
2226
+ "epoch": 2.71786022433132,
2227
+ "grad_norm": 2.057907819747925,
2228
+ "learning_rate": 0.0002,
2229
+ "loss": 1.5856,
2230
+ "step": 3150
2231
+ },
2232
+ {
2233
+ "epoch": 2.72648835202761,
2234
+ "grad_norm": 1.9795310497283936,
2235
+ "learning_rate": 0.0002,
2236
+ "loss": 1.5298,
2237
+ "step": 3160
2238
+ },
2239
+ {
2240
+ "epoch": 2.7351164797239,
2241
+ "grad_norm": 1.9476630687713623,
2242
+ "learning_rate": 0.0002,
2243
+ "loss": 1.574,
2244
+ "step": 3170
2245
+ },
2246
+ {
2247
+ "epoch": 2.7437446074201897,
2248
+ "grad_norm": 1.9144753217697144,
2249
+ "learning_rate": 0.0002,
2250
+ "loss": 1.5884,
2251
+ "step": 3180
2252
+ },
2253
+ {
2254
+ "epoch": 2.75237273511648,
2255
+ "grad_norm": 2.0273289680480957,
2256
+ "learning_rate": 0.0002,
2257
+ "loss": 1.554,
2258
+ "step": 3190
2259
+ },
2260
+ {
2261
+ "epoch": 2.76100086281277,
2262
+ "grad_norm": 1.9641752243041992,
2263
+ "learning_rate": 0.0002,
2264
+ "loss": 1.6172,
2265
+ "step": 3200
2266
+ },
2267
+ {
2268
+ "epoch": 2.7696289905090596,
2269
+ "grad_norm": 1.721760630607605,
2270
+ "learning_rate": 0.0002,
2271
+ "loss": 1.525,
2272
+ "step": 3210
2273
+ },
2274
+ {
2275
+ "epoch": 2.7782571182053495,
2276
+ "grad_norm": 1.8093656301498413,
2277
+ "learning_rate": 0.0002,
2278
+ "loss": 1.5414,
2279
+ "step": 3220
2280
+ },
2281
+ {
2282
+ "epoch": 2.7868852459016393,
2283
+ "grad_norm": 1.907056212425232,
2284
+ "learning_rate": 0.0002,
2285
+ "loss": 1.544,
2286
+ "step": 3230
2287
+ },
2288
+ {
2289
+ "epoch": 2.795513373597929,
2290
+ "grad_norm": 2.0488245487213135,
2291
+ "learning_rate": 0.0002,
2292
+ "loss": 1.5911,
2293
+ "step": 3240
2294
+ },
2295
+ {
2296
+ "epoch": 2.804141501294219,
2297
+ "grad_norm": 2.161618232727051,
2298
+ "learning_rate": 0.0002,
2299
+ "loss": 1.5548,
2300
+ "step": 3250
2301
+ },
2302
+ {
2303
+ "epoch": 2.812769628990509,
2304
+ "grad_norm": 1.8043134212493896,
2305
+ "learning_rate": 0.0002,
2306
+ "loss": 1.5549,
2307
+ "step": 3260
2308
+ },
2309
+ {
2310
+ "epoch": 2.8213977566867987,
2311
+ "grad_norm": 1.879629373550415,
2312
+ "learning_rate": 0.0002,
2313
+ "loss": 1.5883,
2314
+ "step": 3270
2315
+ },
2316
+ {
2317
+ "epoch": 2.830025884383089,
2318
+ "grad_norm": 1.9248288869857788,
2319
+ "learning_rate": 0.0002,
2320
+ "loss": 1.5424,
2321
+ "step": 3280
2322
+ },
2323
+ {
2324
+ "epoch": 2.838654012079379,
2325
+ "grad_norm": 1.9379483461380005,
2326
+ "learning_rate": 0.0002,
2327
+ "loss": 1.5166,
2328
+ "step": 3290
2329
+ },
2330
+ {
2331
+ "epoch": 2.8472821397756687,
2332
+ "grad_norm": 1.7068989276885986,
2333
+ "learning_rate": 0.0002,
2334
+ "loss": 1.5575,
2335
+ "step": 3300
2336
+ },
2337
+ {
2338
+ "epoch": 2.8559102674719585,
2339
+ "grad_norm": 1.8729630708694458,
2340
+ "learning_rate": 0.0002,
2341
+ "loss": 1.5513,
2342
+ "step": 3310
2343
+ },
2344
+ {
2345
+ "epoch": 2.8645383951682484,
2346
+ "grad_norm": 1.7893825769424438,
2347
+ "learning_rate": 0.0002,
2348
+ "loss": 1.4364,
2349
+ "step": 3320
2350
+ },
2351
+ {
2352
+ "epoch": 2.8731665228645387,
2353
+ "grad_norm": 1.9462252855300903,
2354
+ "learning_rate": 0.0002,
2355
+ "loss": 1.5439,
2356
+ "step": 3330
2357
+ },
2358
+ {
2359
+ "epoch": 2.8817946505608285,
2360
+ "grad_norm": 1.9320255517959595,
2361
+ "learning_rate": 0.0002,
2362
+ "loss": 1.5171,
2363
+ "step": 3340
2364
+ },
2365
+ {
2366
+ "epoch": 2.8904227782571184,
2367
+ "grad_norm": 1.9695475101470947,
2368
+ "learning_rate": 0.0002,
2369
+ "loss": 1.5695,
2370
+ "step": 3350
2371
+ },
2372
+ {
2373
+ "epoch": 2.899050905953408,
2374
+ "grad_norm": 2.01279354095459,
2375
+ "learning_rate": 0.0002,
2376
+ "loss": 1.5418,
2377
+ "step": 3360
2378
+ },
2379
+ {
2380
+ "epoch": 2.907679033649698,
2381
+ "grad_norm": 1.992236852645874,
2382
+ "learning_rate": 0.0002,
2383
+ "loss": 1.5559,
2384
+ "step": 3370
2385
+ },
2386
+ {
2387
+ "epoch": 2.916307161345988,
2388
+ "grad_norm": 2.3763930797576904,
2389
+ "learning_rate": 0.0002,
2390
+ "loss": 1.5873,
2391
+ "step": 3380
2392
+ },
2393
+ {
2394
+ "epoch": 2.9249352890422777,
2395
+ "grad_norm": 1.91392982006073,
2396
+ "learning_rate": 0.0002,
2397
+ "loss": 1.5182,
2398
+ "step": 3390
2399
+ },
2400
+ {
2401
+ "epoch": 2.9335634167385676,
2402
+ "grad_norm": 1.969994306564331,
2403
+ "learning_rate": 0.0002,
2404
+ "loss": 1.5317,
2405
+ "step": 3400
2406
+ },
2407
+ {
2408
+ "epoch": 2.9421915444348574,
2409
+ "grad_norm": 1.9397379159927368,
2410
+ "learning_rate": 0.0002,
2411
+ "loss": 1.4554,
2412
+ "step": 3410
2413
+ },
2414
+ {
2415
+ "epoch": 2.9508196721311473,
2416
+ "grad_norm": 2.1597039699554443,
2417
+ "learning_rate": 0.0002,
2418
+ "loss": 1.5135,
2419
+ "step": 3420
2420
+ },
2421
+ {
2422
+ "epoch": 2.9594477998274376,
2423
+ "grad_norm": 1.9564080238342285,
2424
+ "learning_rate": 0.0002,
2425
+ "loss": 1.6098,
2426
+ "step": 3430
2427
+ },
2428
+ {
2429
+ "epoch": 2.9680759275237274,
2430
+ "grad_norm": 1.8007603883743286,
2431
+ "learning_rate": 0.0002,
2432
+ "loss": 1.603,
2433
+ "step": 3440
2434
+ },
2435
+ {
2436
+ "epoch": 2.9767040552200172,
2437
+ "grad_norm": 2.5556256771087646,
2438
+ "learning_rate": 0.0002,
2439
+ "loss": 1.5593,
2440
+ "step": 3450
2441
+ },
2442
+ {
2443
+ "epoch": 2.985332182916307,
2444
+ "grad_norm": 1.96817147731781,
2445
+ "learning_rate": 0.0002,
2446
+ "loss": 1.5564,
2447
+ "step": 3460
2448
+ },
2449
+ {
2450
+ "epoch": 2.993960310612597,
2451
+ "grad_norm": 1.921637773513794,
2452
+ "learning_rate": 0.0002,
2453
+ "loss": 1.5664,
2454
+ "step": 3470
2455
+ },
2456
+ {
2457
+ "epoch": 3.0,
2458
+ "eval_loss": 1.8276220560073853,
2459
+ "eval_runtime": 148.7597,
2460
+ "eval_samples_per_second": 3.583,
2461
+ "eval_steps_per_second": 0.45,
2462
+ "step": 3477
2463
+ }
2464
+ ],
2465
+ "logging_steps": 10,
2466
+ "max_steps": 9272,
2467
+ "num_input_tokens_seen": 0,
2468
+ "num_train_epochs": 8,
2469
+ "save_steps": 200,
2470
+ "stateful_callbacks": {
2471
+ "TrainerControl": {
2472
+ "args": {
2473
+ "should_epoch_stop": false,
2474
+ "should_evaluate": false,
2475
+ "should_log": false,
2476
+ "should_save": true,
2477
+ "should_training_stop": false
2478
+ },
2479
+ "attributes": {}
2480
+ }
2481
+ },
2482
+ "total_flos": 1.525524247609344e+17,
2483
+ "train_batch_size": 1,
2484
+ "trial_name": null,
2485
+ "trial_params": null
2486
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-3477/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87c51db54c9eeeb9c31c1d5d10a2ca49db936f9c0e6c5697c8941ee541bc7c94
3
+ size 5688
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/README.md ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mistral-7B-Instruct-v0.3
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
203
+ - PEFT 0.13.1
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-Instruct-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "q_proj",
24
+ "v_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:296f3f9cafdb8c14df28327a2d52eb4cd13c72175ad40286b7882015c457217a
3
+ size 109069176
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7b5f6776b738ca267b8e9de81b69f2c5fa6d58f2824003a2facc3548f0d4208
3
+ size 55532666
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c85af1a9dd3cc7fb08f8635eba3e981c95313639e4c46e88abe8f35ee116ae5
3
+ size 14244
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abdd770edb41849c0f08acafa3bb5c5dc1ad2e1043d2a0142089d6a8df92d289
3
+ size 1064
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-4636/trainer_state.json ADDED
@@ -0,0 +1,3306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7723218202590942,
3
+ "best_model_checkpoint": "outputs-001/Mistral-7B-Instruct-v0.3_int4_hellaswag-routerbench-0shot_lr-0.0002_e-8_seq-512_lora-a-32-d-0.05-r-64_bs-1_gas-2_tf32-True_tunedata-portion-p-0.8-num-5623-sd-10000/checkpoint-1159",
4
+ "epoch": 4.0,
5
+ "eval_steps": 10,
6
+ "global_step": 4636,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008628127696289905,
13
+ "grad_norm": 1.7177482843399048,
14
+ "learning_rate": 0.0002,
15
+ "loss": 2.5586,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.01725625539257981,
20
+ "grad_norm": 2.8122410774230957,
21
+ "learning_rate": 0.0002,
22
+ "loss": 2.2918,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.025884383088869714,
27
+ "grad_norm": 1.6668062210083008,
28
+ "learning_rate": 0.0002,
29
+ "loss": 2.0885,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.03451251078515962,
34
+ "grad_norm": 1.745869755744934,
35
+ "learning_rate": 0.0002,
36
+ "loss": 2.0469,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.04314063848144953,
41
+ "grad_norm": 1.807971477508545,
42
+ "learning_rate": 0.0002,
43
+ "loss": 2.0754,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.05176876617773943,
48
+ "grad_norm": 2.4009974002838135,
49
+ "learning_rate": 0.0002,
50
+ "loss": 2.0867,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.060396893874029335,
55
+ "grad_norm": 2.0974676609039307,
56
+ "learning_rate": 0.0002,
57
+ "loss": 1.8575,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.06902502157031924,
62
+ "grad_norm": 1.7705916166305542,
63
+ "learning_rate": 0.0002,
64
+ "loss": 1.8921,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.07765314926660914,
69
+ "grad_norm": 1.4324289560317993,
70
+ "learning_rate": 0.0002,
71
+ "loss": 1.8119,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.08628127696289906,
76
+ "grad_norm": 1.2521991729736328,
77
+ "learning_rate": 0.0002,
78
+ "loss": 1.8728,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.09490940465918896,
83
+ "grad_norm": 1.3328145742416382,
84
+ "learning_rate": 0.0002,
85
+ "loss": 1.8168,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.10353753235547886,
90
+ "grad_norm": 2.2908742427825928,
91
+ "learning_rate": 0.0002,
92
+ "loss": 1.8236,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.11216566005176877,
97
+ "grad_norm": 1.540981411933899,
98
+ "learning_rate": 0.0002,
99
+ "loss": 1.8732,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.12079378774805867,
104
+ "grad_norm": 1.1785069704055786,
105
+ "learning_rate": 0.0002,
106
+ "loss": 1.8138,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.12942191544434858,
111
+ "grad_norm": 1.3138738870620728,
112
+ "learning_rate": 0.0002,
113
+ "loss": 1.8655,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.13805004314063848,
118
+ "grad_norm": 1.153215765953064,
119
+ "learning_rate": 0.0002,
120
+ "loss": 1.8418,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.14667817083692838,
125
+ "grad_norm": 1.2071360349655151,
126
+ "learning_rate": 0.0002,
127
+ "loss": 1.8284,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.15530629853321828,
132
+ "grad_norm": 1.3546127080917358,
133
+ "learning_rate": 0.0002,
134
+ "loss": 1.8645,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.16393442622950818,
139
+ "grad_norm": 1.1494425535202026,
140
+ "learning_rate": 0.0002,
141
+ "loss": 1.8699,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.1725625539257981,
146
+ "grad_norm": 0.982718825340271,
147
+ "learning_rate": 0.0002,
148
+ "loss": 1.7845,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.181190681622088,
153
+ "grad_norm": 1.1329727172851562,
154
+ "learning_rate": 0.0002,
155
+ "loss": 1.8237,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.1898188093183779,
160
+ "grad_norm": 1.1397384405136108,
161
+ "learning_rate": 0.0002,
162
+ "loss": 1.8516,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.1984469370146678,
167
+ "grad_norm": 1.2424808740615845,
168
+ "learning_rate": 0.0002,
169
+ "loss": 1.7504,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.2070750647109577,
174
+ "grad_norm": 1.1463897228240967,
175
+ "learning_rate": 0.0002,
176
+ "loss": 1.7626,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.21570319240724764,
181
+ "grad_norm": 1.2353036403656006,
182
+ "learning_rate": 0.0002,
183
+ "loss": 1.7977,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.22433132010353754,
188
+ "grad_norm": 1.0135247707366943,
189
+ "learning_rate": 0.0002,
190
+ "loss": 1.8274,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.23295944779982744,
195
+ "grad_norm": 1.1388282775878906,
196
+ "learning_rate": 0.0002,
197
+ "loss": 1.7678,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.24158757549611734,
202
+ "grad_norm": 1.1262438297271729,
203
+ "learning_rate": 0.0002,
204
+ "loss": 1.7895,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.25021570319240727,
209
+ "grad_norm": 1.0581450462341309,
210
+ "learning_rate": 0.0002,
211
+ "loss": 1.826,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.25884383088869717,
216
+ "grad_norm": 1.1737277507781982,
217
+ "learning_rate": 0.0002,
218
+ "loss": 1.7269,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.26747195858498707,
223
+ "grad_norm": 1.0906627178192139,
224
+ "learning_rate": 0.0002,
225
+ "loss": 1.7975,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.27610008628127697,
230
+ "grad_norm": 1.0010069608688354,
231
+ "learning_rate": 0.0002,
232
+ "loss": 1.7594,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.28472821397756687,
237
+ "grad_norm": 1.2149732112884521,
238
+ "learning_rate": 0.0002,
239
+ "loss": 1.7998,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.29335634167385677,
244
+ "grad_norm": 1.293990969657898,
245
+ "learning_rate": 0.0002,
246
+ "loss": 1.8079,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.30198446937014667,
251
+ "grad_norm": 1.0082058906555176,
252
+ "learning_rate": 0.0002,
253
+ "loss": 1.7629,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.31061259706643657,
258
+ "grad_norm": 1.0307148694992065,
259
+ "learning_rate": 0.0002,
260
+ "loss": 1.8001,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.31924072476272647,
265
+ "grad_norm": 0.9646756649017334,
266
+ "learning_rate": 0.0002,
267
+ "loss": 1.7456,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.32786885245901637,
272
+ "grad_norm": 1.105623722076416,
273
+ "learning_rate": 0.0002,
274
+ "loss": 1.7979,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.3364969801553063,
279
+ "grad_norm": 0.9365625977516174,
280
+ "learning_rate": 0.0002,
281
+ "loss": 1.7313,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.3451251078515962,
286
+ "grad_norm": 1.1378847360610962,
287
+ "learning_rate": 0.0002,
288
+ "loss": 1.809,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.3537532355478861,
293
+ "grad_norm": 1.1266193389892578,
294
+ "learning_rate": 0.0002,
295
+ "loss": 1.7857,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.362381363244176,
300
+ "grad_norm": 1.0886635780334473,
301
+ "learning_rate": 0.0002,
302
+ "loss": 1.8096,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.3710094909404659,
307
+ "grad_norm": 1.0463931560516357,
308
+ "learning_rate": 0.0002,
309
+ "loss": 1.7422,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.3796376186367558,
314
+ "grad_norm": 1.0923888683319092,
315
+ "learning_rate": 0.0002,
316
+ "loss": 1.7936,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.3882657463330457,
321
+ "grad_norm": 1.1386370658874512,
322
+ "learning_rate": 0.0002,
323
+ "loss": 1.7777,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.3968938740293356,
328
+ "grad_norm": 1.0098074674606323,
329
+ "learning_rate": 0.0002,
330
+ "loss": 1.7211,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.4055220017256255,
335
+ "grad_norm": 1.1237372159957886,
336
+ "learning_rate": 0.0002,
337
+ "loss": 1.7457,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.4141501294219154,
342
+ "grad_norm": 1.0218915939331055,
343
+ "learning_rate": 0.0002,
344
+ "loss": 1.854,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.4227782571182053,
349
+ "grad_norm": 0.9998831748962402,
350
+ "learning_rate": 0.0002,
351
+ "loss": 1.8548,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.4314063848144953,
356
+ "grad_norm": 1.0424970388412476,
357
+ "learning_rate": 0.0002,
358
+ "loss": 1.7159,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.4400345125107852,
363
+ "grad_norm": 0.903372585773468,
364
+ "learning_rate": 0.0002,
365
+ "loss": 1.788,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.4486626402070751,
370
+ "grad_norm": 1.0864766836166382,
371
+ "learning_rate": 0.0002,
372
+ "loss": 1.8293,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.457290767903365,
377
+ "grad_norm": 0.9694207310676575,
378
+ "learning_rate": 0.0002,
379
+ "loss": 1.8402,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.4659188955996549,
384
+ "grad_norm": 1.2796396017074585,
385
+ "learning_rate": 0.0002,
386
+ "loss": 1.7802,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.4745470232959448,
391
+ "grad_norm": 1.0316239595413208,
392
+ "learning_rate": 0.0002,
393
+ "loss": 1.7716,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.4831751509922347,
398
+ "grad_norm": 1.0445313453674316,
399
+ "learning_rate": 0.0002,
400
+ "loss": 1.7734,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.4918032786885246,
405
+ "grad_norm": 1.1078376770019531,
406
+ "learning_rate": 0.0002,
407
+ "loss": 1.8082,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.5004314063848145,
412
+ "grad_norm": 1.0551974773406982,
413
+ "learning_rate": 0.0002,
414
+ "loss": 1.7298,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.5090595340811044,
419
+ "grad_norm": 1.114853858947754,
420
+ "learning_rate": 0.0002,
421
+ "loss": 1.8673,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.5176876617773943,
426
+ "grad_norm": 1.0642707347869873,
427
+ "learning_rate": 0.0002,
428
+ "loss": 1.7684,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.5263157894736842,
433
+ "grad_norm": 1.088079810142517,
434
+ "learning_rate": 0.0002,
435
+ "loss": 1.8367,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.5349439171699741,
440
+ "grad_norm": 1.4029462337493896,
441
+ "learning_rate": 0.0002,
442
+ "loss": 1.775,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.543572044866264,
447
+ "grad_norm": 1.2136136293411255,
448
+ "learning_rate": 0.0002,
449
+ "loss": 1.7771,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.5522001725625539,
454
+ "grad_norm": 0.9642075896263123,
455
+ "learning_rate": 0.0002,
456
+ "loss": 1.8006,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.5608283002588438,
461
+ "grad_norm": 1.0879552364349365,
462
+ "learning_rate": 0.0002,
463
+ "loss": 1.7478,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.5694564279551337,
468
+ "grad_norm": 1.1766546964645386,
469
+ "learning_rate": 0.0002,
470
+ "loss": 1.8427,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.5780845556514237,
475
+ "grad_norm": 1.582840085029602,
476
+ "learning_rate": 0.0002,
477
+ "loss": 1.7129,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.5867126833477135,
482
+ "grad_norm": 1.0681092739105225,
483
+ "learning_rate": 0.0002,
484
+ "loss": 1.8093,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.5953408110440035,
489
+ "grad_norm": 1.103897213935852,
490
+ "learning_rate": 0.0002,
491
+ "loss": 1.8067,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.6039689387402933,
496
+ "grad_norm": 1.0974211692810059,
497
+ "learning_rate": 0.0002,
498
+ "loss": 1.7425,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.6125970664365833,
503
+ "grad_norm": 1.1002469062805176,
504
+ "learning_rate": 0.0002,
505
+ "loss": 1.784,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.6212251941328731,
510
+ "grad_norm": 1.0022329092025757,
511
+ "learning_rate": 0.0002,
512
+ "loss": 1.8106,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.6298533218291631,
517
+ "grad_norm": 1.0089571475982666,
518
+ "learning_rate": 0.0002,
519
+ "loss": 1.7647,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.6384814495254529,
524
+ "grad_norm": 0.9531904458999634,
525
+ "learning_rate": 0.0002,
526
+ "loss": 1.8033,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.6471095772217429,
531
+ "grad_norm": 1.162675380706787,
532
+ "learning_rate": 0.0002,
533
+ "loss": 1.7644,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.6557377049180327,
538
+ "grad_norm": 1.0488134622573853,
539
+ "learning_rate": 0.0002,
540
+ "loss": 1.7531,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.6643658326143227,
545
+ "grad_norm": 1.12964928150177,
546
+ "learning_rate": 0.0002,
547
+ "loss": 1.7583,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.6729939603106126,
552
+ "grad_norm": 1.0867345333099365,
553
+ "learning_rate": 0.0002,
554
+ "loss": 1.7765,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.6816220880069025,
559
+ "grad_norm": 1.1084282398223877,
560
+ "learning_rate": 0.0002,
561
+ "loss": 1.7797,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.6902502157031924,
566
+ "grad_norm": 0.9905423521995544,
567
+ "learning_rate": 0.0002,
568
+ "loss": 1.7792,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.6988783433994823,
573
+ "grad_norm": 1.18604576587677,
574
+ "learning_rate": 0.0002,
575
+ "loss": 1.7825,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.7075064710957722,
580
+ "grad_norm": 1.0819629430770874,
581
+ "learning_rate": 0.0002,
582
+ "loss": 1.8242,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.7161345987920621,
587
+ "grad_norm": 2.0091195106506348,
588
+ "learning_rate": 0.0002,
589
+ "loss": 1.7916,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.724762726488352,
594
+ "grad_norm": 1.0371277332305908,
595
+ "learning_rate": 0.0002,
596
+ "loss": 1.8186,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.7333908541846419,
601
+ "grad_norm": 1.217102289199829,
602
+ "learning_rate": 0.0002,
603
+ "loss": 1.7937,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.7420189818809318,
608
+ "grad_norm": 1.0528525114059448,
609
+ "learning_rate": 0.0002,
610
+ "loss": 1.7317,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.7506471095772217,
615
+ "grad_norm": 1.1398800611495972,
616
+ "learning_rate": 0.0002,
617
+ "loss": 1.7757,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.7592752372735116,
622
+ "grad_norm": 1.1546001434326172,
623
+ "learning_rate": 0.0002,
624
+ "loss": 1.8326,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.7679033649698016,
629
+ "grad_norm": 1.0745750665664673,
630
+ "learning_rate": 0.0002,
631
+ "loss": 1.7178,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.7765314926660914,
636
+ "grad_norm": 1.1739161014556885,
637
+ "learning_rate": 0.0002,
638
+ "loss": 1.7718,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.7851596203623814,
643
+ "grad_norm": 1.1932017803192139,
644
+ "learning_rate": 0.0002,
645
+ "loss": 1.7764,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.7937877480586712,
650
+ "grad_norm": 1.143064022064209,
651
+ "learning_rate": 0.0002,
652
+ "loss": 1.7192,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.8024158757549612,
657
+ "grad_norm": 1.200974464416504,
658
+ "learning_rate": 0.0002,
659
+ "loss": 1.7342,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.811044003451251,
664
+ "grad_norm": 1.0878669023513794,
665
+ "learning_rate": 0.0002,
666
+ "loss": 1.7399,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.819672131147541,
671
+ "grad_norm": 1.0516951084136963,
672
+ "learning_rate": 0.0002,
673
+ "loss": 1.8019,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.8283002588438308,
678
+ "grad_norm": 1.2017741203308105,
679
+ "learning_rate": 0.0002,
680
+ "loss": 1.7645,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.8369283865401208,
685
+ "grad_norm": 0.9762169718742371,
686
+ "learning_rate": 0.0002,
687
+ "loss": 1.7367,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.8455565142364107,
692
+ "grad_norm": 1.0837513208389282,
693
+ "learning_rate": 0.0002,
694
+ "loss": 1.7802,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.8541846419327006,
699
+ "grad_norm": 1.155504822731018,
700
+ "learning_rate": 0.0002,
701
+ "loss": 1.8094,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.8628127696289906,
706
+ "grad_norm": 1.067771315574646,
707
+ "learning_rate": 0.0002,
708
+ "loss": 1.7633,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.8714408973252804,
713
+ "grad_norm": 1.2283565998077393,
714
+ "learning_rate": 0.0002,
715
+ "loss": 1.7993,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.8800690250215704,
720
+ "grad_norm": 1.1549772024154663,
721
+ "learning_rate": 0.0002,
722
+ "loss": 1.7362,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.8886971527178602,
727
+ "grad_norm": 1.0022625923156738,
728
+ "learning_rate": 0.0002,
729
+ "loss": 1.7583,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.8973252804141502,
734
+ "grad_norm": 1.0237284898757935,
735
+ "learning_rate": 0.0002,
736
+ "loss": 1.7718,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.90595340811044,
741
+ "grad_norm": 1.1863008737564087,
742
+ "learning_rate": 0.0002,
743
+ "loss": 1.7457,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.91458153580673,
748
+ "grad_norm": 1.001204013824463,
749
+ "learning_rate": 0.0002,
750
+ "loss": 1.6951,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.9232096635030198,
755
+ "grad_norm": 1.2686481475830078,
756
+ "learning_rate": 0.0002,
757
+ "loss": 1.7506,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.9318377911993098,
762
+ "grad_norm": 1.0700076818466187,
763
+ "learning_rate": 0.0002,
764
+ "loss": 1.7064,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.9404659188955996,
769
+ "grad_norm": 1.05950927734375,
770
+ "learning_rate": 0.0002,
771
+ "loss": 1.8015,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.9490940465918896,
776
+ "grad_norm": 0.9669114947319031,
777
+ "learning_rate": 0.0002,
778
+ "loss": 1.8155,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.9577221742881795,
783
+ "grad_norm": 1.1823079586029053,
784
+ "learning_rate": 0.0002,
785
+ "loss": 1.8074,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.9663503019844694,
790
+ "grad_norm": 1.0857175588607788,
791
+ "learning_rate": 0.0002,
792
+ "loss": 1.7636,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.9749784296807593,
797
+ "grad_norm": 1.1258848905563354,
798
+ "learning_rate": 0.0002,
799
+ "loss": 1.822,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.9836065573770492,
804
+ "grad_norm": 1.16336989402771,
805
+ "learning_rate": 0.0002,
806
+ "loss": 1.8167,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.9922346850733391,
811
+ "grad_norm": 1.118432879447937,
812
+ "learning_rate": 0.0002,
813
+ "loss": 1.7402,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 1.0,
818
+ "eval_loss": 1.7723218202590942,
819
+ "eval_runtime": 158.8593,
820
+ "eval_samples_per_second": 3.355,
821
+ "eval_steps_per_second": 0.422,
822
+ "step": 1159
823
+ },
824
+ {
825
+ "epoch": 1.000862812769629,
826
+ "grad_norm": 1.1056718826293945,
827
+ "learning_rate": 0.0002,
828
+ "loss": 1.7863,
829
+ "step": 1160
830
+ },
831
+ {
832
+ "epoch": 1.009490940465919,
833
+ "grad_norm": 1.0352667570114136,
834
+ "learning_rate": 0.0002,
835
+ "loss": 1.672,
836
+ "step": 1170
837
+ },
838
+ {
839
+ "epoch": 1.0181190681622088,
840
+ "grad_norm": 1.0315937995910645,
841
+ "learning_rate": 0.0002,
842
+ "loss": 1.6718,
843
+ "step": 1180
844
+ },
845
+ {
846
+ "epoch": 1.0267471958584986,
847
+ "grad_norm": 1.369126558303833,
848
+ "learning_rate": 0.0002,
849
+ "loss": 1.6937,
850
+ "step": 1190
851
+ },
852
+ {
853
+ "epoch": 1.0353753235547887,
854
+ "grad_norm": 1.330876350402832,
855
+ "learning_rate": 0.0002,
856
+ "loss": 1.6732,
857
+ "step": 1200
858
+ },
859
+ {
860
+ "epoch": 1.0440034512510785,
861
+ "grad_norm": 1.406552791595459,
862
+ "learning_rate": 0.0002,
863
+ "loss": 1.6497,
864
+ "step": 1210
865
+ },
866
+ {
867
+ "epoch": 1.0526315789473684,
868
+ "grad_norm": 1.1256251335144043,
869
+ "learning_rate": 0.0002,
870
+ "loss": 1.6873,
871
+ "step": 1220
872
+ },
873
+ {
874
+ "epoch": 1.0612597066436584,
875
+ "grad_norm": 1.315566897392273,
876
+ "learning_rate": 0.0002,
877
+ "loss": 1.6765,
878
+ "step": 1230
879
+ },
880
+ {
881
+ "epoch": 1.0698878343399483,
882
+ "grad_norm": 1.2100263833999634,
883
+ "learning_rate": 0.0002,
884
+ "loss": 1.6763,
885
+ "step": 1240
886
+ },
887
+ {
888
+ "epoch": 1.0785159620362381,
889
+ "grad_norm": 1.2762185335159302,
890
+ "learning_rate": 0.0002,
891
+ "loss": 1.6496,
892
+ "step": 1250
893
+ },
894
+ {
895
+ "epoch": 1.087144089732528,
896
+ "grad_norm": 1.2971566915512085,
897
+ "learning_rate": 0.0002,
898
+ "loss": 1.6826,
899
+ "step": 1260
900
+ },
901
+ {
902
+ "epoch": 1.095772217428818,
903
+ "grad_norm": 1.3685089349746704,
904
+ "learning_rate": 0.0002,
905
+ "loss": 1.6721,
906
+ "step": 1270
907
+ },
908
+ {
909
+ "epoch": 1.1044003451251079,
910
+ "grad_norm": 1.3135347366333008,
911
+ "learning_rate": 0.0002,
912
+ "loss": 1.6399,
913
+ "step": 1280
914
+ },
915
+ {
916
+ "epoch": 1.1130284728213977,
917
+ "grad_norm": 1.4514861106872559,
918
+ "learning_rate": 0.0002,
919
+ "loss": 1.641,
920
+ "step": 1290
921
+ },
922
+ {
923
+ "epoch": 1.1216566005176876,
924
+ "grad_norm": 1.5077004432678223,
925
+ "learning_rate": 0.0002,
926
+ "loss": 1.6443,
927
+ "step": 1300
928
+ },
929
+ {
930
+ "epoch": 1.1302847282139776,
931
+ "grad_norm": 1.4807840585708618,
932
+ "learning_rate": 0.0002,
933
+ "loss": 1.6406,
934
+ "step": 1310
935
+ },
936
+ {
937
+ "epoch": 1.1389128559102675,
938
+ "grad_norm": 1.2386537790298462,
939
+ "learning_rate": 0.0002,
940
+ "loss": 1.7022,
941
+ "step": 1320
942
+ },
943
+ {
944
+ "epoch": 1.1475409836065573,
945
+ "grad_norm": 1.2637739181518555,
946
+ "learning_rate": 0.0002,
947
+ "loss": 1.6265,
948
+ "step": 1330
949
+ },
950
+ {
951
+ "epoch": 1.1561691113028472,
952
+ "grad_norm": 1.2472519874572754,
953
+ "learning_rate": 0.0002,
954
+ "loss": 1.7103,
955
+ "step": 1340
956
+ },
957
+ {
958
+ "epoch": 1.1647972389991372,
959
+ "grad_norm": 1.290644884109497,
960
+ "learning_rate": 0.0002,
961
+ "loss": 1.676,
962
+ "step": 1350
963
+ },
964
+ {
965
+ "epoch": 1.173425366695427,
966
+ "grad_norm": 1.3227870464324951,
967
+ "learning_rate": 0.0002,
968
+ "loss": 1.6713,
969
+ "step": 1360
970
+ },
971
+ {
972
+ "epoch": 1.182053494391717,
973
+ "grad_norm": 1.3311200141906738,
974
+ "learning_rate": 0.0002,
975
+ "loss": 1.7158,
976
+ "step": 1370
977
+ },
978
+ {
979
+ "epoch": 1.190681622088007,
980
+ "grad_norm": 1.2624584436416626,
981
+ "learning_rate": 0.0002,
982
+ "loss": 1.6501,
983
+ "step": 1380
984
+ },
985
+ {
986
+ "epoch": 1.1993097497842968,
987
+ "grad_norm": 1.4712986946105957,
988
+ "learning_rate": 0.0002,
989
+ "loss": 1.6398,
990
+ "step": 1390
991
+ },
992
+ {
993
+ "epoch": 1.2079378774805867,
994
+ "grad_norm": 1.416508674621582,
995
+ "learning_rate": 0.0002,
996
+ "loss": 1.6818,
997
+ "step": 1400
998
+ },
999
+ {
1000
+ "epoch": 1.2165660051768765,
1001
+ "grad_norm": 1.367967963218689,
1002
+ "learning_rate": 0.0002,
1003
+ "loss": 1.7184,
1004
+ "step": 1410
1005
+ },
1006
+ {
1007
+ "epoch": 1.2251941328731666,
1008
+ "grad_norm": 1.3865700960159302,
1009
+ "learning_rate": 0.0002,
1010
+ "loss": 1.6834,
1011
+ "step": 1420
1012
+ },
1013
+ {
1014
+ "epoch": 1.2338222605694564,
1015
+ "grad_norm": 2.076512336730957,
1016
+ "learning_rate": 0.0002,
1017
+ "loss": 1.7532,
1018
+ "step": 1430
1019
+ },
1020
+ {
1021
+ "epoch": 1.2424503882657463,
1022
+ "grad_norm": 1.305572509765625,
1023
+ "learning_rate": 0.0002,
1024
+ "loss": 1.7448,
1025
+ "step": 1440
1026
+ },
1027
+ {
1028
+ "epoch": 1.2510785159620363,
1029
+ "grad_norm": 1.2752642631530762,
1030
+ "learning_rate": 0.0002,
1031
+ "loss": 1.7422,
1032
+ "step": 1450
1033
+ },
1034
+ {
1035
+ "epoch": 1.2597066436583262,
1036
+ "grad_norm": 1.1802726984024048,
1037
+ "learning_rate": 0.0002,
1038
+ "loss": 1.7121,
1039
+ "step": 1460
1040
+ },
1041
+ {
1042
+ "epoch": 1.268334771354616,
1043
+ "grad_norm": 1.2195663452148438,
1044
+ "learning_rate": 0.0002,
1045
+ "loss": 1.7617,
1046
+ "step": 1470
1047
+ },
1048
+ {
1049
+ "epoch": 1.2769628990509059,
1050
+ "grad_norm": 1.3073176145553589,
1051
+ "learning_rate": 0.0002,
1052
+ "loss": 1.6022,
1053
+ "step": 1480
1054
+ },
1055
+ {
1056
+ "epoch": 1.2855910267471957,
1057
+ "grad_norm": 1.2829731702804565,
1058
+ "learning_rate": 0.0002,
1059
+ "loss": 1.6472,
1060
+ "step": 1490
1061
+ },
1062
+ {
1063
+ "epoch": 1.2942191544434858,
1064
+ "grad_norm": 1.361060619354248,
1065
+ "learning_rate": 0.0002,
1066
+ "loss": 1.6076,
1067
+ "step": 1500
1068
+ },
1069
+ {
1070
+ "epoch": 1.3028472821397756,
1071
+ "grad_norm": 1.4285917282104492,
1072
+ "learning_rate": 0.0002,
1073
+ "loss": 1.7059,
1074
+ "step": 1510
1075
+ },
1076
+ {
1077
+ "epoch": 1.3114754098360657,
1078
+ "grad_norm": 1.186866283416748,
1079
+ "learning_rate": 0.0002,
1080
+ "loss": 1.696,
1081
+ "step": 1520
1082
+ },
1083
+ {
1084
+ "epoch": 1.3201035375323555,
1085
+ "grad_norm": 1.2615889310836792,
1086
+ "learning_rate": 0.0002,
1087
+ "loss": 1.6707,
1088
+ "step": 1530
1089
+ },
1090
+ {
1091
+ "epoch": 1.3287316652286454,
1092
+ "grad_norm": 1.2732815742492676,
1093
+ "learning_rate": 0.0002,
1094
+ "loss": 1.5797,
1095
+ "step": 1540
1096
+ },
1097
+ {
1098
+ "epoch": 1.3373597929249352,
1099
+ "grad_norm": 1.4152132272720337,
1100
+ "learning_rate": 0.0002,
1101
+ "loss": 1.6623,
1102
+ "step": 1550
1103
+ },
1104
+ {
1105
+ "epoch": 1.345987920621225,
1106
+ "grad_norm": 1.1730318069458008,
1107
+ "learning_rate": 0.0002,
1108
+ "loss": 1.6649,
1109
+ "step": 1560
1110
+ },
1111
+ {
1112
+ "epoch": 1.3546160483175151,
1113
+ "grad_norm": 1.2282229661941528,
1114
+ "learning_rate": 0.0002,
1115
+ "loss": 1.7247,
1116
+ "step": 1570
1117
+ },
1118
+ {
1119
+ "epoch": 1.363244176013805,
1120
+ "grad_norm": 1.227974534034729,
1121
+ "learning_rate": 0.0002,
1122
+ "loss": 1.7125,
1123
+ "step": 1580
1124
+ },
1125
+ {
1126
+ "epoch": 1.3718723037100948,
1127
+ "grad_norm": 1.3480374813079834,
1128
+ "learning_rate": 0.0002,
1129
+ "loss": 1.622,
1130
+ "step": 1590
1131
+ },
1132
+ {
1133
+ "epoch": 1.380500431406385,
1134
+ "grad_norm": 1.3460094928741455,
1135
+ "learning_rate": 0.0002,
1136
+ "loss": 1.7126,
1137
+ "step": 1600
1138
+ },
1139
+ {
1140
+ "epoch": 1.3891285591026747,
1141
+ "grad_norm": 1.254465937614441,
1142
+ "learning_rate": 0.0002,
1143
+ "loss": 1.6845,
1144
+ "step": 1610
1145
+ },
1146
+ {
1147
+ "epoch": 1.3977566867989646,
1148
+ "grad_norm": 1.4135496616363525,
1149
+ "learning_rate": 0.0002,
1150
+ "loss": 1.643,
1151
+ "step": 1620
1152
+ },
1153
+ {
1154
+ "epoch": 1.4063848144952544,
1155
+ "grad_norm": 1.277063012123108,
1156
+ "learning_rate": 0.0002,
1157
+ "loss": 1.6392,
1158
+ "step": 1630
1159
+ },
1160
+ {
1161
+ "epoch": 1.4150129421915445,
1162
+ "grad_norm": 1.5031940937042236,
1163
+ "learning_rate": 0.0002,
1164
+ "loss": 1.7338,
1165
+ "step": 1640
1166
+ },
1167
+ {
1168
+ "epoch": 1.4236410698878343,
1169
+ "grad_norm": 1.3918952941894531,
1170
+ "learning_rate": 0.0002,
1171
+ "loss": 1.6229,
1172
+ "step": 1650
1173
+ },
1174
+ {
1175
+ "epoch": 1.4322691975841242,
1176
+ "grad_norm": 1.5893778800964355,
1177
+ "learning_rate": 0.0002,
1178
+ "loss": 1.6893,
1179
+ "step": 1660
1180
+ },
1181
+ {
1182
+ "epoch": 1.4408973252804143,
1183
+ "grad_norm": 1.4636809825897217,
1184
+ "learning_rate": 0.0002,
1185
+ "loss": 1.7129,
1186
+ "step": 1670
1187
+ },
1188
+ {
1189
+ "epoch": 1.449525452976704,
1190
+ "grad_norm": 1.1985419988632202,
1191
+ "learning_rate": 0.0002,
1192
+ "loss": 1.6481,
1193
+ "step": 1680
1194
+ },
1195
+ {
1196
+ "epoch": 1.458153580672994,
1197
+ "grad_norm": 1.509252905845642,
1198
+ "learning_rate": 0.0002,
1199
+ "loss": 1.7322,
1200
+ "step": 1690
1201
+ },
1202
+ {
1203
+ "epoch": 1.4667817083692838,
1204
+ "grad_norm": 1.4157838821411133,
1205
+ "learning_rate": 0.0002,
1206
+ "loss": 1.6653,
1207
+ "step": 1700
1208
+ },
1209
+ {
1210
+ "epoch": 1.4754098360655736,
1211
+ "grad_norm": 1.3481059074401855,
1212
+ "learning_rate": 0.0002,
1213
+ "loss": 1.7111,
1214
+ "step": 1710
1215
+ },
1216
+ {
1217
+ "epoch": 1.4840379637618637,
1218
+ "grad_norm": 1.4127949476242065,
1219
+ "learning_rate": 0.0002,
1220
+ "loss": 1.6488,
1221
+ "step": 1720
1222
+ },
1223
+ {
1224
+ "epoch": 1.4926660914581535,
1225
+ "grad_norm": 1.3087295293807983,
1226
+ "learning_rate": 0.0002,
1227
+ "loss": 1.6336,
1228
+ "step": 1730
1229
+ },
1230
+ {
1231
+ "epoch": 1.5012942191544436,
1232
+ "grad_norm": 1.4421851634979248,
1233
+ "learning_rate": 0.0002,
1234
+ "loss": 1.7226,
1235
+ "step": 1740
1236
+ },
1237
+ {
1238
+ "epoch": 1.5099223468507335,
1239
+ "grad_norm": 1.3953148126602173,
1240
+ "learning_rate": 0.0002,
1241
+ "loss": 1.7006,
1242
+ "step": 1750
1243
+ },
1244
+ {
1245
+ "epoch": 1.5185504745470233,
1246
+ "grad_norm": 1.4613851308822632,
1247
+ "learning_rate": 0.0002,
1248
+ "loss": 1.6281,
1249
+ "step": 1760
1250
+ },
1251
+ {
1252
+ "epoch": 1.5271786022433131,
1253
+ "grad_norm": 1.2866744995117188,
1254
+ "learning_rate": 0.0002,
1255
+ "loss": 1.6404,
1256
+ "step": 1770
1257
+ },
1258
+ {
1259
+ "epoch": 1.535806729939603,
1260
+ "grad_norm": 1.2769535779953003,
1261
+ "learning_rate": 0.0002,
1262
+ "loss": 1.628,
1263
+ "step": 1780
1264
+ },
1265
+ {
1266
+ "epoch": 1.544434857635893,
1267
+ "grad_norm": 1.371022343635559,
1268
+ "learning_rate": 0.0002,
1269
+ "loss": 1.6439,
1270
+ "step": 1790
1271
+ },
1272
+ {
1273
+ "epoch": 1.553062985332183,
1274
+ "grad_norm": 1.4434700012207031,
1275
+ "learning_rate": 0.0002,
1276
+ "loss": 1.6363,
1277
+ "step": 1800
1278
+ },
1279
+ {
1280
+ "epoch": 1.561691113028473,
1281
+ "grad_norm": 1.269386887550354,
1282
+ "learning_rate": 0.0002,
1283
+ "loss": 1.6606,
1284
+ "step": 1810
1285
+ },
1286
+ {
1287
+ "epoch": 1.5703192407247628,
1288
+ "grad_norm": 1.2668766975402832,
1289
+ "learning_rate": 0.0002,
1290
+ "loss": 1.6493,
1291
+ "step": 1820
1292
+ },
1293
+ {
1294
+ "epoch": 1.5789473684210527,
1295
+ "grad_norm": 1.4857951402664185,
1296
+ "learning_rate": 0.0002,
1297
+ "loss": 1.7124,
1298
+ "step": 1830
1299
+ },
1300
+ {
1301
+ "epoch": 1.5875754961173425,
1302
+ "grad_norm": 1.330338954925537,
1303
+ "learning_rate": 0.0002,
1304
+ "loss": 1.6474,
1305
+ "step": 1840
1306
+ },
1307
+ {
1308
+ "epoch": 1.5962036238136323,
1309
+ "grad_norm": 1.3832308053970337,
1310
+ "learning_rate": 0.0002,
1311
+ "loss": 1.6412,
1312
+ "step": 1850
1313
+ },
1314
+ {
1315
+ "epoch": 1.6048317515099222,
1316
+ "grad_norm": 1.2697869539260864,
1317
+ "learning_rate": 0.0002,
1318
+ "loss": 1.6988,
1319
+ "step": 1860
1320
+ },
1321
+ {
1322
+ "epoch": 1.6134598792062123,
1323
+ "grad_norm": 1.338875412940979,
1324
+ "learning_rate": 0.0002,
1325
+ "loss": 1.6651,
1326
+ "step": 1870
1327
+ },
1328
+ {
1329
+ "epoch": 1.6220880069025023,
1330
+ "grad_norm": 1.4077556133270264,
1331
+ "learning_rate": 0.0002,
1332
+ "loss": 1.7319,
1333
+ "step": 1880
1334
+ },
1335
+ {
1336
+ "epoch": 1.6307161345987922,
1337
+ "grad_norm": 1.40274178981781,
1338
+ "learning_rate": 0.0002,
1339
+ "loss": 1.644,
1340
+ "step": 1890
1341
+ },
1342
+ {
1343
+ "epoch": 1.639344262295082,
1344
+ "grad_norm": 1.416042447090149,
1345
+ "learning_rate": 0.0002,
1346
+ "loss": 1.6648,
1347
+ "step": 1900
1348
+ },
1349
+ {
1350
+ "epoch": 1.6479723899913719,
1351
+ "grad_norm": 1.4196866750717163,
1352
+ "learning_rate": 0.0002,
1353
+ "loss": 1.729,
1354
+ "step": 1910
1355
+ },
1356
+ {
1357
+ "epoch": 1.6566005176876617,
1358
+ "grad_norm": 1.378732681274414,
1359
+ "learning_rate": 0.0002,
1360
+ "loss": 1.7381,
1361
+ "step": 1920
1362
+ },
1363
+ {
1364
+ "epoch": 1.6652286453839515,
1365
+ "grad_norm": 1.544751524925232,
1366
+ "learning_rate": 0.0002,
1367
+ "loss": 1.7804,
1368
+ "step": 1930
1369
+ },
1370
+ {
1371
+ "epoch": 1.6738567730802416,
1372
+ "grad_norm": 1.4318190813064575,
1373
+ "learning_rate": 0.0002,
1374
+ "loss": 1.6563,
1375
+ "step": 1940
1376
+ },
1377
+ {
1378
+ "epoch": 1.6824849007765315,
1379
+ "grad_norm": 1.3794575929641724,
1380
+ "learning_rate": 0.0002,
1381
+ "loss": 1.6806,
1382
+ "step": 1950
1383
+ },
1384
+ {
1385
+ "epoch": 1.6911130284728215,
1386
+ "grad_norm": 1.6301822662353516,
1387
+ "learning_rate": 0.0002,
1388
+ "loss": 1.6707,
1389
+ "step": 1960
1390
+ },
1391
+ {
1392
+ "epoch": 1.6997411561691114,
1393
+ "grad_norm": 1.3090870380401611,
1394
+ "learning_rate": 0.0002,
1395
+ "loss": 1.6945,
1396
+ "step": 1970
1397
+ },
1398
+ {
1399
+ "epoch": 1.7083692838654012,
1400
+ "grad_norm": 1.4537303447723389,
1401
+ "learning_rate": 0.0002,
1402
+ "loss": 1.6018,
1403
+ "step": 1980
1404
+ },
1405
+ {
1406
+ "epoch": 1.716997411561691,
1407
+ "grad_norm": 1.3618766069412231,
1408
+ "learning_rate": 0.0002,
1409
+ "loss": 1.7225,
1410
+ "step": 1990
1411
+ },
1412
+ {
1413
+ "epoch": 1.725625539257981,
1414
+ "grad_norm": 1.398790955543518,
1415
+ "learning_rate": 0.0002,
1416
+ "loss": 1.6948,
1417
+ "step": 2000
1418
+ },
1419
+ {
1420
+ "epoch": 1.734253666954271,
1421
+ "grad_norm": 1.4606391191482544,
1422
+ "learning_rate": 0.0002,
1423
+ "loss": 1.6963,
1424
+ "step": 2010
1425
+ },
1426
+ {
1427
+ "epoch": 1.7428817946505608,
1428
+ "grad_norm": 1.602010726928711,
1429
+ "learning_rate": 0.0002,
1430
+ "loss": 1.727,
1431
+ "step": 2020
1432
+ },
1433
+ {
1434
+ "epoch": 1.7515099223468509,
1435
+ "grad_norm": 1.4865907430648804,
1436
+ "learning_rate": 0.0002,
1437
+ "loss": 1.7238,
1438
+ "step": 2030
1439
+ },
1440
+ {
1441
+ "epoch": 1.7601380500431407,
1442
+ "grad_norm": 1.5954750776290894,
1443
+ "learning_rate": 0.0002,
1444
+ "loss": 1.713,
1445
+ "step": 2040
1446
+ },
1447
+ {
1448
+ "epoch": 1.7687661777394306,
1449
+ "grad_norm": 1.3561054468154907,
1450
+ "learning_rate": 0.0002,
1451
+ "loss": 1.6794,
1452
+ "step": 2050
1453
+ },
1454
+ {
1455
+ "epoch": 1.7773943054357204,
1456
+ "grad_norm": 1.4540512561798096,
1457
+ "learning_rate": 0.0002,
1458
+ "loss": 1.7058,
1459
+ "step": 2060
1460
+ },
1461
+ {
1462
+ "epoch": 1.7860224331320103,
1463
+ "grad_norm": 1.2661199569702148,
1464
+ "learning_rate": 0.0002,
1465
+ "loss": 1.6187,
1466
+ "step": 2070
1467
+ },
1468
+ {
1469
+ "epoch": 1.7946505608283,
1470
+ "grad_norm": 2.188016176223755,
1471
+ "learning_rate": 0.0002,
1472
+ "loss": 1.6998,
1473
+ "step": 2080
1474
+ },
1475
+ {
1476
+ "epoch": 1.8032786885245902,
1477
+ "grad_norm": 1.4326417446136475,
1478
+ "learning_rate": 0.0002,
1479
+ "loss": 1.6909,
1480
+ "step": 2090
1481
+ },
1482
+ {
1483
+ "epoch": 1.8119068162208802,
1484
+ "grad_norm": 2.2382805347442627,
1485
+ "learning_rate": 0.0002,
1486
+ "loss": 1.7765,
1487
+ "step": 2100
1488
+ },
1489
+ {
1490
+ "epoch": 1.82053494391717,
1491
+ "grad_norm": 1.396160364151001,
1492
+ "learning_rate": 0.0002,
1493
+ "loss": 1.7034,
1494
+ "step": 2110
1495
+ },
1496
+ {
1497
+ "epoch": 1.82916307161346,
1498
+ "grad_norm": 1.3848069906234741,
1499
+ "learning_rate": 0.0002,
1500
+ "loss": 1.629,
1501
+ "step": 2120
1502
+ },
1503
+ {
1504
+ "epoch": 1.8377911993097498,
1505
+ "grad_norm": 1.6975245475769043,
1506
+ "learning_rate": 0.0002,
1507
+ "loss": 1.6153,
1508
+ "step": 2130
1509
+ },
1510
+ {
1511
+ "epoch": 1.8464193270060396,
1512
+ "grad_norm": 1.476306676864624,
1513
+ "learning_rate": 0.0002,
1514
+ "loss": 1.6631,
1515
+ "step": 2140
1516
+ },
1517
+ {
1518
+ "epoch": 1.8550474547023295,
1519
+ "grad_norm": 1.5690935850143433,
1520
+ "learning_rate": 0.0002,
1521
+ "loss": 1.646,
1522
+ "step": 2150
1523
+ },
1524
+ {
1525
+ "epoch": 1.8636755823986195,
1526
+ "grad_norm": 1.4900702238082886,
1527
+ "learning_rate": 0.0002,
1528
+ "loss": 1.6989,
1529
+ "step": 2160
1530
+ },
1531
+ {
1532
+ "epoch": 1.8723037100949094,
1533
+ "grad_norm": 1.4173238277435303,
1534
+ "learning_rate": 0.0002,
1535
+ "loss": 1.657,
1536
+ "step": 2170
1537
+ },
1538
+ {
1539
+ "epoch": 1.8809318377911994,
1540
+ "grad_norm": 1.3687001466751099,
1541
+ "learning_rate": 0.0002,
1542
+ "loss": 1.6587,
1543
+ "step": 2180
1544
+ },
1545
+ {
1546
+ "epoch": 1.8895599654874893,
1547
+ "grad_norm": 1.371954321861267,
1548
+ "learning_rate": 0.0002,
1549
+ "loss": 1.6209,
1550
+ "step": 2190
1551
+ },
1552
+ {
1553
+ "epoch": 1.8981880931837791,
1554
+ "grad_norm": 1.5397378206253052,
1555
+ "learning_rate": 0.0002,
1556
+ "loss": 1.6749,
1557
+ "step": 2200
1558
+ },
1559
+ {
1560
+ "epoch": 1.906816220880069,
1561
+ "grad_norm": 1.7145664691925049,
1562
+ "learning_rate": 0.0002,
1563
+ "loss": 1.7149,
1564
+ "step": 2210
1565
+ },
1566
+ {
1567
+ "epoch": 1.9154443485763588,
1568
+ "grad_norm": 1.5490705966949463,
1569
+ "learning_rate": 0.0002,
1570
+ "loss": 1.6663,
1571
+ "step": 2220
1572
+ },
1573
+ {
1574
+ "epoch": 1.9240724762726489,
1575
+ "grad_norm": 1.3237485885620117,
1576
+ "learning_rate": 0.0002,
1577
+ "loss": 1.7056,
1578
+ "step": 2230
1579
+ },
1580
+ {
1581
+ "epoch": 1.9327006039689387,
1582
+ "grad_norm": 1.4739165306091309,
1583
+ "learning_rate": 0.0002,
1584
+ "loss": 1.7613,
1585
+ "step": 2240
1586
+ },
1587
+ {
1588
+ "epoch": 1.9413287316652288,
1589
+ "grad_norm": 1.7177914381027222,
1590
+ "learning_rate": 0.0002,
1591
+ "loss": 1.601,
1592
+ "step": 2250
1593
+ },
1594
+ {
1595
+ "epoch": 1.9499568593615186,
1596
+ "grad_norm": 1.3587760925292969,
1597
+ "learning_rate": 0.0002,
1598
+ "loss": 1.6733,
1599
+ "step": 2260
1600
+ },
1601
+ {
1602
+ "epoch": 1.9585849870578085,
1603
+ "grad_norm": 1.3180559873580933,
1604
+ "learning_rate": 0.0002,
1605
+ "loss": 1.6511,
1606
+ "step": 2270
1607
+ },
1608
+ {
1609
+ "epoch": 1.9672131147540983,
1610
+ "grad_norm": 1.9988678693771362,
1611
+ "learning_rate": 0.0002,
1612
+ "loss": 1.5875,
1613
+ "step": 2280
1614
+ },
1615
+ {
1616
+ "epoch": 1.9758412424503882,
1617
+ "grad_norm": 1.4148619174957275,
1618
+ "learning_rate": 0.0002,
1619
+ "loss": 1.6516,
1620
+ "step": 2290
1621
+ },
1622
+ {
1623
+ "epoch": 1.984469370146678,
1624
+ "grad_norm": 1.6429015398025513,
1625
+ "learning_rate": 0.0002,
1626
+ "loss": 1.6649,
1627
+ "step": 2300
1628
+ },
1629
+ {
1630
+ "epoch": 1.993097497842968,
1631
+ "grad_norm": 1.6742682456970215,
1632
+ "learning_rate": 0.0002,
1633
+ "loss": 1.6504,
1634
+ "step": 2310
1635
+ },
1636
+ {
1637
+ "epoch": 2.0,
1638
+ "eval_loss": 1.7843003273010254,
1639
+ "eval_runtime": 155.4967,
1640
+ "eval_samples_per_second": 3.428,
1641
+ "eval_steps_per_second": 0.431,
1642
+ "step": 2318
1643
+ },
1644
+ {
1645
+ "epoch": 2.001725625539258,
1646
+ "grad_norm": 1.399217128753662,
1647
+ "learning_rate": 0.0002,
1648
+ "loss": 1.6082,
1649
+ "step": 2320
1650
+ },
1651
+ {
1652
+ "epoch": 2.010353753235548,
1653
+ "grad_norm": 1.7028861045837402,
1654
+ "learning_rate": 0.0002,
1655
+ "loss": 1.4883,
1656
+ "step": 2330
1657
+ },
1658
+ {
1659
+ "epoch": 2.018981880931838,
1660
+ "grad_norm": 1.506859540939331,
1661
+ "learning_rate": 0.0002,
1662
+ "loss": 1.4019,
1663
+ "step": 2340
1664
+ },
1665
+ {
1666
+ "epoch": 2.0276100086281277,
1667
+ "grad_norm": 1.3946882486343384,
1668
+ "learning_rate": 0.0002,
1669
+ "loss": 1.482,
1670
+ "step": 2350
1671
+ },
1672
+ {
1673
+ "epoch": 2.0362381363244175,
1674
+ "grad_norm": 1.5871425867080688,
1675
+ "learning_rate": 0.0002,
1676
+ "loss": 1.5225,
1677
+ "step": 2360
1678
+ },
1679
+ {
1680
+ "epoch": 2.0448662640207074,
1681
+ "grad_norm": 1.636025309562683,
1682
+ "learning_rate": 0.0002,
1683
+ "loss": 1.5915,
1684
+ "step": 2370
1685
+ },
1686
+ {
1687
+ "epoch": 2.053494391716997,
1688
+ "grad_norm": 1.971501111984253,
1689
+ "learning_rate": 0.0002,
1690
+ "loss": 1.5434,
1691
+ "step": 2380
1692
+ },
1693
+ {
1694
+ "epoch": 2.0621225194132875,
1695
+ "grad_norm": 1.5961263179779053,
1696
+ "learning_rate": 0.0002,
1697
+ "loss": 1.5265,
1698
+ "step": 2390
1699
+ },
1700
+ {
1701
+ "epoch": 2.0707506471095773,
1702
+ "grad_norm": 1.4916940927505493,
1703
+ "learning_rate": 0.0002,
1704
+ "loss": 1.446,
1705
+ "step": 2400
1706
+ },
1707
+ {
1708
+ "epoch": 2.079378774805867,
1709
+ "grad_norm": 1.6255263090133667,
1710
+ "learning_rate": 0.0002,
1711
+ "loss": 1.528,
1712
+ "step": 2410
1713
+ },
1714
+ {
1715
+ "epoch": 2.088006902502157,
1716
+ "grad_norm": 1.9251011610031128,
1717
+ "learning_rate": 0.0002,
1718
+ "loss": 1.6365,
1719
+ "step": 2420
1720
+ },
1721
+ {
1722
+ "epoch": 2.096635030198447,
1723
+ "grad_norm": 1.6198536157608032,
1724
+ "learning_rate": 0.0002,
1725
+ "loss": 1.5883,
1726
+ "step": 2430
1727
+ },
1728
+ {
1729
+ "epoch": 2.1052631578947367,
1730
+ "grad_norm": 1.6935237646102905,
1731
+ "learning_rate": 0.0002,
1732
+ "loss": 1.4984,
1733
+ "step": 2440
1734
+ },
1735
+ {
1736
+ "epoch": 2.1138912855910266,
1737
+ "grad_norm": 1.5107334852218628,
1738
+ "learning_rate": 0.0002,
1739
+ "loss": 1.5477,
1740
+ "step": 2450
1741
+ },
1742
+ {
1743
+ "epoch": 2.122519413287317,
1744
+ "grad_norm": 1.801699161529541,
1745
+ "learning_rate": 0.0002,
1746
+ "loss": 1.4898,
1747
+ "step": 2460
1748
+ },
1749
+ {
1750
+ "epoch": 2.1311475409836067,
1751
+ "grad_norm": 1.6194193363189697,
1752
+ "learning_rate": 0.0002,
1753
+ "loss": 1.5471,
1754
+ "step": 2470
1755
+ },
1756
+ {
1757
+ "epoch": 2.1397756686798965,
1758
+ "grad_norm": 1.896286964416504,
1759
+ "learning_rate": 0.0002,
1760
+ "loss": 1.4619,
1761
+ "step": 2480
1762
+ },
1763
+ {
1764
+ "epoch": 2.1484037963761864,
1765
+ "grad_norm": 1.9456146955490112,
1766
+ "learning_rate": 0.0002,
1767
+ "loss": 1.5496,
1768
+ "step": 2490
1769
+ },
1770
+ {
1771
+ "epoch": 2.1570319240724762,
1772
+ "grad_norm": 23.566476821899414,
1773
+ "learning_rate": 0.0002,
1774
+ "loss": 1.5449,
1775
+ "step": 2500
1776
+ },
1777
+ {
1778
+ "epoch": 2.165660051768766,
1779
+ "grad_norm": 1.7737925052642822,
1780
+ "learning_rate": 0.0002,
1781
+ "loss": 1.5675,
1782
+ "step": 2510
1783
+ },
1784
+ {
1785
+ "epoch": 2.174288179465056,
1786
+ "grad_norm": 1.7305291891098022,
1787
+ "learning_rate": 0.0002,
1788
+ "loss": 1.4775,
1789
+ "step": 2520
1790
+ },
1791
+ {
1792
+ "epoch": 2.1829163071613458,
1793
+ "grad_norm": 2.130882978439331,
1794
+ "learning_rate": 0.0002,
1795
+ "loss": 1.5051,
1796
+ "step": 2530
1797
+ },
1798
+ {
1799
+ "epoch": 2.191544434857636,
1800
+ "grad_norm": 1.790124535560608,
1801
+ "learning_rate": 0.0002,
1802
+ "loss": 1.4675,
1803
+ "step": 2540
1804
+ },
1805
+ {
1806
+ "epoch": 2.200172562553926,
1807
+ "grad_norm": 1.8408042192459106,
1808
+ "learning_rate": 0.0002,
1809
+ "loss": 1.5208,
1810
+ "step": 2550
1811
+ },
1812
+ {
1813
+ "epoch": 2.2088006902502157,
1814
+ "grad_norm": 1.7635295391082764,
1815
+ "learning_rate": 0.0002,
1816
+ "loss": 1.4732,
1817
+ "step": 2560
1818
+ },
1819
+ {
1820
+ "epoch": 2.2174288179465056,
1821
+ "grad_norm": 1.7026700973510742,
1822
+ "learning_rate": 0.0002,
1823
+ "loss": 1.4604,
1824
+ "step": 2570
1825
+ },
1826
+ {
1827
+ "epoch": 2.2260569456427954,
1828
+ "grad_norm": 1.881218433380127,
1829
+ "learning_rate": 0.0002,
1830
+ "loss": 1.5223,
1831
+ "step": 2580
1832
+ },
1833
+ {
1834
+ "epoch": 2.2346850733390853,
1835
+ "grad_norm": 1.9007751941680908,
1836
+ "learning_rate": 0.0002,
1837
+ "loss": 1.4422,
1838
+ "step": 2590
1839
+ },
1840
+ {
1841
+ "epoch": 2.243313201035375,
1842
+ "grad_norm": 1.7862553596496582,
1843
+ "learning_rate": 0.0002,
1844
+ "loss": 1.4695,
1845
+ "step": 2600
1846
+ },
1847
+ {
1848
+ "epoch": 2.2519413287316654,
1849
+ "grad_norm": 1.7117811441421509,
1850
+ "learning_rate": 0.0002,
1851
+ "loss": 1.4731,
1852
+ "step": 2610
1853
+ },
1854
+ {
1855
+ "epoch": 2.2605694564279553,
1856
+ "grad_norm": 1.7809374332427979,
1857
+ "learning_rate": 0.0002,
1858
+ "loss": 1.4951,
1859
+ "step": 2620
1860
+ },
1861
+ {
1862
+ "epoch": 2.269197584124245,
1863
+ "grad_norm": 1.7089564800262451,
1864
+ "learning_rate": 0.0002,
1865
+ "loss": 1.4744,
1866
+ "step": 2630
1867
+ },
1868
+ {
1869
+ "epoch": 2.277825711820535,
1870
+ "grad_norm": 1.7662888765335083,
1871
+ "learning_rate": 0.0002,
1872
+ "loss": 1.5186,
1873
+ "step": 2640
1874
+ },
1875
+ {
1876
+ "epoch": 2.286453839516825,
1877
+ "grad_norm": 1.8892756700515747,
1878
+ "learning_rate": 0.0002,
1879
+ "loss": 1.5468,
1880
+ "step": 2650
1881
+ },
1882
+ {
1883
+ "epoch": 2.2950819672131146,
1884
+ "grad_norm": 1.678238034248352,
1885
+ "learning_rate": 0.0002,
1886
+ "loss": 1.5266,
1887
+ "step": 2660
1888
+ },
1889
+ {
1890
+ "epoch": 2.3037100949094045,
1891
+ "grad_norm": 1.865786075592041,
1892
+ "learning_rate": 0.0002,
1893
+ "loss": 1.4897,
1894
+ "step": 2670
1895
+ },
1896
+ {
1897
+ "epoch": 2.3123382226056943,
1898
+ "grad_norm": 1.9744012355804443,
1899
+ "learning_rate": 0.0002,
1900
+ "loss": 1.5578,
1901
+ "step": 2680
1902
+ },
1903
+ {
1904
+ "epoch": 2.3209663503019846,
1905
+ "grad_norm": 1.884690284729004,
1906
+ "learning_rate": 0.0002,
1907
+ "loss": 1.5021,
1908
+ "step": 2690
1909
+ },
1910
+ {
1911
+ "epoch": 2.3295944779982745,
1912
+ "grad_norm": 1.6391639709472656,
1913
+ "learning_rate": 0.0002,
1914
+ "loss": 1.6071,
1915
+ "step": 2700
1916
+ },
1917
+ {
1918
+ "epoch": 2.3382226056945643,
1919
+ "grad_norm": 1.7777862548828125,
1920
+ "learning_rate": 0.0002,
1921
+ "loss": 1.5721,
1922
+ "step": 2710
1923
+ },
1924
+ {
1925
+ "epoch": 2.346850733390854,
1926
+ "grad_norm": 1.6615192890167236,
1927
+ "learning_rate": 0.0002,
1928
+ "loss": 1.5633,
1929
+ "step": 2720
1930
+ },
1931
+ {
1932
+ "epoch": 2.355478861087144,
1933
+ "grad_norm": 2.2202742099761963,
1934
+ "learning_rate": 0.0002,
1935
+ "loss": 1.5213,
1936
+ "step": 2730
1937
+ },
1938
+ {
1939
+ "epoch": 2.364106988783434,
1940
+ "grad_norm": 2.1986732482910156,
1941
+ "learning_rate": 0.0002,
1942
+ "loss": 1.5443,
1943
+ "step": 2740
1944
+ },
1945
+ {
1946
+ "epoch": 2.372735116479724,
1947
+ "grad_norm": 1.7847017049789429,
1948
+ "learning_rate": 0.0002,
1949
+ "loss": 1.5834,
1950
+ "step": 2750
1951
+ },
1952
+ {
1953
+ "epoch": 2.381363244176014,
1954
+ "grad_norm": 1.8832756280899048,
1955
+ "learning_rate": 0.0002,
1956
+ "loss": 1.4946,
1957
+ "step": 2760
1958
+ },
1959
+ {
1960
+ "epoch": 2.389991371872304,
1961
+ "grad_norm": 1.8374940156936646,
1962
+ "learning_rate": 0.0002,
1963
+ "loss": 1.5725,
1964
+ "step": 2770
1965
+ },
1966
+ {
1967
+ "epoch": 2.3986194995685937,
1968
+ "grad_norm": 1.741965413093567,
1969
+ "learning_rate": 0.0002,
1970
+ "loss": 1.5181,
1971
+ "step": 2780
1972
+ },
1973
+ {
1974
+ "epoch": 2.4072476272648835,
1975
+ "grad_norm": 1.789699673652649,
1976
+ "learning_rate": 0.0002,
1977
+ "loss": 1.5571,
1978
+ "step": 2790
1979
+ },
1980
+ {
1981
+ "epoch": 2.4158757549611733,
1982
+ "grad_norm": 2.0495948791503906,
1983
+ "learning_rate": 0.0002,
1984
+ "loss": 1.4763,
1985
+ "step": 2800
1986
+ },
1987
+ {
1988
+ "epoch": 2.424503882657463,
1989
+ "grad_norm": 1.7399765253067017,
1990
+ "learning_rate": 0.0002,
1991
+ "loss": 1.5129,
1992
+ "step": 2810
1993
+ },
1994
+ {
1995
+ "epoch": 2.433132010353753,
1996
+ "grad_norm": 1.9142578840255737,
1997
+ "learning_rate": 0.0002,
1998
+ "loss": 1.556,
1999
+ "step": 2820
2000
+ },
2001
+ {
2002
+ "epoch": 2.4417601380500433,
2003
+ "grad_norm": 1.920663595199585,
2004
+ "learning_rate": 0.0002,
2005
+ "loss": 1.4848,
2006
+ "step": 2830
2007
+ },
2008
+ {
2009
+ "epoch": 2.450388265746333,
2010
+ "grad_norm": 1.7982150316238403,
2011
+ "learning_rate": 0.0002,
2012
+ "loss": 1.5411,
2013
+ "step": 2840
2014
+ },
2015
+ {
2016
+ "epoch": 2.459016393442623,
2017
+ "grad_norm": 1.7665464878082275,
2018
+ "learning_rate": 0.0002,
2019
+ "loss": 1.5802,
2020
+ "step": 2850
2021
+ },
2022
+ {
2023
+ "epoch": 2.467644521138913,
2024
+ "grad_norm": 1.9115102291107178,
2025
+ "learning_rate": 0.0002,
2026
+ "loss": 1.5433,
2027
+ "step": 2860
2028
+ },
2029
+ {
2030
+ "epoch": 2.4762726488352027,
2031
+ "grad_norm": 1.9024899005889893,
2032
+ "learning_rate": 0.0002,
2033
+ "loss": 1.4518,
2034
+ "step": 2870
2035
+ },
2036
+ {
2037
+ "epoch": 2.4849007765314925,
2038
+ "grad_norm": 1.7804782390594482,
2039
+ "learning_rate": 0.0002,
2040
+ "loss": 1.4797,
2041
+ "step": 2880
2042
+ },
2043
+ {
2044
+ "epoch": 2.4935289042277824,
2045
+ "grad_norm": 2.0264487266540527,
2046
+ "learning_rate": 0.0002,
2047
+ "loss": 1.5182,
2048
+ "step": 2890
2049
+ },
2050
+ {
2051
+ "epoch": 2.5021570319240727,
2052
+ "grad_norm": 1.8650445938110352,
2053
+ "learning_rate": 0.0002,
2054
+ "loss": 1.4455,
2055
+ "step": 2900
2056
+ },
2057
+ {
2058
+ "epoch": 2.5107851596203625,
2059
+ "grad_norm": 2.0831475257873535,
2060
+ "learning_rate": 0.0002,
2061
+ "loss": 1.54,
2062
+ "step": 2910
2063
+ },
2064
+ {
2065
+ "epoch": 2.5194132873166524,
2066
+ "grad_norm": 1.9633755683898926,
2067
+ "learning_rate": 0.0002,
2068
+ "loss": 1.6014,
2069
+ "step": 2920
2070
+ },
2071
+ {
2072
+ "epoch": 2.528041415012942,
2073
+ "grad_norm": 2.2055106163024902,
2074
+ "learning_rate": 0.0002,
2075
+ "loss": 1.56,
2076
+ "step": 2930
2077
+ },
2078
+ {
2079
+ "epoch": 2.536669542709232,
2080
+ "grad_norm": 2.1060245037078857,
2081
+ "learning_rate": 0.0002,
2082
+ "loss": 1.492,
2083
+ "step": 2940
2084
+ },
2085
+ {
2086
+ "epoch": 2.545297670405522,
2087
+ "grad_norm": 2.0236003398895264,
2088
+ "learning_rate": 0.0002,
2089
+ "loss": 1.5688,
2090
+ "step": 2950
2091
+ },
2092
+ {
2093
+ "epoch": 2.5539257981018118,
2094
+ "grad_norm": 1.898287296295166,
2095
+ "learning_rate": 0.0002,
2096
+ "loss": 1.5186,
2097
+ "step": 2960
2098
+ },
2099
+ {
2100
+ "epoch": 2.5625539257981016,
2101
+ "grad_norm": 1.9526840448379517,
2102
+ "learning_rate": 0.0002,
2103
+ "loss": 1.5441,
2104
+ "step": 2970
2105
+ },
2106
+ {
2107
+ "epoch": 2.5711820534943914,
2108
+ "grad_norm": 1.9538743495941162,
2109
+ "learning_rate": 0.0002,
2110
+ "loss": 1.5608,
2111
+ "step": 2980
2112
+ },
2113
+ {
2114
+ "epoch": 2.5798101811906817,
2115
+ "grad_norm": 1.787394404411316,
2116
+ "learning_rate": 0.0002,
2117
+ "loss": 1.4356,
2118
+ "step": 2990
2119
+ },
2120
+ {
2121
+ "epoch": 2.5884383088869716,
2122
+ "grad_norm": 2.0792672634124756,
2123
+ "learning_rate": 0.0002,
2124
+ "loss": 1.5096,
2125
+ "step": 3000
2126
+ },
2127
+ {
2128
+ "epoch": 2.5970664365832614,
2129
+ "grad_norm": 1.760083556175232,
2130
+ "learning_rate": 0.0002,
2131
+ "loss": 1.5131,
2132
+ "step": 3010
2133
+ },
2134
+ {
2135
+ "epoch": 2.6056945642795513,
2136
+ "grad_norm": 1.8766807317733765,
2137
+ "learning_rate": 0.0002,
2138
+ "loss": 1.5553,
2139
+ "step": 3020
2140
+ },
2141
+ {
2142
+ "epoch": 2.614322691975841,
2143
+ "grad_norm": 1.9650694131851196,
2144
+ "learning_rate": 0.0002,
2145
+ "loss": 1.5381,
2146
+ "step": 3030
2147
+ },
2148
+ {
2149
+ "epoch": 2.6229508196721314,
2150
+ "grad_norm": 1.8143510818481445,
2151
+ "learning_rate": 0.0002,
2152
+ "loss": 1.5263,
2153
+ "step": 3040
2154
+ },
2155
+ {
2156
+ "epoch": 2.6315789473684212,
2157
+ "grad_norm": 2.5094006061553955,
2158
+ "learning_rate": 0.0002,
2159
+ "loss": 1.5187,
2160
+ "step": 3050
2161
+ },
2162
+ {
2163
+ "epoch": 2.640207075064711,
2164
+ "grad_norm": 1.852913737297058,
2165
+ "learning_rate": 0.0002,
2166
+ "loss": 1.4729,
2167
+ "step": 3060
2168
+ },
2169
+ {
2170
+ "epoch": 2.648835202761001,
2171
+ "grad_norm": 2.052318811416626,
2172
+ "learning_rate": 0.0002,
2173
+ "loss": 1.5563,
2174
+ "step": 3070
2175
+ },
2176
+ {
2177
+ "epoch": 2.6574633304572908,
2178
+ "grad_norm": 1.8995426893234253,
2179
+ "learning_rate": 0.0002,
2180
+ "loss": 1.5543,
2181
+ "step": 3080
2182
+ },
2183
+ {
2184
+ "epoch": 2.6660914581535806,
2185
+ "grad_norm": 1.979037880897522,
2186
+ "learning_rate": 0.0002,
2187
+ "loss": 1.5357,
2188
+ "step": 3090
2189
+ },
2190
+ {
2191
+ "epoch": 2.6747195858498705,
2192
+ "grad_norm": 1.8179038763046265,
2193
+ "learning_rate": 0.0002,
2194
+ "loss": 1.537,
2195
+ "step": 3100
2196
+ },
2197
+ {
2198
+ "epoch": 2.6833477135461603,
2199
+ "grad_norm": 1.8502779006958008,
2200
+ "learning_rate": 0.0002,
2201
+ "loss": 1.5929,
2202
+ "step": 3110
2203
+ },
2204
+ {
2205
+ "epoch": 2.69197584124245,
2206
+ "grad_norm": 2.0174338817596436,
2207
+ "learning_rate": 0.0002,
2208
+ "loss": 1.5139,
2209
+ "step": 3120
2210
+ },
2211
+ {
2212
+ "epoch": 2.7006039689387404,
2213
+ "grad_norm": 2.1845622062683105,
2214
+ "learning_rate": 0.0002,
2215
+ "loss": 1.5609,
2216
+ "step": 3130
2217
+ },
2218
+ {
2219
+ "epoch": 2.7092320966350303,
2220
+ "grad_norm": 2.1443305015563965,
2221
+ "learning_rate": 0.0002,
2222
+ "loss": 1.5083,
2223
+ "step": 3140
2224
+ },
2225
+ {
2226
+ "epoch": 2.71786022433132,
2227
+ "grad_norm": 2.057907819747925,
2228
+ "learning_rate": 0.0002,
2229
+ "loss": 1.5856,
2230
+ "step": 3150
2231
+ },
2232
+ {
2233
+ "epoch": 2.72648835202761,
2234
+ "grad_norm": 1.9795310497283936,
2235
+ "learning_rate": 0.0002,
2236
+ "loss": 1.5298,
2237
+ "step": 3160
2238
+ },
2239
+ {
2240
+ "epoch": 2.7351164797239,
2241
+ "grad_norm": 1.9476630687713623,
2242
+ "learning_rate": 0.0002,
2243
+ "loss": 1.574,
2244
+ "step": 3170
2245
+ },
2246
+ {
2247
+ "epoch": 2.7437446074201897,
2248
+ "grad_norm": 1.9144753217697144,
2249
+ "learning_rate": 0.0002,
2250
+ "loss": 1.5884,
2251
+ "step": 3180
2252
+ },
2253
+ {
2254
+ "epoch": 2.75237273511648,
2255
+ "grad_norm": 2.0273289680480957,
2256
+ "learning_rate": 0.0002,
2257
+ "loss": 1.554,
2258
+ "step": 3190
2259
+ },
2260
+ {
2261
+ "epoch": 2.76100086281277,
2262
+ "grad_norm": 1.9641752243041992,
2263
+ "learning_rate": 0.0002,
2264
+ "loss": 1.6172,
2265
+ "step": 3200
2266
+ },
2267
+ {
2268
+ "epoch": 2.7696289905090596,
2269
+ "grad_norm": 1.721760630607605,
2270
+ "learning_rate": 0.0002,
2271
+ "loss": 1.525,
2272
+ "step": 3210
2273
+ },
2274
+ {
2275
+ "epoch": 2.7782571182053495,
2276
+ "grad_norm": 1.8093656301498413,
2277
+ "learning_rate": 0.0002,
2278
+ "loss": 1.5414,
2279
+ "step": 3220
2280
+ },
2281
+ {
2282
+ "epoch": 2.7868852459016393,
2283
+ "grad_norm": 1.907056212425232,
2284
+ "learning_rate": 0.0002,
2285
+ "loss": 1.544,
2286
+ "step": 3230
2287
+ },
2288
+ {
2289
+ "epoch": 2.795513373597929,
2290
+ "grad_norm": 2.0488245487213135,
2291
+ "learning_rate": 0.0002,
2292
+ "loss": 1.5911,
2293
+ "step": 3240
2294
+ },
2295
+ {
2296
+ "epoch": 2.804141501294219,
2297
+ "grad_norm": 2.161618232727051,
2298
+ "learning_rate": 0.0002,
2299
+ "loss": 1.5548,
2300
+ "step": 3250
2301
+ },
2302
+ {
2303
+ "epoch": 2.812769628990509,
2304
+ "grad_norm": 1.8043134212493896,
2305
+ "learning_rate": 0.0002,
2306
+ "loss": 1.5549,
2307
+ "step": 3260
2308
+ },
2309
+ {
2310
+ "epoch": 2.8213977566867987,
2311
+ "grad_norm": 1.879629373550415,
2312
+ "learning_rate": 0.0002,
2313
+ "loss": 1.5883,
2314
+ "step": 3270
2315
+ },
2316
+ {
2317
+ "epoch": 2.830025884383089,
2318
+ "grad_norm": 1.9248288869857788,
2319
+ "learning_rate": 0.0002,
2320
+ "loss": 1.5424,
2321
+ "step": 3280
2322
+ },
2323
+ {
2324
+ "epoch": 2.838654012079379,
2325
+ "grad_norm": 1.9379483461380005,
2326
+ "learning_rate": 0.0002,
2327
+ "loss": 1.5166,
2328
+ "step": 3290
2329
+ },
2330
+ {
2331
+ "epoch": 2.8472821397756687,
2332
+ "grad_norm": 1.7068989276885986,
2333
+ "learning_rate": 0.0002,
2334
+ "loss": 1.5575,
2335
+ "step": 3300
2336
+ },
2337
+ {
2338
+ "epoch": 2.8559102674719585,
2339
+ "grad_norm": 1.8729630708694458,
2340
+ "learning_rate": 0.0002,
2341
+ "loss": 1.5513,
2342
+ "step": 3310
2343
+ },
2344
+ {
2345
+ "epoch": 2.8645383951682484,
2346
+ "grad_norm": 1.7893825769424438,
2347
+ "learning_rate": 0.0002,
2348
+ "loss": 1.4364,
2349
+ "step": 3320
2350
+ },
2351
+ {
2352
+ "epoch": 2.8731665228645387,
2353
+ "grad_norm": 1.9462252855300903,
2354
+ "learning_rate": 0.0002,
2355
+ "loss": 1.5439,
2356
+ "step": 3330
2357
+ },
2358
+ {
2359
+ "epoch": 2.8817946505608285,
2360
+ "grad_norm": 1.9320255517959595,
2361
+ "learning_rate": 0.0002,
2362
+ "loss": 1.5171,
2363
+ "step": 3340
2364
+ },
2365
+ {
2366
+ "epoch": 2.8904227782571184,
2367
+ "grad_norm": 1.9695475101470947,
2368
+ "learning_rate": 0.0002,
2369
+ "loss": 1.5695,
2370
+ "step": 3350
2371
+ },
2372
+ {
2373
+ "epoch": 2.899050905953408,
2374
+ "grad_norm": 2.01279354095459,
2375
+ "learning_rate": 0.0002,
2376
+ "loss": 1.5418,
2377
+ "step": 3360
2378
+ },
2379
+ {
2380
+ "epoch": 2.907679033649698,
2381
+ "grad_norm": 1.992236852645874,
2382
+ "learning_rate": 0.0002,
2383
+ "loss": 1.5559,
2384
+ "step": 3370
2385
+ },
2386
+ {
2387
+ "epoch": 2.916307161345988,
2388
+ "grad_norm": 2.3763930797576904,
2389
+ "learning_rate": 0.0002,
2390
+ "loss": 1.5873,
2391
+ "step": 3380
2392
+ },
2393
+ {
2394
+ "epoch": 2.9249352890422777,
2395
+ "grad_norm": 1.91392982006073,
2396
+ "learning_rate": 0.0002,
2397
+ "loss": 1.5182,
2398
+ "step": 3390
2399
+ },
2400
+ {
2401
+ "epoch": 2.9335634167385676,
2402
+ "grad_norm": 1.969994306564331,
2403
+ "learning_rate": 0.0002,
2404
+ "loss": 1.5317,
2405
+ "step": 3400
2406
+ },
2407
+ {
2408
+ "epoch": 2.9421915444348574,
2409
+ "grad_norm": 1.9397379159927368,
2410
+ "learning_rate": 0.0002,
2411
+ "loss": 1.4554,
2412
+ "step": 3410
2413
+ },
2414
+ {
2415
+ "epoch": 2.9508196721311473,
2416
+ "grad_norm": 2.1597039699554443,
2417
+ "learning_rate": 0.0002,
2418
+ "loss": 1.5135,
2419
+ "step": 3420
2420
+ },
2421
+ {
2422
+ "epoch": 2.9594477998274376,
2423
+ "grad_norm": 1.9564080238342285,
2424
+ "learning_rate": 0.0002,
2425
+ "loss": 1.6098,
2426
+ "step": 3430
2427
+ },
2428
+ {
2429
+ "epoch": 2.9680759275237274,
2430
+ "grad_norm": 1.8007603883743286,
2431
+ "learning_rate": 0.0002,
2432
+ "loss": 1.603,
2433
+ "step": 3440
2434
+ },
2435
+ {
2436
+ "epoch": 2.9767040552200172,
2437
+ "grad_norm": 2.5556256771087646,
2438
+ "learning_rate": 0.0002,
2439
+ "loss": 1.5593,
2440
+ "step": 3450
2441
+ },
2442
+ {
2443
+ "epoch": 2.985332182916307,
2444
+ "grad_norm": 1.96817147731781,
2445
+ "learning_rate": 0.0002,
2446
+ "loss": 1.5564,
2447
+ "step": 3460
2448
+ },
2449
+ {
2450
+ "epoch": 2.993960310612597,
2451
+ "grad_norm": 1.921637773513794,
2452
+ "learning_rate": 0.0002,
2453
+ "loss": 1.5664,
2454
+ "step": 3470
2455
+ },
2456
+ {
2457
+ "epoch": 3.0,
2458
+ "eval_loss": 1.8276220560073853,
2459
+ "eval_runtime": 148.7597,
2460
+ "eval_samples_per_second": 3.583,
2461
+ "eval_steps_per_second": 0.45,
2462
+ "step": 3477
2463
+ },
2464
+ {
2465
+ "epoch": 3.0025884383088868,
2466
+ "grad_norm": 1.6692646741867065,
2467
+ "learning_rate": 0.0002,
2468
+ "loss": 1.5993,
2469
+ "step": 3480
2470
+ },
2471
+ {
2472
+ "epoch": 3.011216566005177,
2473
+ "grad_norm": 2.7466068267822266,
2474
+ "learning_rate": 0.0002,
2475
+ "loss": 1.3835,
2476
+ "step": 3490
2477
+ },
2478
+ {
2479
+ "epoch": 3.019844693701467,
2480
+ "grad_norm": 2.2054216861724854,
2481
+ "learning_rate": 0.0002,
2482
+ "loss": 1.4099,
2483
+ "step": 3500
2484
+ },
2485
+ {
2486
+ "epoch": 3.0284728213977568,
2487
+ "grad_norm": 2.306040048599243,
2488
+ "learning_rate": 0.0002,
2489
+ "loss": 1.3087,
2490
+ "step": 3510
2491
+ },
2492
+ {
2493
+ "epoch": 3.0371009490940466,
2494
+ "grad_norm": 3.224613666534424,
2495
+ "learning_rate": 0.0002,
2496
+ "loss": 1.3396,
2497
+ "step": 3520
2498
+ },
2499
+ {
2500
+ "epoch": 3.0457290767903364,
2501
+ "grad_norm": 2.1571338176727295,
2502
+ "learning_rate": 0.0002,
2503
+ "loss": 1.2672,
2504
+ "step": 3530
2505
+ },
2506
+ {
2507
+ "epoch": 3.0543572044866263,
2508
+ "grad_norm": 2.585041046142578,
2509
+ "learning_rate": 0.0002,
2510
+ "loss": 1.2956,
2511
+ "step": 3540
2512
+ },
2513
+ {
2514
+ "epoch": 3.062985332182916,
2515
+ "grad_norm": 2.3463659286499023,
2516
+ "learning_rate": 0.0002,
2517
+ "loss": 1.3168,
2518
+ "step": 3550
2519
+ },
2520
+ {
2521
+ "epoch": 3.0716134598792064,
2522
+ "grad_norm": 2.5111236572265625,
2523
+ "learning_rate": 0.0002,
2524
+ "loss": 1.3237,
2525
+ "step": 3560
2526
+ },
2527
+ {
2528
+ "epoch": 3.0802415875754963,
2529
+ "grad_norm": 2.797116994857788,
2530
+ "learning_rate": 0.0002,
2531
+ "loss": 1.3894,
2532
+ "step": 3570
2533
+ },
2534
+ {
2535
+ "epoch": 3.088869715271786,
2536
+ "grad_norm": 2.4545280933380127,
2537
+ "learning_rate": 0.0002,
2538
+ "loss": 1.3185,
2539
+ "step": 3580
2540
+ },
2541
+ {
2542
+ "epoch": 3.097497842968076,
2543
+ "grad_norm": 2.846592664718628,
2544
+ "learning_rate": 0.0002,
2545
+ "loss": 1.32,
2546
+ "step": 3590
2547
+ },
2548
+ {
2549
+ "epoch": 3.106125970664366,
2550
+ "grad_norm": 2.571178913116455,
2551
+ "learning_rate": 0.0002,
2552
+ "loss": 1.3508,
2553
+ "step": 3600
2554
+ },
2555
+ {
2556
+ "epoch": 3.1147540983606556,
2557
+ "grad_norm": 2.4101171493530273,
2558
+ "learning_rate": 0.0002,
2559
+ "loss": 1.312,
2560
+ "step": 3610
2561
+ },
2562
+ {
2563
+ "epoch": 3.1233822260569455,
2564
+ "grad_norm": 2.7548887729644775,
2565
+ "learning_rate": 0.0002,
2566
+ "loss": 1.3978,
2567
+ "step": 3620
2568
+ },
2569
+ {
2570
+ "epoch": 3.1320103537532358,
2571
+ "grad_norm": 2.4694085121154785,
2572
+ "learning_rate": 0.0002,
2573
+ "loss": 1.3766,
2574
+ "step": 3630
2575
+ },
2576
+ {
2577
+ "epoch": 3.1406384814495256,
2578
+ "grad_norm": 3.227698802947998,
2579
+ "learning_rate": 0.0002,
2580
+ "loss": 1.3498,
2581
+ "step": 3640
2582
+ },
2583
+ {
2584
+ "epoch": 3.1492666091458155,
2585
+ "grad_norm": 2.5243587493896484,
2586
+ "learning_rate": 0.0002,
2587
+ "loss": 1.3334,
2588
+ "step": 3650
2589
+ },
2590
+ {
2591
+ "epoch": 3.1578947368421053,
2592
+ "grad_norm": 2.1482925415039062,
2593
+ "learning_rate": 0.0002,
2594
+ "loss": 1.3546,
2595
+ "step": 3660
2596
+ },
2597
+ {
2598
+ "epoch": 3.166522864538395,
2599
+ "grad_norm": 2.366222858428955,
2600
+ "learning_rate": 0.0002,
2601
+ "loss": 1.3438,
2602
+ "step": 3670
2603
+ },
2604
+ {
2605
+ "epoch": 3.175150992234685,
2606
+ "grad_norm": 3.0339198112487793,
2607
+ "learning_rate": 0.0002,
2608
+ "loss": 1.3117,
2609
+ "step": 3680
2610
+ },
2611
+ {
2612
+ "epoch": 3.183779119930975,
2613
+ "grad_norm": 2.4929068088531494,
2614
+ "learning_rate": 0.0002,
2615
+ "loss": 1.2785,
2616
+ "step": 3690
2617
+ },
2618
+ {
2619
+ "epoch": 3.1924072476272647,
2620
+ "grad_norm": 2.526604652404785,
2621
+ "learning_rate": 0.0002,
2622
+ "loss": 1.3008,
2623
+ "step": 3700
2624
+ },
2625
+ {
2626
+ "epoch": 3.201035375323555,
2627
+ "grad_norm": 2.414598226547241,
2628
+ "learning_rate": 0.0002,
2629
+ "loss": 1.2952,
2630
+ "step": 3710
2631
+ },
2632
+ {
2633
+ "epoch": 3.209663503019845,
2634
+ "grad_norm": 2.5312447547912598,
2635
+ "learning_rate": 0.0002,
2636
+ "loss": 1.3369,
2637
+ "step": 3720
2638
+ },
2639
+ {
2640
+ "epoch": 3.2182916307161347,
2641
+ "grad_norm": 2.694946527481079,
2642
+ "learning_rate": 0.0002,
2643
+ "loss": 1.2423,
2644
+ "step": 3730
2645
+ },
2646
+ {
2647
+ "epoch": 3.2269197584124245,
2648
+ "grad_norm": 2.4538211822509766,
2649
+ "learning_rate": 0.0002,
2650
+ "loss": 1.3589,
2651
+ "step": 3740
2652
+ },
2653
+ {
2654
+ "epoch": 3.2355478861087144,
2655
+ "grad_norm": 3.2487967014312744,
2656
+ "learning_rate": 0.0002,
2657
+ "loss": 1.3872,
2658
+ "step": 3750
2659
+ },
2660
+ {
2661
+ "epoch": 3.244176013805004,
2662
+ "grad_norm": 2.8900558948516846,
2663
+ "learning_rate": 0.0002,
2664
+ "loss": 1.3019,
2665
+ "step": 3760
2666
+ },
2667
+ {
2668
+ "epoch": 3.252804141501294,
2669
+ "grad_norm": 2.325157880783081,
2670
+ "learning_rate": 0.0002,
2671
+ "loss": 1.3032,
2672
+ "step": 3770
2673
+ },
2674
+ {
2675
+ "epoch": 3.2614322691975843,
2676
+ "grad_norm": 2.497964859008789,
2677
+ "learning_rate": 0.0002,
2678
+ "loss": 1.3332,
2679
+ "step": 3780
2680
+ },
2681
+ {
2682
+ "epoch": 3.270060396893874,
2683
+ "grad_norm": 2.4324586391448975,
2684
+ "learning_rate": 0.0002,
2685
+ "loss": 1.3886,
2686
+ "step": 3790
2687
+ },
2688
+ {
2689
+ "epoch": 3.278688524590164,
2690
+ "grad_norm": 2.3308541774749756,
2691
+ "learning_rate": 0.0002,
2692
+ "loss": 1.3841,
2693
+ "step": 3800
2694
+ },
2695
+ {
2696
+ "epoch": 3.287316652286454,
2697
+ "grad_norm": 2.8938093185424805,
2698
+ "learning_rate": 0.0002,
2699
+ "loss": 1.3948,
2700
+ "step": 3810
2701
+ },
2702
+ {
2703
+ "epoch": 3.2959447799827437,
2704
+ "grad_norm": 2.744821548461914,
2705
+ "learning_rate": 0.0002,
2706
+ "loss": 1.3282,
2707
+ "step": 3820
2708
+ },
2709
+ {
2710
+ "epoch": 3.3045729076790336,
2711
+ "grad_norm": 2.3175134658813477,
2712
+ "learning_rate": 0.0002,
2713
+ "loss": 1.3536,
2714
+ "step": 3830
2715
+ },
2716
+ {
2717
+ "epoch": 3.3132010353753234,
2718
+ "grad_norm": 2.424309730529785,
2719
+ "learning_rate": 0.0002,
2720
+ "loss": 1.3267,
2721
+ "step": 3840
2722
+ },
2723
+ {
2724
+ "epoch": 3.3218291630716132,
2725
+ "grad_norm": 2.7309727668762207,
2726
+ "learning_rate": 0.0002,
2727
+ "loss": 1.3312,
2728
+ "step": 3850
2729
+ },
2730
+ {
2731
+ "epoch": 3.3304572907679035,
2732
+ "grad_norm": 2.4642956256866455,
2733
+ "learning_rate": 0.0002,
2734
+ "loss": 1.2985,
2735
+ "step": 3860
2736
+ },
2737
+ {
2738
+ "epoch": 3.3390854184641934,
2739
+ "grad_norm": 2.586395025253296,
2740
+ "learning_rate": 0.0002,
2741
+ "loss": 1.3757,
2742
+ "step": 3870
2743
+ },
2744
+ {
2745
+ "epoch": 3.3477135461604832,
2746
+ "grad_norm": 2.6067605018615723,
2747
+ "learning_rate": 0.0002,
2748
+ "loss": 1.3359,
2749
+ "step": 3880
2750
+ },
2751
+ {
2752
+ "epoch": 3.356341673856773,
2753
+ "grad_norm": 2.7179007530212402,
2754
+ "learning_rate": 0.0002,
2755
+ "loss": 1.3257,
2756
+ "step": 3890
2757
+ },
2758
+ {
2759
+ "epoch": 3.364969801553063,
2760
+ "grad_norm": 2.8866937160491943,
2761
+ "learning_rate": 0.0002,
2762
+ "loss": 1.3374,
2763
+ "step": 3900
2764
+ },
2765
+ {
2766
+ "epoch": 3.3735979292493528,
2767
+ "grad_norm": 3.0192813873291016,
2768
+ "learning_rate": 0.0002,
2769
+ "loss": 1.3636,
2770
+ "step": 3910
2771
+ },
2772
+ {
2773
+ "epoch": 3.382226056945643,
2774
+ "grad_norm": 2.9578323364257812,
2775
+ "learning_rate": 0.0002,
2776
+ "loss": 1.3554,
2777
+ "step": 3920
2778
+ },
2779
+ {
2780
+ "epoch": 3.390854184641933,
2781
+ "grad_norm": 2.4524383544921875,
2782
+ "learning_rate": 0.0002,
2783
+ "loss": 1.3838,
2784
+ "step": 3930
2785
+ },
2786
+ {
2787
+ "epoch": 3.3994823123382227,
2788
+ "grad_norm": 2.681588649749756,
2789
+ "learning_rate": 0.0002,
2790
+ "loss": 1.2733,
2791
+ "step": 3940
2792
+ },
2793
+ {
2794
+ "epoch": 3.4081104400345126,
2795
+ "grad_norm": 2.594383716583252,
2796
+ "learning_rate": 0.0002,
2797
+ "loss": 1.32,
2798
+ "step": 3950
2799
+ },
2800
+ {
2801
+ "epoch": 3.4167385677308024,
2802
+ "grad_norm": 2.364607810974121,
2803
+ "learning_rate": 0.0002,
2804
+ "loss": 1.313,
2805
+ "step": 3960
2806
+ },
2807
+ {
2808
+ "epoch": 3.4253666954270923,
2809
+ "grad_norm": 2.327899217605591,
2810
+ "learning_rate": 0.0002,
2811
+ "loss": 1.4074,
2812
+ "step": 3970
2813
+ },
2814
+ {
2815
+ "epoch": 3.433994823123382,
2816
+ "grad_norm": 2.6864054203033447,
2817
+ "learning_rate": 0.0002,
2818
+ "loss": 1.3655,
2819
+ "step": 3980
2820
+ },
2821
+ {
2822
+ "epoch": 3.442622950819672,
2823
+ "grad_norm": 2.8951292037963867,
2824
+ "learning_rate": 0.0002,
2825
+ "loss": 1.4381,
2826
+ "step": 3990
2827
+ },
2828
+ {
2829
+ "epoch": 3.451251078515962,
2830
+ "grad_norm": 2.7218570709228516,
2831
+ "learning_rate": 0.0002,
2832
+ "loss": 1.3515,
2833
+ "step": 4000
2834
+ },
2835
+ {
2836
+ "epoch": 3.459879206212252,
2837
+ "grad_norm": 2.7867014408111572,
2838
+ "learning_rate": 0.0002,
2839
+ "loss": 1.2841,
2840
+ "step": 4010
2841
+ },
2842
+ {
2843
+ "epoch": 3.468507333908542,
2844
+ "grad_norm": 2.967764377593994,
2845
+ "learning_rate": 0.0002,
2846
+ "loss": 1.3812,
2847
+ "step": 4020
2848
+ },
2849
+ {
2850
+ "epoch": 3.477135461604832,
2851
+ "grad_norm": 2.274709701538086,
2852
+ "learning_rate": 0.0002,
2853
+ "loss": 1.3473,
2854
+ "step": 4030
2855
+ },
2856
+ {
2857
+ "epoch": 3.4857635893011216,
2858
+ "grad_norm": 2.348278522491455,
2859
+ "learning_rate": 0.0002,
2860
+ "loss": 1.3881,
2861
+ "step": 4040
2862
+ },
2863
+ {
2864
+ "epoch": 3.4943917169974115,
2865
+ "grad_norm": 2.4520280361175537,
2866
+ "learning_rate": 0.0002,
2867
+ "loss": 1.3272,
2868
+ "step": 4050
2869
+ },
2870
+ {
2871
+ "epoch": 3.5030198446937013,
2872
+ "grad_norm": 2.3606009483337402,
2873
+ "learning_rate": 0.0002,
2874
+ "loss": 1.3729,
2875
+ "step": 4060
2876
+ },
2877
+ {
2878
+ "epoch": 3.5116479723899916,
2879
+ "grad_norm": 2.5735526084899902,
2880
+ "learning_rate": 0.0002,
2881
+ "loss": 1.3608,
2882
+ "step": 4070
2883
+ },
2884
+ {
2885
+ "epoch": 3.5202761000862814,
2886
+ "grad_norm": 2.7478349208831787,
2887
+ "learning_rate": 0.0002,
2888
+ "loss": 1.417,
2889
+ "step": 4080
2890
+ },
2891
+ {
2892
+ "epoch": 3.5289042277825713,
2893
+ "grad_norm": 2.5038864612579346,
2894
+ "learning_rate": 0.0002,
2895
+ "loss": 1.3551,
2896
+ "step": 4090
2897
+ },
2898
+ {
2899
+ "epoch": 3.537532355478861,
2900
+ "grad_norm": 2.8981692790985107,
2901
+ "learning_rate": 0.0002,
2902
+ "loss": 1.3656,
2903
+ "step": 4100
2904
+ },
2905
+ {
2906
+ "epoch": 3.546160483175151,
2907
+ "grad_norm": 2.4158923625946045,
2908
+ "learning_rate": 0.0002,
2909
+ "loss": 1.3517,
2910
+ "step": 4110
2911
+ },
2912
+ {
2913
+ "epoch": 3.554788610871441,
2914
+ "grad_norm": 2.8376917839050293,
2915
+ "learning_rate": 0.0002,
2916
+ "loss": 1.3701,
2917
+ "step": 4120
2918
+ },
2919
+ {
2920
+ "epoch": 3.5634167385677307,
2921
+ "grad_norm": 2.419693946838379,
2922
+ "learning_rate": 0.0002,
2923
+ "loss": 1.3902,
2924
+ "step": 4130
2925
+ },
2926
+ {
2927
+ "epoch": 3.5720448662640205,
2928
+ "grad_norm": 2.6899116039276123,
2929
+ "learning_rate": 0.0002,
2930
+ "loss": 1.3598,
2931
+ "step": 4140
2932
+ },
2933
+ {
2934
+ "epoch": 3.5806729939603104,
2935
+ "grad_norm": 2.3880856037139893,
2936
+ "learning_rate": 0.0002,
2937
+ "loss": 1.2996,
2938
+ "step": 4150
2939
+ },
2940
+ {
2941
+ "epoch": 3.5893011216566006,
2942
+ "grad_norm": 2.90229868888855,
2943
+ "learning_rate": 0.0002,
2944
+ "loss": 1.3822,
2945
+ "step": 4160
2946
+ },
2947
+ {
2948
+ "epoch": 3.5979292493528905,
2949
+ "grad_norm": 2.4554741382598877,
2950
+ "learning_rate": 0.0002,
2951
+ "loss": 1.3287,
2952
+ "step": 4170
2953
+ },
2954
+ {
2955
+ "epoch": 3.6065573770491803,
2956
+ "grad_norm": 2.473515510559082,
2957
+ "learning_rate": 0.0002,
2958
+ "loss": 1.3742,
2959
+ "step": 4180
2960
+ },
2961
+ {
2962
+ "epoch": 3.61518550474547,
2963
+ "grad_norm": 3.1744322776794434,
2964
+ "learning_rate": 0.0002,
2965
+ "loss": 1.3688,
2966
+ "step": 4190
2967
+ },
2968
+ {
2969
+ "epoch": 3.62381363244176,
2970
+ "grad_norm": 2.62101674079895,
2971
+ "learning_rate": 0.0002,
2972
+ "loss": 1.3488,
2973
+ "step": 4200
2974
+ },
2975
+ {
2976
+ "epoch": 3.6324417601380503,
2977
+ "grad_norm": 3.0989694595336914,
2978
+ "learning_rate": 0.0002,
2979
+ "loss": 1.3455,
2980
+ "step": 4210
2981
+ },
2982
+ {
2983
+ "epoch": 3.64106988783434,
2984
+ "grad_norm": 2.9838531017303467,
2985
+ "learning_rate": 0.0002,
2986
+ "loss": 1.3398,
2987
+ "step": 4220
2988
+ },
2989
+ {
2990
+ "epoch": 3.64969801553063,
2991
+ "grad_norm": 2.748436689376831,
2992
+ "learning_rate": 0.0002,
2993
+ "loss": 1.3907,
2994
+ "step": 4230
2995
+ },
2996
+ {
2997
+ "epoch": 3.65832614322692,
2998
+ "grad_norm": 2.4843106269836426,
2999
+ "learning_rate": 0.0002,
3000
+ "loss": 1.4439,
3001
+ "step": 4240
3002
+ },
3003
+ {
3004
+ "epoch": 3.6669542709232097,
3005
+ "grad_norm": 2.7401318550109863,
3006
+ "learning_rate": 0.0002,
3007
+ "loss": 1.3545,
3008
+ "step": 4250
3009
+ },
3010
+ {
3011
+ "epoch": 3.6755823986194995,
3012
+ "grad_norm": 2.7355165481567383,
3013
+ "learning_rate": 0.0002,
3014
+ "loss": 1.3654,
3015
+ "step": 4260
3016
+ },
3017
+ {
3018
+ "epoch": 3.6842105263157894,
3019
+ "grad_norm": 2.281362533569336,
3020
+ "learning_rate": 0.0002,
3021
+ "loss": 1.3341,
3022
+ "step": 4270
3023
+ },
3024
+ {
3025
+ "epoch": 3.6928386540120792,
3026
+ "grad_norm": 2.718242645263672,
3027
+ "learning_rate": 0.0002,
3028
+ "loss": 1.345,
3029
+ "step": 4280
3030
+ },
3031
+ {
3032
+ "epoch": 3.701466781708369,
3033
+ "grad_norm": 2.622870445251465,
3034
+ "learning_rate": 0.0002,
3035
+ "loss": 1.3801,
3036
+ "step": 4290
3037
+ },
3038
+ {
3039
+ "epoch": 3.710094909404659,
3040
+ "grad_norm": 3.1335484981536865,
3041
+ "learning_rate": 0.0002,
3042
+ "loss": 1.4118,
3043
+ "step": 4300
3044
+ },
3045
+ {
3046
+ "epoch": 3.718723037100949,
3047
+ "grad_norm": 2.8306872844696045,
3048
+ "learning_rate": 0.0002,
3049
+ "loss": 1.396,
3050
+ "step": 4310
3051
+ },
3052
+ {
3053
+ "epoch": 3.727351164797239,
3054
+ "grad_norm": 2.459052562713623,
3055
+ "learning_rate": 0.0002,
3056
+ "loss": 1.3227,
3057
+ "step": 4320
3058
+ },
3059
+ {
3060
+ "epoch": 3.735979292493529,
3061
+ "grad_norm": 2.5947954654693604,
3062
+ "learning_rate": 0.0002,
3063
+ "loss": 1.3956,
3064
+ "step": 4330
3065
+ },
3066
+ {
3067
+ "epoch": 3.7446074201898187,
3068
+ "grad_norm": 2.5057010650634766,
3069
+ "learning_rate": 0.0002,
3070
+ "loss": 1.3452,
3071
+ "step": 4340
3072
+ },
3073
+ {
3074
+ "epoch": 3.7532355478861086,
3075
+ "grad_norm": 2.914073944091797,
3076
+ "learning_rate": 0.0002,
3077
+ "loss": 1.3885,
3078
+ "step": 4350
3079
+ },
3080
+ {
3081
+ "epoch": 3.761863675582399,
3082
+ "grad_norm": 2.6400020122528076,
3083
+ "learning_rate": 0.0002,
3084
+ "loss": 1.3908,
3085
+ "step": 4360
3086
+ },
3087
+ {
3088
+ "epoch": 3.7704918032786887,
3089
+ "grad_norm": 2.4498777389526367,
3090
+ "learning_rate": 0.0002,
3091
+ "loss": 1.425,
3092
+ "step": 4370
3093
+ },
3094
+ {
3095
+ "epoch": 3.7791199309749786,
3096
+ "grad_norm": 2.395721673965454,
3097
+ "learning_rate": 0.0002,
3098
+ "loss": 1.3774,
3099
+ "step": 4380
3100
+ },
3101
+ {
3102
+ "epoch": 3.7877480586712684,
3103
+ "grad_norm": 2.450078248977661,
3104
+ "learning_rate": 0.0002,
3105
+ "loss": 1.4062,
3106
+ "step": 4390
3107
+ },
3108
+ {
3109
+ "epoch": 3.7963761863675582,
3110
+ "grad_norm": 2.56607985496521,
3111
+ "learning_rate": 0.0002,
3112
+ "loss": 1.4131,
3113
+ "step": 4400
3114
+ },
3115
+ {
3116
+ "epoch": 3.805004314063848,
3117
+ "grad_norm": 2.7677228450775146,
3118
+ "learning_rate": 0.0002,
3119
+ "loss": 1.398,
3120
+ "step": 4410
3121
+ },
3122
+ {
3123
+ "epoch": 3.813632441760138,
3124
+ "grad_norm": 2.3147966861724854,
3125
+ "learning_rate": 0.0002,
3126
+ "loss": 1.3271,
3127
+ "step": 4420
3128
+ },
3129
+ {
3130
+ "epoch": 3.822260569456428,
3131
+ "grad_norm": 2.526195764541626,
3132
+ "learning_rate": 0.0002,
3133
+ "loss": 1.4567,
3134
+ "step": 4430
3135
+ },
3136
+ {
3137
+ "epoch": 3.8308886971527176,
3138
+ "grad_norm": 2.689009666442871,
3139
+ "learning_rate": 0.0002,
3140
+ "loss": 1.3538,
3141
+ "step": 4440
3142
+ },
3143
+ {
3144
+ "epoch": 3.839516824849008,
3145
+ "grad_norm": 2.7414004802703857,
3146
+ "learning_rate": 0.0002,
3147
+ "loss": 1.3873,
3148
+ "step": 4450
3149
+ },
3150
+ {
3151
+ "epoch": 3.8481449525452978,
3152
+ "grad_norm": 2.402777910232544,
3153
+ "learning_rate": 0.0002,
3154
+ "loss": 1.3735,
3155
+ "step": 4460
3156
+ },
3157
+ {
3158
+ "epoch": 3.8567730802415876,
3159
+ "grad_norm": 2.724787950515747,
3160
+ "learning_rate": 0.0002,
3161
+ "loss": 1.424,
3162
+ "step": 4470
3163
+ },
3164
+ {
3165
+ "epoch": 3.8654012079378774,
3166
+ "grad_norm": 2.671051025390625,
3167
+ "learning_rate": 0.0002,
3168
+ "loss": 1.365,
3169
+ "step": 4480
3170
+ },
3171
+ {
3172
+ "epoch": 3.8740293356341673,
3173
+ "grad_norm": 2.3963396549224854,
3174
+ "learning_rate": 0.0002,
3175
+ "loss": 1.411,
3176
+ "step": 4490
3177
+ },
3178
+ {
3179
+ "epoch": 3.882657463330457,
3180
+ "grad_norm": 2.740722894668579,
3181
+ "learning_rate": 0.0002,
3182
+ "loss": 1.4021,
3183
+ "step": 4500
3184
+ },
3185
+ {
3186
+ "epoch": 3.8912855910267474,
3187
+ "grad_norm": 2.6354315280914307,
3188
+ "learning_rate": 0.0002,
3189
+ "loss": 1.3137,
3190
+ "step": 4510
3191
+ },
3192
+ {
3193
+ "epoch": 3.8999137187230373,
3194
+ "grad_norm": 3.3707101345062256,
3195
+ "learning_rate": 0.0002,
3196
+ "loss": 1.3835,
3197
+ "step": 4520
3198
+ },
3199
+ {
3200
+ "epoch": 3.908541846419327,
3201
+ "grad_norm": 2.7361974716186523,
3202
+ "learning_rate": 0.0002,
3203
+ "loss": 1.4361,
3204
+ "step": 4530
3205
+ },
3206
+ {
3207
+ "epoch": 3.917169974115617,
3208
+ "grad_norm": 3.0370259284973145,
3209
+ "learning_rate": 0.0002,
3210
+ "loss": 1.371,
3211
+ "step": 4540
3212
+ },
3213
+ {
3214
+ "epoch": 3.925798101811907,
3215
+ "grad_norm": 2.3987460136413574,
3216
+ "learning_rate": 0.0002,
3217
+ "loss": 1.3733,
3218
+ "step": 4550
3219
+ },
3220
+ {
3221
+ "epoch": 3.9344262295081966,
3222
+ "grad_norm": 2.7995121479034424,
3223
+ "learning_rate": 0.0002,
3224
+ "loss": 1.4056,
3225
+ "step": 4560
3226
+ },
3227
+ {
3228
+ "epoch": 3.9430543572044865,
3229
+ "grad_norm": 2.5444767475128174,
3230
+ "learning_rate": 0.0002,
3231
+ "loss": 1.3746,
3232
+ "step": 4570
3233
+ },
3234
+ {
3235
+ "epoch": 3.9516824849007763,
3236
+ "grad_norm": 2.4560024738311768,
3237
+ "learning_rate": 0.0002,
3238
+ "loss": 1.4665,
3239
+ "step": 4580
3240
+ },
3241
+ {
3242
+ "epoch": 3.960310612597066,
3243
+ "grad_norm": 2.787332057952881,
3244
+ "learning_rate": 0.0002,
3245
+ "loss": 1.4489,
3246
+ "step": 4590
3247
+ },
3248
+ {
3249
+ "epoch": 3.9689387402933565,
3250
+ "grad_norm": 2.4420697689056396,
3251
+ "learning_rate": 0.0002,
3252
+ "loss": 1.3774,
3253
+ "step": 4600
3254
+ },
3255
+ {
3256
+ "epoch": 3.9775668679896463,
3257
+ "grad_norm": 2.5259456634521484,
3258
+ "learning_rate": 0.0002,
3259
+ "loss": 1.3966,
3260
+ "step": 4610
3261
+ },
3262
+ {
3263
+ "epoch": 3.986194995685936,
3264
+ "grad_norm": 2.5357017517089844,
3265
+ "learning_rate": 0.0002,
3266
+ "loss": 1.4216,
3267
+ "step": 4620
3268
+ },
3269
+ {
3270
+ "epoch": 3.994823123382226,
3271
+ "grad_norm": 51.29335403442383,
3272
+ "learning_rate": 0.0002,
3273
+ "loss": 1.416,
3274
+ "step": 4630
3275
+ },
3276
+ {
3277
+ "epoch": 4.0,
3278
+ "eval_loss": 1.9125109910964966,
3279
+ "eval_runtime": 151.0067,
3280
+ "eval_samples_per_second": 3.53,
3281
+ "eval_steps_per_second": 0.444,
3282
+ "step": 4636
3283
+ }
3284
+ ],
3285
+ "logging_steps": 10,
3286
+ "max_steps": 9272,
3287
+ "num_input_tokens_seen": 0,
3288
+ "num_train_epochs": 8,
3289
+ "save_steps": 200,
3290
+ "stateful_callbacks": {
3291
+ "TrainerControl": {
3292
+ "args": {
3293
+ "should_epoch_stop": false,
3294
+ "should_evaluate": false,
3295
+ "should_log": false,
3296
+ "should_save": true,
3297
+ "should_training_stop": false
3298
+ },
3299
+ "attributes": {}
3300
+ }
3301
+ },
3302
+ "total_flos": 2.034032330145792e+17,
3303
+ "train_batch_size": 1,
3304
+ "trial_name": null,
3305
+ "trial_params": null
3306
+ }