Mihara-bot
commited on
Commit
·
14d8d71
1
Parent(s):
2c570e6
Upload PPO-LunarLander-v2 trained agent.
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 256.67 +/- 15.02
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff5656abdc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff5656abe50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff5656abee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff5656abf70>", "_build": "<function ActorCriticPolicy._build at 0x7ff5656af040>", "forward": "<function ActorCriticPolicy.forward at 0x7ff5656af0d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff5656af160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff5656af1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff5656af280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff5656af310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff5656af3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff5656af430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff5656b04c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680331361261196029, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM1OtDwXKOE+bQ1XvTAueL40gcC7gggdvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXrwft9/ccUCUhpRSlIwBbJRNfgGMAXSUR0CjsOuc+aBqdX2UKGgGaAloD0MI5nYv98kfa0CUhpRSlGgVTWcBaBZHQKOygifxtpF1fZQoaAZoCWgPQwheS8gHPYhrQJSGlFKUaBVNWQFoFkdAo7QtxyXD33V9lChoBmgJaA9DCKDGvfmNa3BAlIaUUpRoFU1gAWgWR0CjtjOtW+49dX2UKGgGaAloD0MIq8spATF7cUCUhpRSlGgVTaUBaBZHQKO3aJWNm191fZQoaAZoCWgPQwhW0/VEF+JwQJSGlFKUaBVNgwFoFkdAo7iLLjghr3V9lChoBmgJaA9DCCFZwATuuGhAlIaUUpRoFU1tAWgWR0CjugIJRfnfdX2UKGgGaAloD0MIjSjtDb45bkCUhpRSlGgVTVYBaBZHQKO67TTfBN51fZQoaAZoCWgPQwgjvD0IAfhxQJSGlFKUaBVNZgFoFkdAo7vbpkf9xnV9lChoBmgJaA9DCMB3mzfORm1AlIaUUpRoFU1WAWgWR0CjvWkcS5AhdX2UKGgGaAloD0MIEodsIF1TbUCUhpRSlGgVTaoBaBZHQKO+0uctoSN1fZQoaAZoCWgPQwh9JCU9DDdrQJSGlFKUaBVNagFoFkdAo8CBgb6xgXV9lChoBmgJaA9DCEjdzr6yVnBAlIaUUpRoFU1HAWgWR0CjwWw+t8u0dX2UKGgGaAloD0MIkNlZ9M5/bkCUhpRSlGgVTXoBaBZHQKPCqZaV2Rt1fZQoaAZoCWgPQwjwiuB/K15uQJSGlFKUaBVNbAFoFkdAo8QlCw8nu3V9lChoBmgJaA9DCC6RC86gDXBAlIaUUpRoFU02AWgWR0CjxQSYXwb3dX2UKGgGaAloD0MIFW9kHjnEcECUhpRSlGgVTUEBaBZHQKPF0kona391fZQoaAZoCWgPQwinsijsIs9xQJSGlFKUaBVNbgFoFkdAo8dQ5xR2sHV9lChoBmgJaA9DCGNeRxwyYmtAlIaUUpRoFU1GAWgWR0CjyD4zi0fHdX2UKGgGaAloD0MIkGtDxThhRkCUhpRSlGgVTRoBaBZHQKPI9v5P/Jh1fZQoaAZoCWgPQwjXicvxipFwQJSGlFKUaBVNRQFoFkdAo8m/Ue+23XV9lChoBmgJaA9DCLHCLR8JZ3BAlIaUUpRoFU1JAWgWR0Cjy8WgOBlMdX2UKGgGaAloD0MIZ9E7FXAvEUCUhpRSlGgVTQ8BaBZHQKPMq39aUzN1fZQoaAZoCWgPQwg+6q9XWMBLQJSGlFKUaBVNNQFoFkdAo83LtiQT23V9lChoBmgJaA9DCMKjjSNW3G1AlIaUUpRoFU03AWgWR0Cjz/DsD4gzdX2UKGgGaAloD0MIqBso8E5cbkCUhpRSlGgVTU0BaBZHQKPRVSS/0ul1fZQoaAZoCWgPQwh8e9egL75uQJSGlFKUaBVNtQFoFkdAo9NfWpZOi3V9lChoBmgJaA9DCNVcbjDUhU9AlIaUUpRoFUvpaBZHQKPUcCcPOIJ1fZQoaAZoCWgPQwjdmnRbooZwQJSGlFKUaBVNYQFoFkdAo9VboSteU3V9lChoBmgJaA9DCNhJfVkaj3BAlIaUUpRoFU0pAWgWR0Cj1ge4TbnHdX2UKGgGaAloD0MIDVGFP0NHb0CUhpRSlGgVTYcBaBZHQKPXqCwr1/V1fZQoaAZoCWgPQwjxaOOINdJvQJSGlFKUaBVNXwFoFkdAo9iYuyu6mXV9lChoBmgJaA9DCGRZMPFHg2FAlIaUUpRoFU3oA2gWR0Cj3XHS4OMEdX2UKGgGaAloD0MIcOtunmpVcUCUhpRSlGgVTU8BaBZHQKPeSyzolld1fZQoaAZoCWgPQwhNLsbAuk5sQJSGlFKUaBVNXwFoFkdAo9/McCHRC3V9lChoBmgJaA9DCK+w4H5AqG5AlIaUUpRoFU2dAWgWR0Cj4O2mHgxbdX2UKGgGaAloD0MI+WhxxnD1cECUhpRSlGgVTYgBaBZHQKPiH/lQuVZ1fZQoaAZoCWgPQwh+iuPAK0xwQJSGlFKUaBVNKgFoFkdAo+OItJ4B3nV9lChoBmgJaA9DCAtdiUA1h3FAlIaUUpRoFU08AWgWR0Cj5ErORkmQdX2UKGgGaAloD0MIHeVgNgFzcECUhpRSlGgVTVUBaBZHQKPlGxu89Oh1fZQoaAZoCWgPQwhS1QRR909tQJSGlFKUaBVNUAFoFkdAo+abY9Pk73V9lChoBmgJaA9DCNYCe0ykEG5AlIaUUpRoFU06AWgWR0Cj56Hzg/C7dX2UKGgGaAloD0MIwjHLngT6bUCUhpRSlGgVTXUBaBZHQKPpGL61stV1fZQoaAZoCWgPQwiQ2Vn0DtVwQJSGlFKUaBVNQwFoFkdAo+sfIlt0m3V9lChoBmgJaA9DCFnfwORGSTJAlIaUUpRoFUv1aBZHQKPsGLThHb11fZQoaAZoCWgPQwhnmNpSB2VHQJSGlFKUaBVNKAFoFkdAo+0tX5nDi3V9lChoBmgJaA9DCAr2X+dm6XBAlIaUUpRoFU14AWgWR0Cj75D15B1LdX2UKGgGaAloD0MIOKPmq6QIcECUhpRSlGgVTUoBaBZHQKPww4YJmd11fZQoaAZoCWgPQwip+pXOh7huQJSGlFKUaBVNdAFoFkdAo/HV5Sm65HV9lChoBmgJaA9DCOcBLPLrV01AlIaUUpRoFUvvaBZHQKPy7v3JxNt1fZQoaAZoCWgPQwjM7zSZcf5uQJSGlFKUaBVNPwFoFkdAo/Pp7VrhznV9lChoBmgJaA9DCC9RvTUwKXBAlIaUUpRoFU00AWgWR0Cj9Kj8DSw4dX2UKGgGaAloD0MIY2TJHEtkcECUhpRSlGgVTVsBaBZHQKP1iAJb+tN1fZQoaAZoCWgPQwhrDDohdE5vQJSGlFKUaBVNUQFoFkdAo/cIkcCHRHV9lChoBmgJaA9DCLsNar+1a3BAlIaUUpRoFU3LAWgWR0Cj+IJVCHARdX2UKGgGaAloD0MI7x6g+3LgSECUhpRSlGgVS+RoFkdAo/kM+qzZ6HV9lChoBmgJaA9DCHR7SWO06W1AlIaUUpRoFU0/AWgWR0Cj+nGKAJ9idX2UKGgGaAloD0MIi90+q8yeYUCUhpRSlGgVTegDaBZHQKP+3WJ79ht1fZQoaAZoCWgPQwi8zob8MytxQJSGlFKUaBVNOgFoFkdAo/+nXbuc+nV9lChoBmgJaA9DCLJkjuXdFG9AlIaUUpRoFU1JAWgWR0CkAHMrd30PdX2UKGgGaAloD0MIgbG+gcnNJUCUhpRSlGgVS/5oFkdApAGW3F1jiHV9lChoBmgJaA9DCP1s5LopEUtAlIaUUpRoFUv+aBZHQKQCMqqfe1t1fZQoaAZoCWgPQwgOFHgnX+xxQJSGlFKUaBVNpgFoFkdApANETlDF63V9lChoBmgJaA9DCFfPSe+bX3BAlIaUUpRoFU1JAWgWR0CkBL3ZoPCmdX2UKGgGaAloD0MI9KPhlLn/bkCUhpRSlGgVTVYBaBZHQKQGC8eS0Sh1fZQoaAZoCWgPQwicps8OOOdtQJSGlFKUaBVNMAFoFkdApAceSOinHnV9lChoBmgJaA9DCIYgByXMkm9AlIaUUpRoFU0oAWgWR0CkCTVJL/S6dX2UKGgGaAloD0MIGF3eHC7cbkCUhpRSlGgVTWcBaBZHQKQK2hK15Sp1fZQoaAZoCWgPQwiuuaP/JTxwQJSGlFKUaBVNSgFoFkdApAwnEhq0t3V9lChoBmgJaA9DCNkJL8Ep225AlIaUUpRoFU1IAWgWR0CkDkIFmnO0dX2UKGgGaAloD0MIrfiGwmfPMECUhpRSlGgVS+BoFkdApA7RywOe8XV9lChoBmgJaA9DCGmn5nKDR0FAlIaUUpRoFU0CAWgWR0CkD2c4o7V8dX2UKGgGaAloD0MI3BK54AxUbECUhpRSlGgVTU8BaBZHQKQQSwr1/Uh1fZQoaAZoCWgPQwihMCjT6BtyQJSGlFKUaBVNXwFoFkdApBGyHymQ83V9lChoBmgJaA9DCEoNbQC2iHBAlIaUUpRoFU1IAWgWR0CkEqoatLcsdX2UKGgGaAloD0MIIy4AjdJ+bkCUhpRSlGgVTREBaBZHQKQTYQOnVG11fZQoaAZoCWgPQwj9LQH4JxNxQJSGlFKUaBVNegFoFkdApBTovvjOs3V9lChoBmgJaA9DCIyfxr15XW5AlIaUUpRoFU0zAWgWR0CkFb3W4EwGdX2UKGgGaAloD0MI/MitSbeXb0CUhpRSlGgVTSkBaBZHQKQWkl7+kxh1fZQoaAZoCWgPQwgPgSOBhl5rQJSGlFKUaBVNcwFoFkdApBhPGGVRk3V9lChoBmgJaA9DCBMNUvDUiXFAlIaUUpRoFU1DAWgWR0CkGRq6FuejdX2UKGgGaAloD0MIjUP9LmxfckCUhpRSlGgVTUsBaBZHQKQZ5XHzYmN1fZQoaAZoCWgPQwjhC5OpAuhsQJSGlFKUaBVNMwFoFkdApBtBGWldknV9lChoBmgJaA9DCEchyaweMXBAlIaUUpRoFU06AWgWR0CkHACsOoYOdX2UKGgGaAloD0MIZTkJpS9wY0CUhpRSlGgVTegDaBZHQKQfyDFId2h1fZQoaAZoCWgPQwiaJJaUu3lJQJSGlFKUaBVL6mgWR0CkIGHCO3lTdX2UKGgGaAloD0MI98jmqvnwcECUhpRSlGgVTWwBaBZHQKQhhJWeYlZ1fZQoaAZoCWgPQwhc/67PHDJxQJSGlFKUaBVNkAFoFkdApCPDn5i3HHV9lChoBmgJaA9DCA8PYfx0YnBAlIaUUpRoFU0uAWgWR0CkJNN+LFXJdX2UKGgGaAloD0MIAptz8EyMcECUhpRSlGgVTT4BaBZHQKQmEiO/+Kl1fZQoaAZoCWgPQwhM4qyIGphxQJSGlFKUaBVNNwFoFkdApChDzK9wm3V9lChoBmgJaA9DCPoNEw2SZXFAlIaUUpRoFU2gAWgWR0CkKiif6Gg0dX2UKGgGaAloD0MIzOuIQzbsb0CUhpRSlGgVTV4BaBZHQKQrnj+aScN1fZQoaAZoCWgPQwh4mzdOCrBrQJSGlFKUaBVNNwFoFkdApCz9HOKO1nV9lChoBmgJaA9DCNP1RNeFInFAlIaUUpRoFU1EAWgWR0CkLenuAqd6dX2UKGgGaAloD0MI0HzO3S4DcUCUhpRSlGgVTT8BaBZHQKQuuzkZJkJ1fZQoaAZoCWgPQwih9fBlorFtQJSGlFKUaBVNVwFoFkdApDBRHXmNi3V9lChoBmgJaA9DCAMHtHQF9WtAlIaUUpRoFU1NAWgWR0CkMUzRIBikdX2UKGgGaAloD0MI8rVnlgSpYECUhpRSlGgVTegDaBZHQKQ1JS8an751fZQoaAZoCWgPQwiOW8zPDd1rQJSGlFKUaBVNVwFoFkdApDYQacZtN3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4104, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57d864a422c25d5e238fb6045264196a1d3a97c89707ef61bfd2e042bfbdb87b
|
3 |
+
size 146252
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff5656abdc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff5656abe50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff5656abee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff5656abf70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff5656af040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff5656af0d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff5656af160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff5656af1f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff5656af280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff5656af310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff5656af3a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff5656af430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff5656b04c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 1000448,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1680331361261196029,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM1OtDwXKOE+bQ1XvTAueL40gcC7gggdvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXrwft9/ccUCUhpRSlIwBbJRNfgGMAXSUR0CjsOuc+aBqdX2UKGgGaAloD0MI5nYv98kfa0CUhpRSlGgVTWcBaBZHQKOygifxtpF1fZQoaAZoCWgPQwheS8gHPYhrQJSGlFKUaBVNWQFoFkdAo7QtxyXD33V9lChoBmgJaA9DCKDGvfmNa3BAlIaUUpRoFU1gAWgWR0CjtjOtW+49dX2UKGgGaAloD0MIq8spATF7cUCUhpRSlGgVTaUBaBZHQKO3aJWNm191fZQoaAZoCWgPQwhW0/VEF+JwQJSGlFKUaBVNgwFoFkdAo7iLLjghr3V9lChoBmgJaA9DCCFZwATuuGhAlIaUUpRoFU1tAWgWR0CjugIJRfnfdX2UKGgGaAloD0MIjSjtDb45bkCUhpRSlGgVTVYBaBZHQKO67TTfBN51fZQoaAZoCWgPQwgjvD0IAfhxQJSGlFKUaBVNZgFoFkdAo7vbpkf9xnV9lChoBmgJaA9DCMB3mzfORm1AlIaUUpRoFU1WAWgWR0CjvWkcS5AhdX2UKGgGaAloD0MIEodsIF1TbUCUhpRSlGgVTaoBaBZHQKO+0uctoSN1fZQoaAZoCWgPQwh9JCU9DDdrQJSGlFKUaBVNagFoFkdAo8CBgb6xgXV9lChoBmgJaA9DCEjdzr6yVnBAlIaUUpRoFU1HAWgWR0CjwWw+t8u0dX2UKGgGaAloD0MIkNlZ9M5/bkCUhpRSlGgVTXoBaBZHQKPCqZaV2Rt1fZQoaAZoCWgPQwjwiuB/K15uQJSGlFKUaBVNbAFoFkdAo8QlCw8nu3V9lChoBmgJaA9DCC6RC86gDXBAlIaUUpRoFU02AWgWR0CjxQSYXwb3dX2UKGgGaAloD0MIFW9kHjnEcECUhpRSlGgVTUEBaBZHQKPF0kona391fZQoaAZoCWgPQwinsijsIs9xQJSGlFKUaBVNbgFoFkdAo8dQ5xR2sHV9lChoBmgJaA9DCGNeRxwyYmtAlIaUUpRoFU1GAWgWR0CjyD4zi0fHdX2UKGgGaAloD0MIkGtDxThhRkCUhpRSlGgVTRoBaBZHQKPI9v5P/Jh1fZQoaAZoCWgPQwjXicvxipFwQJSGlFKUaBVNRQFoFkdAo8m/Ue+23XV9lChoBmgJaA9DCLHCLR8JZ3BAlIaUUpRoFU1JAWgWR0Cjy8WgOBlMdX2UKGgGaAloD0MIZ9E7FXAvEUCUhpRSlGgVTQ8BaBZHQKPMq39aUzN1fZQoaAZoCWgPQwg+6q9XWMBLQJSGlFKUaBVNNQFoFkdAo83LtiQT23V9lChoBmgJaA9DCMKjjSNW3G1AlIaUUpRoFU03AWgWR0Cjz/DsD4gzdX2UKGgGaAloD0MIqBso8E5cbkCUhpRSlGgVTU0BaBZHQKPRVSS/0ul1fZQoaAZoCWgPQwh8e9egL75uQJSGlFKUaBVNtQFoFkdAo9NfWpZOi3V9lChoBmgJaA9DCNVcbjDUhU9AlIaUUpRoFUvpaBZHQKPUcCcPOIJ1fZQoaAZoCWgPQwjdmnRbooZwQJSGlFKUaBVNYQFoFkdAo9VboSteU3V9lChoBmgJaA9DCNhJfVkaj3BAlIaUUpRoFU0pAWgWR0Cj1ge4TbnHdX2UKGgGaAloD0MIDVGFP0NHb0CUhpRSlGgVTYcBaBZHQKPXqCwr1/V1fZQoaAZoCWgPQwjxaOOINdJvQJSGlFKUaBVNXwFoFkdAo9iYuyu6mXV9lChoBmgJaA9DCGRZMPFHg2FAlIaUUpRoFU3oA2gWR0Cj3XHS4OMEdX2UKGgGaAloD0MIcOtunmpVcUCUhpRSlGgVTU8BaBZHQKPeSyzolld1fZQoaAZoCWgPQwhNLsbAuk5sQJSGlFKUaBVNXwFoFkdAo9/McCHRC3V9lChoBmgJaA9DCK+w4H5AqG5AlIaUUpRoFU2dAWgWR0Cj4O2mHgxbdX2UKGgGaAloD0MI+WhxxnD1cECUhpRSlGgVTYgBaBZHQKPiH/lQuVZ1fZQoaAZoCWgPQwh+iuPAK0xwQJSGlFKUaBVNKgFoFkdAo+OItJ4B3nV9lChoBmgJaA9DCAtdiUA1h3FAlIaUUpRoFU08AWgWR0Cj5ErORkmQdX2UKGgGaAloD0MIHeVgNgFzcECUhpRSlGgVTVUBaBZHQKPlGxu89Oh1fZQoaAZoCWgPQwhS1QRR909tQJSGlFKUaBVNUAFoFkdAo+abY9Pk73V9lChoBmgJaA9DCNYCe0ykEG5AlIaUUpRoFU06AWgWR0Cj56Hzg/C7dX2UKGgGaAloD0MIwjHLngT6bUCUhpRSlGgVTXUBaBZHQKPpGL61stV1fZQoaAZoCWgPQwiQ2Vn0DtVwQJSGlFKUaBVNQwFoFkdAo+sfIlt0m3V9lChoBmgJaA9DCFnfwORGSTJAlIaUUpRoFUv1aBZHQKPsGLThHb11fZQoaAZoCWgPQwhnmNpSB2VHQJSGlFKUaBVNKAFoFkdAo+0tX5nDi3V9lChoBmgJaA9DCAr2X+dm6XBAlIaUUpRoFU14AWgWR0Cj75D15B1LdX2UKGgGaAloD0MIOKPmq6QIcECUhpRSlGgVTUoBaBZHQKPww4YJmd11fZQoaAZoCWgPQwip+pXOh7huQJSGlFKUaBVNdAFoFkdAo/HV5Sm65HV9lChoBmgJaA9DCOcBLPLrV01AlIaUUpRoFUvvaBZHQKPy7v3JxNt1fZQoaAZoCWgPQwjM7zSZcf5uQJSGlFKUaBVNPwFoFkdAo/Pp7VrhznV9lChoBmgJaA9DCC9RvTUwKXBAlIaUUpRoFU00AWgWR0Cj9Kj8DSw4dX2UKGgGaAloD0MIY2TJHEtkcECUhpRSlGgVTVsBaBZHQKP1iAJb+tN1fZQoaAZoCWgPQwhrDDohdE5vQJSGlFKUaBVNUQFoFkdAo/cIkcCHRHV9lChoBmgJaA9DCLsNar+1a3BAlIaUUpRoFU3LAWgWR0Cj+IJVCHARdX2UKGgGaAloD0MI7x6g+3LgSECUhpRSlGgVS+RoFkdAo/kM+qzZ6HV9lChoBmgJaA9DCHR7SWO06W1AlIaUUpRoFU0/AWgWR0Cj+nGKAJ9idX2UKGgGaAloD0MIi90+q8yeYUCUhpRSlGgVTegDaBZHQKP+3WJ79ht1fZQoaAZoCWgPQwi8zob8MytxQJSGlFKUaBVNOgFoFkdAo/+nXbuc+nV9lChoBmgJaA9DCLJkjuXdFG9AlIaUUpRoFU1JAWgWR0CkAHMrd30PdX2UKGgGaAloD0MIgbG+gcnNJUCUhpRSlGgVS/5oFkdApAGW3F1jiHV9lChoBmgJaA9DCP1s5LopEUtAlIaUUpRoFUv+aBZHQKQCMqqfe1t1fZQoaAZoCWgPQwgOFHgnX+xxQJSGlFKUaBVNpgFoFkdApANETlDF63V9lChoBmgJaA9DCFfPSe+bX3BAlIaUUpRoFU1JAWgWR0CkBL3ZoPCmdX2UKGgGaAloD0MI9KPhlLn/bkCUhpRSlGgVTVYBaBZHQKQGC8eS0Sh1fZQoaAZoCWgPQwicps8OOOdtQJSGlFKUaBVNMAFoFkdApAceSOinHnV9lChoBmgJaA9DCIYgByXMkm9AlIaUUpRoFU0oAWgWR0CkCTVJL/S6dX2UKGgGaAloD0MIGF3eHC7cbkCUhpRSlGgVTWcBaBZHQKQK2hK15Sp1fZQoaAZoCWgPQwiuuaP/JTxwQJSGlFKUaBVNSgFoFkdApAwnEhq0t3V9lChoBmgJaA9DCNkJL8Ep225AlIaUUpRoFU1IAWgWR0CkDkIFmnO0dX2UKGgGaAloD0MIrfiGwmfPMECUhpRSlGgVS+BoFkdApA7RywOe8XV9lChoBmgJaA9DCGmn5nKDR0FAlIaUUpRoFU0CAWgWR0CkD2c4o7V8dX2UKGgGaAloD0MI3BK54AxUbECUhpRSlGgVTU8BaBZHQKQQSwr1/Uh1fZQoaAZoCWgPQwihMCjT6BtyQJSGlFKUaBVNXwFoFkdApBGyHymQ83V9lChoBmgJaA9DCEoNbQC2iHBAlIaUUpRoFU1IAWgWR0CkEqoatLcsdX2UKGgGaAloD0MIIy4AjdJ+bkCUhpRSlGgVTREBaBZHQKQTYQOnVG11fZQoaAZoCWgPQwj9LQH4JxNxQJSGlFKUaBVNegFoFkdApBTovvjOs3V9lChoBmgJaA9DCIyfxr15XW5AlIaUUpRoFU0zAWgWR0CkFb3W4EwGdX2UKGgGaAloD0MI/MitSbeXb0CUhpRSlGgVTSkBaBZHQKQWkl7+kxh1fZQoaAZoCWgPQwgPgSOBhl5rQJSGlFKUaBVNcwFoFkdApBhPGGVRk3V9lChoBmgJaA9DCBMNUvDUiXFAlIaUUpRoFU1DAWgWR0CkGRq6FuejdX2UKGgGaAloD0MIjUP9LmxfckCUhpRSlGgVTUsBaBZHQKQZ5XHzYmN1fZQoaAZoCWgPQwjhC5OpAuhsQJSGlFKUaBVNMwFoFkdApBtBGWldknV9lChoBmgJaA9DCEchyaweMXBAlIaUUpRoFU06AWgWR0CkHACsOoYOdX2UKGgGaAloD0MIZTkJpS9wY0CUhpRSlGgVTegDaBZHQKQfyDFId2h1fZQoaAZoCWgPQwiaJJaUu3lJQJSGlFKUaBVL6mgWR0CkIGHCO3lTdX2UKGgGaAloD0MI98jmqvnwcECUhpRSlGgVTWwBaBZHQKQhhJWeYlZ1fZQoaAZoCWgPQwhc/67PHDJxQJSGlFKUaBVNkAFoFkdApCPDn5i3HHV9lChoBmgJaA9DCA8PYfx0YnBAlIaUUpRoFU0uAWgWR0CkJNN+LFXJdX2UKGgGaAloD0MIAptz8EyMcECUhpRSlGgVTT4BaBZHQKQmEiO/+Kl1fZQoaAZoCWgPQwhM4qyIGphxQJSGlFKUaBVNNwFoFkdApChDzK9wm3V9lChoBmgJaA9DCPoNEw2SZXFAlIaUUpRoFU2gAWgWR0CkKiif6Gg0dX2UKGgGaAloD0MIzOuIQzbsb0CUhpRSlGgVTV4BaBZHQKQrnj+aScN1fZQoaAZoCWgPQwh4mzdOCrBrQJSGlFKUaBVNNwFoFkdApCz9HOKO1nV9lChoBmgJaA9DCNP1RNeFInFAlIaUUpRoFU1EAWgWR0CkLenuAqd6dX2UKGgGaAloD0MI0HzO3S4DcUCUhpRSlGgVTT8BaBZHQKQuuzkZJkJ1fZQoaAZoCWgPQwih9fBlorFtQJSGlFKUaBVNVwFoFkdApDBRHXmNi3V9lChoBmgJaA9DCAMHtHQF9WtAlIaUUpRoFU1NAWgWR0CkMUzRIBikdX2UKGgGaAloD0MI8rVnlgSpYECUhpRSlGgVTegDaBZHQKQ1JS8an751fZQoaAZoCWgPQwiOW8zPDd1rQJSGlFKUaBVNVwFoFkdApDYQacZtN3VlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 4104,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:114bda73f064d07f79351ad07da992ffc313818f592ec91f2ca215d6c1615210
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a653bfab02c3f69c6333563c16f0cd45931ac91be5d4c7d329523478073417e
|
3 |
+
size 43265
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (244 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 256.66533194546855, "std_reward": 15.021263904523742, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-01T07:44:28.191780"}
|