|
|
from typing import Dict |
|
|
import os |
|
|
import torch |
|
|
import torch.distributed as dist |
|
|
from torch import nn, Tensor |
|
|
import torch.nn.functional as F |
|
|
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoConfig |
|
|
from peft import LoraConfig, get_peft_model, PeftModel |
|
|
from src.model.processor import QWEN2_5_VL_TOKENSELECTION |
|
|
from src.arguments_multi_layer import ModelArguments, TrainingArguments |
|
|
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, \ |
|
|
backbone2model, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V |
|
|
|
|
|
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, INTERNVIDEO2, \ |
|
|
QWEN2_VL_TOKENSELECTION, backbone2model, GME, VLM_IMAGE_TOKENS, LamRA, LamRA_QWEN2_5, COLPALI |
|
|
from src.model.baseline_backbone.colpali import ColPali |
|
|
from src.model.baseline_backbone.gme.gme_inference import GmeQwen2VL |
|
|
from src.model.baseline_backbone.lamra.lamra_inference import LamRAQwen2VL |
|
|
from src.model.baseline_backbone.lamra.lamra_qwen25_inference import LamRAQwen25VL |
|
|
from src.model.baseline_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM |
|
|
from src.model.baseline_backbone.llava_next import LlavaNextForConditionalGeneration |
|
|
|
|
|
from transformers import modeling_utils |
|
|
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None: |
|
|
modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", 'rowwise'] |
|
|
from contextlib import contextmanager |
|
|
|
|
|
class _AOPSwitch: |
|
|
""" |
|
|
Temporarily toggle encoder.aop_prune_config.enabled for one forward call. |
|
|
""" |
|
|
def __init__(self, module: nn.Module, enable: bool): |
|
|
self.module = module |
|
|
self.enable = bool(enable) |
|
|
self._old = getattr(module, "aop_prune_config", None) |
|
|
|
|
|
def __enter__(self): |
|
|
|
|
|
if self._old is None: |
|
|
return self |
|
|
if not self.enable: |
|
|
|
|
|
if isinstance(self._old, dict): |
|
|
cfg = dict(self._old) |
|
|
cfg["enabled"] = False |
|
|
setattr(self.module, "aop_prune_config", cfg) |
|
|
else: |
|
|
setattr(self.module, "aop_prune_config", None) |
|
|
|
|
|
return self |
|
|
|
|
|
def __exit__(self, exc_type, exc, tb): |
|
|
|
|
|
setattr(self.module, "aop_prune_config", self._old) |
|
|
return False |
|
|
|
|
|
class MMEBModel(nn.Module): |
|
|
TRANSFORMER_CLS = AutoModelForCausalLM |
|
|
|
|
|
def __init__(self, |
|
|
encoder: PreTrainedModel, |
|
|
pooling: str = 'last', |
|
|
normalize: bool = False, |
|
|
temperature: float = 0.02, |
|
|
): |
|
|
super().__init__() |
|
|
self.config = encoder.config |
|
|
self.encoder = encoder |
|
|
self.pooling = pooling |
|
|
self.normalize = normalize |
|
|
self.temperature = temperature |
|
|
self.cross_entropy = nn.CrossEntropyLoss(reduction='mean') |
|
|
self.is_ddp = dist.is_initialized() |
|
|
if self.is_ddp: |
|
|
self.process_rank = dist.get_rank() |
|
|
self.world_size = dist.get_world_size() |
|
|
self.layer_indices = [20, -1] |
|
|
|
|
|
self.supervise_layers = [20, -1] |
|
|
self.supervise_weights = [0.15, 0.85] |
|
|
|
|
|
@property |
|
|
def device(self) -> torch.device: |
|
|
try: |
|
|
return next(self.parameters()).device |
|
|
except StopIteration: |
|
|
|
|
|
return torch.device("cpu") |
|
|
|
|
|
def _want_prune_for(self, side: str) -> bool: |
|
|
""" |
|
|
side: "qry" or "tgt" |
|
|
""" |
|
|
cfg = getattr(self.encoder, "aop_prune_config", None) |
|
|
if not isinstance(cfg, dict) or not cfg.get("enabled", False): |
|
|
return False |
|
|
apply_to = str(cfg.get("apply_to", "both")).lower() |
|
|
return (apply_to == "both") or (apply_to == side.lower()) |
|
|
|
|
|
def _normalize_layers(self, hs_len: int, layers: list[int]) -> list[int]: |
|
|
Lmax = hs_len - 1 |
|
|
out = [] |
|
|
for idx in layers: |
|
|
if idx < 0: |
|
|
idx = hs_len + idx |
|
|
idx = max(1, min(idx, Lmax)) |
|
|
out.append(idx) |
|
|
if (hs_len - 1) not in out: |
|
|
out.append(hs_len - 1) |
|
|
return out |
|
|
|
|
|
def _encode_multi(self, input): |
|
|
""" |
|
|
通用多层编码:返回 [B, K, D],K=len(self.supervise_layers,经规范化且包含最后一层)。 |
|
|
""" |
|
|
mb = getattr(self, "model_backbone", None) |
|
|
|
|
|
def norm(x): |
|
|
return F.normalize(x, p=2, dim=-1) if self.normalize else x |
|
|
|
|
|
|
|
|
if mb not in [GME, LamRA, LamRA_QWEN2_5, INTERNVIDEO2, COLPALI]: |
|
|
out = self.encoder(**input, return_dict=True, output_hidden_states=True) |
|
|
hs_list = out.hidden_states |
|
|
|
|
|
post_mask = getattr(out, "attention_mask", None) |
|
|
pre_mask = input['attention_mask'] |
|
|
|
|
|
|
|
|
idxs = self._normalize_layers(len(hs_list), list(dict.fromkeys(self.supervise_layers))) |
|
|
|
|
|
|
|
|
aop_cfg = getattr(self.encoder, "aop_prune_config", None) |
|
|
cut_layer = None |
|
|
if isinstance(aop_cfg, dict) and aop_cfg.get("enabled", False): |
|
|
try: |
|
|
cut_layer = int(aop_cfg.get("layer_idx") or 0) |
|
|
if cut_layer <= 0: |
|
|
cut_layer = None |
|
|
except Exception: |
|
|
cut_layer = None |
|
|
|
|
|
reps = [] |
|
|
for idx in idxs: |
|
|
|
|
|
use_post = (post_mask is not None) and (cut_layer is not None) and (idx >= cut_layer + 1) |
|
|
mask_this = post_mask if use_post else pre_mask |
|
|
|
|
|
h = hs_list[idx] |
|
|
|
|
|
if mask_this is not None and h.size(1) != mask_this.size(1): |
|
|
if pre_mask is not None and pre_mask.size(1) == h.size(1): |
|
|
mask_this = pre_mask |
|
|
elif post_mask is not None and post_mask.size(1) == h.size(1): |
|
|
mask_this = post_mask |
|
|
else: |
|
|
mask_this = torch.ones(h.size(0), h.size(1), dtype=torch.long, device=h.device) |
|
|
|
|
|
r = self._pooling(h, mask_this) |
|
|
reps.append(F.normalize(r, p=2, dim=-1) if self.normalize else r) |
|
|
|
|
|
return torch.stack(reps, dim=1) |
|
|
|
|
|
|
|
|
def encode_input(self, input, layer_indices=None): |
|
|
if getattr(self, "model_backbone", None) == INTERNVIDEO2: |
|
|
if "input_ids" in input.keys(): |
|
|
|
|
|
text_output = self.encoder.get_text_encoder()( |
|
|
input["input_ids"], |
|
|
attention_mask=input["attention_mask"], |
|
|
return_dict=True, |
|
|
mode="text", |
|
|
) |
|
|
text_embeds = text_output.last_hidden_state |
|
|
pooled_text_embeds = text_embeds[:, 0] |
|
|
pooled_output = self.encoder.text_proj(pooled_text_embeds) |
|
|
pooled_output /= pooled_output.norm(dim=-1, keepdim=True) |
|
|
return pooled_output |
|
|
else: |
|
|
_, vfeat = self.encoder.encode_vision(input["pixel_values"], test=True) |
|
|
vfeat = self.encoder.vision_proj(vfeat) |
|
|
vfeat /= vfeat.norm(dim=-1, keepdim=True) |
|
|
return vfeat |
|
|
elif getattr(self, "model_backbone", None) in [GME, LamRA, LamRA_QWEN2_5]: |
|
|
|
|
|
texts = [text.replace(VLM_IMAGE_TOKENS[QWEN2_VL] + '\n', '') for text in input["texts"]] |
|
|
images = [] |
|
|
for imgs in input['images']: |
|
|
|
|
|
if isinstance(imgs, list): |
|
|
imgs = imgs[len(imgs) // 2] |
|
|
assert not isinstance(imgs, list) |
|
|
images.append(imgs) |
|
|
else: |
|
|
images.append(imgs) |
|
|
pooled_output = self.encoder.get_fused_embeddings(texts=texts, images=images) |
|
|
return pooled_output |
|
|
elif getattr(self, "model_backbone", None) == COLPALI: |
|
|
pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True) |
|
|
return pooled_output |
|
|
elif getattr(self, "model_backbone", None) == LLAVA_NEXT: |
|
|
input['pixel_values'] = input['pixel_values'].squeeze(dim=1) |
|
|
input['image_sizes'] = input['image_sizes'].squeeze(dim=1) |
|
|
hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True) |
|
|
hidden_states = hidden_states.hidden_states[-1] |
|
|
pooled_output = self._pooling(hidden_states, input['attention_mask']) |
|
|
return pooled_output |
|
|
else: |
|
|
|
|
|
out = self.encoder(**input, return_dict=True, output_hidden_states=True) |
|
|
hs_list = out.hidden_states |
|
|
post_mask = getattr(out, "attention_mask", None) |
|
|
pre_mask = input['attention_mask'] |
|
|
|
|
|
|
|
|
if os.getenv("AOP_MONITOR", "0") == "1": |
|
|
try: |
|
|
B = pre_mask.size(0) if pre_mask is not None else hs_list[-1].size(0) |
|
|
|
|
|
pre_len = pre_mask.sum(dim=1).detach().cpu().tolist() if pre_mask is not None else [hs_list[-1].size(1)] * B |
|
|
post_len = post_mask.sum(dim=1).detach().cpu().tolist() if post_mask is not None else pre_len |
|
|
|
|
|
|
|
|
aop_cfg = getattr(self.encoder, "aop_prune_config", None) |
|
|
kr_t = aop_cfg.get("_last_sampled_keep_ratio_text") if isinstance(aop_cfg, dict) else None |
|
|
kr_v = aop_cfg.get("_last_sampled_keep_ratio_vision") if isinstance(aop_cfg, dict) else None |
|
|
|
|
|
|
|
|
pre_txt_cnt = pre_vis_cnt = post_txt_cnt = post_vis_cnt = None |
|
|
input_ids = input.get("input_ids", None) |
|
|
if input_ids is not None and pre_mask is not None: |
|
|
cfg = self.encoder.config |
|
|
valid_pre = pre_mask.bool() |
|
|
vis_pre = (input_ids == getattr(cfg, "image_token_id", -999)) |
|
|
if hasattr(cfg, "video_token_id") and cfg.video_token_id is not None and cfg.video_token_id >= 0: |
|
|
vis_pre = vis_pre | (input_ids == cfg.video_token_id) |
|
|
special_pre = torch.zeros_like(input_ids, dtype=torch.bool) |
|
|
for name in ["bos_token_id", "eos_token_id", "pad_token_id"]: |
|
|
tid = getattr(cfg, name, None) |
|
|
if tid is not None and tid >= 0: |
|
|
special_pre |= (input_ids == tid) |
|
|
pre_vis_cnt = (vis_pre & valid_pre).sum(dim=1).detach().cpu().tolist() |
|
|
pre_txt_cnt = (valid_pre & (~vis_pre) & (~special_pre)).sum(dim=1).detach().cpu().tolist() |
|
|
|
|
|
vis_post_mask = getattr(out, "image_token_bool_masks", None) |
|
|
txt_post_mask = getattr(out, "text_token_bool_masks", None) |
|
|
if vis_post_mask is not None: |
|
|
post_vis_cnt = vis_post_mask.sum(dim=1).detach().cpu().tolist() |
|
|
if txt_post_mask is not None: |
|
|
post_txt_cnt = txt_post_mask.sum(dim=1).detach().cpu().tolist() |
|
|
|
|
|
|
|
|
if not hasattr(self, "_aop_mon_prints"): |
|
|
self._aop_mon_prints = 0 |
|
|
if self._aop_mon_prints < 3: |
|
|
print(f"[AOP][monitor] B={B} sampled: kr_text={kr_t}, kr_vision={kr_v}") |
|
|
for b in range(min(B, 8)): |
|
|
preL = int(pre_len[b]); postL = int(post_len[b]); keep = (postL / (preL + 1e-9)) |
|
|
msg = f" b={b}: pre_len={preL}, post_len={postL}, keep={keep:.3f}" |
|
|
if pre_txt_cnt is not None and post_txt_cnt is not None: |
|
|
kt = (post_txt_cnt[b] / (pre_txt_cnt[b] + 1e-9)) if pre_txt_cnt[b] > 0 else float('nan') |
|
|
msg += f", txt_keep={kt:.3f}" |
|
|
if pre_vis_cnt is not None and post_vis_cnt is not None: |
|
|
kv = (post_vis_cnt[b] / (pre_vis_cnt[b] + 1e-9)) if pre_vis_cnt[b] > 0 else float('nan') |
|
|
msg += f", vis_keep={kv:.3f}" |
|
|
print(msg) |
|
|
self._aop_mon_prints += 1 |
|
|
except Exception as e: |
|
|
|
|
|
print(f"[AOP][monitor] warn: monitor failed with error: {e}") |
|
|
|
|
|
def _pooling(self, last_hidden_state, attention_mask): |
|
|
if self.pooling == 'last' or self.pooling == 'eos': |
|
|
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) |
|
|
batch_size = last_hidden_state.shape[0] |
|
|
if left_padding: |
|
|
|
|
|
reps = last_hidden_state[torch.arange(batch_size), -1, :] |
|
|
else: |
|
|
|
|
|
eos_indices = attention_mask.sum(dim=1) - 1 |
|
|
|
|
|
reps = last_hidden_state[ |
|
|
torch.arange(batch_size, device=last_hidden_state.device), eos_indices] |
|
|
else: |
|
|
raise NotImplementedError |
|
|
if self.normalize: |
|
|
reps = torch.nn.functional.normalize(reps, p=2, dim=-1) |
|
|
return reps |
|
|
|
|
|
@classmethod |
|
|
def build(cls, model_args: ModelArguments, **kwargs): |
|
|
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True) |
|
|
variant = getattr(config, "backbone_variant", None) |
|
|
if variant == "layerprune": |
|
|
model_backbone = "QWEN2_VL_LayerPrune" |
|
|
else: |
|
|
model_backbone = get_backbone_name(hf_config=config) |
|
|
print_master(f'Loading backbone [{model_backbone}] from {model_args.model_name}') |
|
|
|
|
|
if model_backbone == PHI3V: |
|
|
config._attn_implementation = "eager" |
|
|
config.padding_side = "right" |
|
|
config.use_cache = False |
|
|
base_model = Phi3VForCausalLM.from_pretrained( |
|
|
model_args.model_name, |
|
|
config=config, |
|
|
torch_dtype=torch.bfloat16, |
|
|
low_cpu_mem_usage=True, |
|
|
) |
|
|
elif model_backbone == LLAVA_NEXT: |
|
|
config.use_cache = False |
|
|
config.padding_side = "left" |
|
|
base_model = LlavaNextForConditionalGeneration.from_pretrained( |
|
|
model_args.model_name, |
|
|
config=config, |
|
|
torch_dtype=torch.bfloat16, |
|
|
low_cpu_mem_usage=True, |
|
|
) |
|
|
elif model_backbone in [QWEN2_VL, QWEN2_5_VL]: |
|
|
config._attn_implementation = "flash_attention_2" |
|
|
config.padding_side = "left" |
|
|
config.use_cache = False |
|
|
base_model = backbone2model[model_backbone].from_pretrained( |
|
|
model_args.model_name, |
|
|
config=config, |
|
|
torch_dtype=torch.bfloat16, |
|
|
low_cpu_mem_usage=True, |
|
|
) |
|
|
elif model_backbone in ["QWEN2_VL_LayerPrune"]: |
|
|
config._attn_implementation = "flash_attention_2" |
|
|
config.padding_side = "left" |
|
|
config.use_cache = False |
|
|
base_model = backbone2model[model_backbone].from_pretrained( |
|
|
model_args.model_name, |
|
|
config=config, |
|
|
torch_dtype=torch.bfloat16, |
|
|
low_cpu_mem_usage=True, |
|
|
) |
|
|
elif model_backbone in [QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION]: |
|
|
config._attn_implementation = "flash_attention_2" |
|
|
config.padding_side = "left" |
|
|
config.use_cache = False |
|
|
|
|
|
from .utils import parse_layer_type |
|
|
lm_qwen_layer = 28 |
|
|
vis_qwen_layer = 32 |
|
|
lm_skip_layer = parse_layer_type(model_args.lm_skip_layer, lm_qwen_layer) |
|
|
vis_skip_layer = parse_layer_type(model_args.vis_skip_layer, vis_qwen_layer) |
|
|
|
|
|
base_model = backbone2model[model_backbone].from_pretrained( |
|
|
model_args.model_name, |
|
|
config=config, |
|
|
torch_dtype=torch.bfloat16, |
|
|
low_cpu_mem_usage=True, |
|
|
lm_skip_layer=lm_skip_layer, |
|
|
vis_skip_layer=vis_skip_layer, |
|
|
) |
|
|
else: |
|
|
config.use_cache = False |
|
|
base_model = cls.TRANSFORMER_CLS.from_pretrained( |
|
|
model_args.model_name, **kwargs, config=config, |
|
|
attn_implementation="flash_attention_2", |
|
|
torch_dtype=torch.bfloat16, |
|
|
trust_remote_code=True) |
|
|
|
|
|
if model_args.lora: |
|
|
print_master(f'Loading lora adapter from {base_model}') |
|
|
lora_config = LoraConfig( |
|
|
r=model_args.lora_r, |
|
|
lora_alpha=model_args.lora_alpha, |
|
|
target_modules=model_args.lora_target_modules.split(','), |
|
|
lora_dropout=model_args.lora_dropout, |
|
|
init_lora_weights="gaussian", |
|
|
use_dora=True, |
|
|
inference_mode=False |
|
|
) |
|
|
lora_model = get_peft_model(base_model, lora_config) |
|
|
model = cls( |
|
|
encoder=lora_model, |
|
|
pooling=model_args.pooling, |
|
|
normalize=model_args.normalize, |
|
|
temperature=model_args.temperature |
|
|
) |
|
|
else: |
|
|
model = cls( |
|
|
encoder=base_model, |
|
|
pooling=model_args.pooling, |
|
|
normalize=model_args.normalize, |
|
|
temperature=model_args.temperature |
|
|
) |
|
|
|
|
|
def _parse_list(val, tp=float): |
|
|
if val is None: return None |
|
|
if isinstance(val, (list, tuple)): return [tp(x) for x in val] |
|
|
s = str(val).strip() |
|
|
if s == "": return None |
|
|
return [tp(v.strip()) for v in s.split(",") if v.strip() != ""] |
|
|
|
|
|
layers = _parse_list(getattr(model_args, "supervise_layers", None), tp=int) |
|
|
weights = _parse_list(getattr(model_args, "supervise_weights", None), tp=float) |
|
|
|
|
|
if layers is None: |
|
|
|
|
|
layers = [getattr(model_args, 'dual_layer_idx', 20), -1] |
|
|
if -1 not in layers: |
|
|
layers = list(layers) + [-1] |
|
|
|
|
|
if weights is None or len(weights) != len(layers): |
|
|
|
|
|
K = len(layers) |
|
|
base = [1.0/(K-1)]*(K-1) if K>1 else [1.0] |
|
|
weights = base + [max(0.0, 1.0 - sum(base))] |
|
|
|
|
|
|
|
|
s = sum(max(0.0, w) for w in weights) |
|
|
weights = [max(0.0, w)/s for w in weights] |
|
|
|
|
|
setattr(model, 'supervise_layers', layers) |
|
|
setattr(model, 'supervise_weights', weights) |
|
|
|
|
|
setattr(model, 'dual_layer_idx', layers[0] if len(layers)>1 else layers[0]) |
|
|
setattr(model, 'dual_alpha', weights[0] if len(weights)>1 else 1.0) |
|
|
setattr(model, 'layer_indices', layers) |
|
|
return model |
|
|
|
|
|
|
|
|
@classmethod |
|
|
def load(cls, model_args: ModelArguments, is_trainable=True, **kwargs): |
|
|
|
|
|
model_name_or_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name |
|
|
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) |
|
|
if not hasattr(model_args, "model_backbone") or not model_args.model_backbone: |
|
|
model_backbone = get_backbone_name(hf_config=config, model_type=model_args.model_type) |
|
|
setattr(model_args, 'model_backbone', model_backbone) |
|
|
print_master(f'Loading backbone [{model_args.model_backbone}] from {model_name_or_path}') |
|
|
if model_args.model_backbone in {LLAVA_NEXT, QWEN2_VL, QWEN2_5_VL, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V}: |
|
|
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True) |
|
|
config._attn_implementation = "flash_attention_2" |
|
|
config.vision_config._attn_implementation = "flash_attention_2" |
|
|
base_model = backbone2model[model_args.model_backbone].from_pretrained( |
|
|
model_args.model_name, |
|
|
torch_dtype=torch.bfloat16, |
|
|
low_cpu_mem_usage=True, |
|
|
config=config |
|
|
) |
|
|
elif model_args.model_backbone == PHI3V: |
|
|
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True) |
|
|
config.use_cache = False |
|
|
config.padding_side = "right" |
|
|
base_model = Phi3VForCausalLM.from_pretrained(model_args.model_name, **kwargs, config=config, |
|
|
torch_dtype=torch.bfloat16, trust_remote_code=True) |
|
|
base_model.padding_side = "right" |
|
|
elif model_args.model_backbone == INTERNVIDEO2: |
|
|
print_master(f'Loading backbone [{model_args.model_backbone}] from {"src/model/vlm_backbone/internvideo2/"}') |
|
|
config = AutoConfig.from_pretrained("src/model/vlm_backbone/internvideo2/", |
|
|
trust_remote_code=True) |
|
|
base_model = backbone2model[model_args.model_backbone].from_pretrained("src/model/vlm_backbone/internvideo2/", config=config, |
|
|
trust_remote_code=True) |
|
|
elif model_args.model_backbone == GME: |
|
|
base_model = GmeQwen2VL(model_args.model_name, processor=kwargs['processor']) |
|
|
setattr(base_model, 'config', config) |
|
|
elif model_args.model_backbone == LamRA: |
|
|
base_model = LamRAQwen2VL(model_args.model_name) |
|
|
setattr(base_model, 'config', config) |
|
|
elif model_args.model_backbone == LamRA_QWEN2_5: |
|
|
base_model = LamRAQwen25VL(model_args.model_name) |
|
|
setattr(base_model, 'config', config) |
|
|
elif model_args.model_backbone == COLPALI: |
|
|
base_model = ColPali.from_pretrained(model_args.model_name) |
|
|
setattr(base_model, 'config', config) |
|
|
else: |
|
|
|
|
|
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True) |
|
|
config.use_cache = False |
|
|
base_model = cls.TRANSFORMER_CLS.from_pretrained( |
|
|
model_name_or_path, **kwargs, config=config, |
|
|
torch_dtype=torch.bfloat16, |
|
|
trust_remote_code=True) |
|
|
|
|
|
|
|
|
if model_args.lora: |
|
|
print_master(f'Loading LoRA from {model_name_or_path}') |
|
|
lora_config = LoraConfig.from_pretrained(model_name_or_path) |
|
|
lora_model = PeftModel.from_pretrained(base_model, model_name_or_path, config=lora_config, is_trainable=is_trainable) |
|
|
lora_model.load_adapter(model_name_or_path, lora_model.active_adapter, is_trainable=is_trainable) |
|
|
if not is_trainable: |
|
|
lora_model = lora_model.merge_and_unload() |
|
|
model = cls( |
|
|
encoder=lora_model, |
|
|
pooling=model_args.pooling, |
|
|
normalize=model_args.normalize, |
|
|
temperature=model_args.temperature |
|
|
) |
|
|
else: |
|
|
model = cls( |
|
|
encoder=base_model, |
|
|
pooling=model_args.pooling, |
|
|
normalize=model_args.normalize, |
|
|
temperature=model_args.temperature |
|
|
) |
|
|
|
|
|
model.model_backbone = model_args.model_backbone |
|
|
return model |
|
|
|
|
|
def save(self, output_dir: str): |
|
|
self.encoder.save_pretrained(output_dir) |
|
|
|
|
|
def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, *args, **kwargs): |
|
|
|
|
|
if qry is not None and tgt is None: |
|
|
with _AOPSwitch(self.encoder, self._want_prune_for("qry")): |
|
|
qry_reps = self._encode_multi(qry) |
|
|
return {"qry_reps": qry_reps, "tgt_reps": None} |
|
|
if tgt is not None and qry is None: |
|
|
with _AOPSwitch(self.encoder, self._want_prune_for("tgt")): |
|
|
tgt_reps = self._encode_multi(tgt) |
|
|
return {"qry_reps": None, "tgt_reps": tgt_reps} |
|
|
|
|
|
with _AOPSwitch(self.encoder, self._want_prune_for("qry")): |
|
|
q_multi = self._encode_multi(qry) |
|
|
with _AOPSwitch(self.encoder, self._want_prune_for("tgt")): |
|
|
p_multi = self._encode_multi(tgt) |
|
|
|
|
|
|
|
|
if self.is_ddp: |
|
|
q_multi_all = self._dist_gather_tensor(q_multi) |
|
|
p_multi_all = self._dist_gather_tensor(p_multi) |
|
|
else: |
|
|
q_multi_all, p_multi_all = q_multi, p_multi |
|
|
|
|
|
Bglob, K, D = q_multi_all.shape |
|
|
assert p_multi_all.shape[:2] == (Bglob, K), f"Shape mismatch: q {q_multi_all.shape}, p {p_multi_all.shape}" |
|
|
target = torch.arange(Bglob, device=q_multi_all.device, dtype=torch.long) |
|
|
|
|
|
w = torch.tensor(self.supervise_weights, dtype=torch.float32, device=q_multi_all.device) |
|
|
w = torch.clamp(w, min=0) |
|
|
w = w / max(w.sum().item(), 1e-8) |
|
|
|
|
|
loss = 0.0 |
|
|
for k in range(K): |
|
|
|
|
|
logits_k = torch.matmul(q_multi_all[:, k, :], p_multi_all[:, k, :].transpose(0, 1)) / self.temperature |
|
|
loss_k = self.cross_entropy(logits_k, target) |
|
|
loss = loss + w[k] * loss_k |
|
|
|
|
|
if self.is_ddp: |
|
|
loss = loss * self.world_size |
|
|
|
|
|
return loss |
|
|
|
|
|
def _dist_gather_tensor(self, t: Tensor): |
|
|
t = t.contiguous() |
|
|
all_tensors = [torch.empty_like(t) for _ in range(self.world_size)] |
|
|
dist.all_gather(all_tensors, t) |
|
|
all_tensors[self.process_rank] = t |
|
|
all_tensors = torch.cat(all_tensors, dim=0) |
|
|
return all_tensors |
|
|
|
|
|
def compute_similarity(self, q_reps, p_reps): |
|
|
return torch.matmul(q_reps, p_reps.transpose(0, 1)) |