|
from typing import Dict, Any, List |
|
from transformers import pipeline |
|
import torch |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
|
|
self.pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-beta", torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[List[Dict[str, str]]]: |
|
""" |
|
Args: |
|
data (:dict:): |
|
The payload with the text prompt and generation parameters. |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
if isinstance(inputs, list) and isinstance(inputs[0], list) or isinstance(inputs[0], dict): |
|
if isinstance(inputs[0], dict): |
|
inputs = [inputs] |
|
messages = inputs |
|
|
|
else: |
|
if isinstance(inputs, str): |
|
messages = [[ |
|
{ |
|
"role": "system", |
|
"content": "You are a helpful AI assistant", |
|
}, |
|
{"role": "user", "content": inputs}, |
|
]] |
|
else: |
|
messages = [[ |
|
{ |
|
"role": "system", |
|
"content": "You are a helpful AI assistant", |
|
}, |
|
{"role": "user", "content": input}, |
|
] for input in inputs] |
|
|
|
prompts = [] |
|
for message in messages: |
|
prompts += [self.pipe.tokenizer.apply_chat_template(message, tokenize=False, add_generation_prompt=True)] |
|
|
|
|
|
if parameters is not None: |
|
|
|
exclude_list = ["stop", "watermark", "details", "decoder_input_details"] |
|
parameters = {name: val for name, val in parameters.items() if name not in exclude_list} |
|
|
|
outputs = self.pipe( |
|
prompts, |
|
**parameters) |
|
else: |
|
outputs = self.pipe( |
|
prompts, max_new_tokens=32, |
|
) |
|
|
|
return [{"generated_text": outputs}] |