MikhailKuz
commited on
Commit
•
47ed2ec
1
Parent(s):
387f129
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-nc-sa-4.0
|
4 |
+
base_model: microsoft/layoutlmv2-base-uncased
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: tmp
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# tmp
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 5.1124
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
+
- train_batch_size: 4
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 20
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-------:|:----:|:---------------:|
|
50 |
+
| 5.2734 | 0.2212 | 50 | 4.4270 |
|
51 |
+
| 4.3976 | 0.4425 | 100 | 4.0382 |
|
52 |
+
| 4.0042 | 0.6637 | 150 | 3.8146 |
|
53 |
+
| 3.7912 | 0.8850 | 200 | 3.5961 |
|
54 |
+
| 3.4488 | 1.1062 | 250 | 3.7510 |
|
55 |
+
| 3.1503 | 1.3274 | 300 | 3.1755 |
|
56 |
+
| 3.1023 | 1.5487 | 350 | 2.8744 |
|
57 |
+
| 2.7424 | 1.7699 | 400 | 2.7684 |
|
58 |
+
| 2.3707 | 1.9912 | 450 | 2.7751 |
|
59 |
+
| 2.0726 | 2.2124 | 500 | 2.8069 |
|
60 |
+
| 1.7808 | 2.4336 | 550 | 2.4706 |
|
61 |
+
| 1.9086 | 2.6549 | 600 | 2.3128 |
|
62 |
+
| 1.8711 | 2.8761 | 650 | 2.2711 |
|
63 |
+
| 1.5378 | 3.0973 | 700 | 2.7780 |
|
64 |
+
| 1.4234 | 3.3186 | 750 | 2.3195 |
|
65 |
+
| 1.3624 | 3.5398 | 800 | 2.8083 |
|
66 |
+
| 1.5029 | 3.7611 | 850 | 2.3164 |
|
67 |
+
| 1.4002 | 3.9823 | 900 | 2.2043 |
|
68 |
+
| 0.993 | 4.2035 | 950 | 2.3923 |
|
69 |
+
| 1.1307 | 4.4248 | 1000 | 2.6620 |
|
70 |
+
| 1.0207 | 4.6460 | 1050 | 3.0029 |
|
71 |
+
| 0.9392 | 4.8673 | 1100 | 2.7303 |
|
72 |
+
| 0.8404 | 5.0885 | 1150 | 2.9590 |
|
73 |
+
| 0.7301 | 5.3097 | 1200 | 3.0281 |
|
74 |
+
| 0.723 | 5.5310 | 1250 | 2.8981 |
|
75 |
+
| 0.5396 | 5.7522 | 1300 | 3.2900 |
|
76 |
+
| 0.8811 | 5.9735 | 1350 | 2.8048 |
|
77 |
+
| 0.5488 | 6.1947 | 1400 | 3.0010 |
|
78 |
+
| 0.5603 | 6.4159 | 1450 | 3.3632 |
|
79 |
+
| 0.6611 | 6.6372 | 1500 | 3.1133 |
|
80 |
+
| 0.589 | 6.8584 | 1550 | 2.9019 |
|
81 |
+
| 0.5597 | 7.0796 | 1600 | 3.5935 |
|
82 |
+
| 0.2414 | 7.3009 | 1650 | 3.6715 |
|
83 |
+
| 0.5152 | 7.5221 | 1700 | 3.3859 |
|
84 |
+
| 0.3482 | 7.7434 | 1750 | 3.4798 |
|
85 |
+
| 0.4217 | 7.9646 | 1800 | 3.6040 |
|
86 |
+
| 0.3183 | 8.1858 | 1850 | 3.9913 |
|
87 |
+
| 0.1838 | 8.4071 | 1900 | 4.0946 |
|
88 |
+
| 0.2845 | 8.6283 | 1950 | 3.8923 |
|
89 |
+
| 0.3402 | 8.8496 | 2000 | 3.6999 |
|
90 |
+
| 0.3264 | 9.0708 | 2050 | 3.7774 |
|
91 |
+
| 0.205 | 9.2920 | 2100 | 3.9310 |
|
92 |
+
| 0.2841 | 9.5133 | 2150 | 4.1358 |
|
93 |
+
| 0.4066 | 9.7345 | 2200 | 3.8157 |
|
94 |
+
| 0.2587 | 9.9558 | 2250 | 3.8218 |
|
95 |
+
| 0.3097 | 10.1770 | 2300 | 3.3976 |
|
96 |
+
| 0.1278 | 10.3982 | 2350 | 3.8840 |
|
97 |
+
| 0.2826 | 10.6195 | 2400 | 4.1218 |
|
98 |
+
| 0.3355 | 10.8407 | 2450 | 4.1840 |
|
99 |
+
| 0.0822 | 11.0619 | 2500 | 4.3269 |
|
100 |
+
| 0.0617 | 11.2832 | 2550 | 4.2505 |
|
101 |
+
| 0.2015 | 11.5044 | 2600 | 4.3315 |
|
102 |
+
| 0.1249 | 11.7257 | 2650 | 4.3413 |
|
103 |
+
| 0.118 | 11.9469 | 2700 | 4.4579 |
|
104 |
+
| 0.1772 | 12.1681 | 2750 | 4.2534 |
|
105 |
+
| 0.0556 | 12.3894 | 2800 | 4.4677 |
|
106 |
+
| 0.1161 | 12.6106 | 2850 | 4.3609 |
|
107 |
+
| 0.13 | 12.8319 | 2900 | 4.2524 |
|
108 |
+
| 0.1565 | 13.0531 | 2950 | 4.1582 |
|
109 |
+
| 0.1165 | 13.2743 | 3000 | 4.5896 |
|
110 |
+
| 0.0341 | 13.4956 | 3050 | 4.7110 |
|
111 |
+
| 0.0532 | 13.7168 | 3100 | 4.6562 |
|
112 |
+
| 0.1283 | 13.9381 | 3150 | 4.8117 |
|
113 |
+
| 0.0744 | 14.1593 | 3200 | 4.6408 |
|
114 |
+
| 0.0289 | 14.3805 | 3250 | 4.8391 |
|
115 |
+
| 0.0293 | 14.6018 | 3300 | 4.9042 |
|
116 |
+
| 0.1226 | 14.8230 | 3350 | 4.8181 |
|
117 |
+
| 0.0453 | 15.0442 | 3400 | 4.8071 |
|
118 |
+
| 0.0229 | 15.2655 | 3450 | 4.8802 |
|
119 |
+
| 0.0077 | 15.4867 | 3500 | 4.8759 |
|
120 |
+
| 0.0439 | 15.7080 | 3550 | 4.9694 |
|
121 |
+
| 0.0754 | 15.9292 | 3600 | 4.9196 |
|
122 |
+
| 0.0608 | 16.1504 | 3650 | 4.7920 |
|
123 |
+
| 0.0292 | 16.3717 | 3700 | 4.9271 |
|
124 |
+
| 0.0059 | 16.5929 | 3750 | 4.9988 |
|
125 |
+
| 0.0286 | 16.8142 | 3800 | 4.9258 |
|
126 |
+
| 0.0047 | 17.0354 | 3850 | 4.9470 |
|
127 |
+
| 0.0231 | 17.2566 | 3900 | 4.9583 |
|
128 |
+
| 0.0254 | 17.4779 | 3950 | 4.9438 |
|
129 |
+
| 0.023 | 17.6991 | 4000 | 4.9529 |
|
130 |
+
| 0.016 | 17.9204 | 4050 | 5.0210 |
|
131 |
+
| 0.0039 | 18.1416 | 4100 | 5.0263 |
|
132 |
+
| 0.0039 | 18.3628 | 4150 | 5.0436 |
|
133 |
+
| 0.0103 | 18.5841 | 4200 | 5.0655 |
|
134 |
+
| 0.0084 | 18.8053 | 4250 | 5.0971 |
|
135 |
+
| 0.0681 | 19.0265 | 4300 | 5.0795 |
|
136 |
+
| 0.0157 | 19.2478 | 4350 | 5.0929 |
|
137 |
+
| 0.0039 | 19.4690 | 4400 | 5.1009 |
|
138 |
+
| 0.0089 | 19.6903 | 4450 | 5.1096 |
|
139 |
+
| 0.0086 | 19.9115 | 4500 | 5.1124 |
|
140 |
+
|
141 |
+
|
142 |
+
### Framework versions
|
143 |
+
|
144 |
+
- Transformers 4.44.2
|
145 |
+
- Pytorch 2.5.0+cu121
|
146 |
+
- Datasets 3.1.0
|
147 |
+
- Tokenizers 0.19.1
|