|
from typing import Dict, Any |
|
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer |
|
import torch |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" |
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16 |
|
) |
|
|
|
self.model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: |
|
""" |
|
Args: |
|
data (:dict:): |
|
The payload with the text prompt and generation parameters. |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
inputs = f"[INST] {inputs} [/INST]" |
|
|
|
|
|
inputs = self.tokenizer(inputs, return_tensors="pt") |
|
inputs = inputs.to(self.model.device) |
|
|
|
|
|
if parameters is not None: |
|
outputs = self.model.generate(inputs, **parameters) |
|
else: |
|
outputs = self.model.generate(inputs) |
|
|
|
|
|
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return [{"generated_text": prediction}] |