code_SAS_VLM2Vec / eval.py
MgGladys's picture
Add files using upload-large-folder tool
2a40e7a verified
import datetime
import logging
import json
import random
import time
import numpy as np
import os
import pickle
import sys
import torch
import torch.distributed as dist
import torch.nn.functional as F
import yaml
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import HfArgumentParser, AutoConfig
from datasets import Dataset, concatenate_datasets
from datasets.distributed import split_dataset_by_node
from src.arguments import ModelArguments, DataArguments, TrainingArguments
from src.data.collator.eval_collator import MultimodalEvalDataCollator
from src.data.eval_dataset.base_eval_dataset import AutoEvalPairDataset, generate_cand_dataset
from src.eval_utils.metrics import RankingMetrics
from src.model.model import MMEBModel
from src.model.processor import get_backbone_name, load_processor, COLPALI
from src.utils import batch_to_device, print_rank, print_master
import multiprocessing
from multiprocessing import Pool, cpu_count
logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(levelname)s [%(name)s:%(lineno)s] %(message)s')
logger = logging.getLogger(__name__)
def pad_dataset_to_divisible(dataset, world_size):
num_samples = len(dataset)
if num_samples % world_size == 0:
return dataset, num_samples
num_to_add = world_size - (num_samples % world_size)
padded_size = num_samples + num_to_add
padding_data = dataset.select([i % len(dataset) for i in range(num_to_add)])
padded_dataset = concatenate_datasets([dataset, padding_data])
return padded_dataset, padded_size
def encode_embeddings(
model: MMEBModel,
loader: DataLoader,
training_args: TrainingArguments,
model_args: ModelArguments,
full_dataset: Dataset,
encode_side: str,
description: str = "Encoding"
) -> tuple[np.ndarray, list]:
"""
Encodes embeddings for a given dataset using the model, handling both standard and
late-interaction models in a DDP-safe manner.
"""
local_rank = dist.get_rank() if dist.is_initialized() else 0
world_size = dist.get_world_size() if dist.is_initialized() else 1
# Check if the model is a late-interaction type
is_late_interaction = (model_args.model_backbone == COLPALI)
local_embeds = []
local_gt_infos = []
local_max_len = 0
model.eval()
with torch.no_grad():
for inputs, dataset_info in tqdm(loader, desc=f"{description} (rank {local_rank})", disable=local_rank > 0):
inputs = batch_to_device(inputs, training_args.device)
with torch.autocast(enabled=True, dtype=torch.bfloat16, device_type="cuda"):
# Determine if encoding query or target based on available keys
if encode_side == "qry":
output = model(qry=inputs)
reps = output["qry_reps"].detach()
local_gt_infos.extend(dataset_info) # to retain all information per query
else:
output = model(tgt=inputs)
reps = output["tgt_reps"].detach()
local_gt_infos.extend([info["cand_name"] for info in dataset_info]) # to retain ground-truth labels
if is_late_interaction and reps.dim() == 3:
local_max_len = max(local_max_len, reps.shape[1])
local_embeds.append(reps)
if not local_embeds:
# Handle cases where a rank gets no data
return np.array([]), []
# === DDP Synchronization and Padding for Late-Interaction Models ===
if is_late_interaction:
if dist.is_initialized():
# 1. Find the global maximum sequence length across all ranks
local_max_len_tensor = torch.tensor(local_max_len, device=training_args.device)
dist.all_reduce(local_max_len_tensor, op=dist.ReduceOp.MAX)
global_max_len = local_max_len_tensor.item()
else:
global_max_len = local_max_len
# 2. Pad all local embeddings to the global max length
padded_embeds = []
for reps_batch in local_embeds:
if reps_batch.dim() == 3:
B, L, H = reps_batch.shape
padding_size = global_max_len - L
padded_batch = F.pad(reps_batch, (0, 0, 0, padding_size), "constant", 0)
padded_embeds.append(padded_batch)
else: # Should not happen if model is consistently late-interaction
padded_embeds.append(reps_batch)
embeds_tensor = torch.cat(padded_embeds, dim=0).contiguous()
else: # Standard dense models
embeds_tensor = torch.cat(local_embeds, dim=0).contiguous()
# === Gather embeddings and keys from all ranks ===
if dist.is_initialized() and full_dataset.num_rows >= world_size:
print_master(f"Gathering {encode_side} embeddings across all ranks...")
# Use the more efficient all_gather_into_tensor for tensors
output_shape = list(embeds_tensor.shape)
output_shape[0] = full_dataset.num_rows
embeds_tensor = embeds_tensor.to(training_args.device)
gathered_embeds_tensor = torch.empty(output_shape, dtype=embeds_tensor.dtype, device=training_args.device)
dist.all_gather_into_tensor(gathered_embeds_tensor, embeds_tensor)
final_embeddings = gathered_embeds_tensor.cpu().float().numpy()
# Gather metadata, for which all_gather_object is appropriate
gathered_gt_infos = [None for _ in range(world_size)]
dist.all_gather_object(gathered_gt_infos, local_gt_infos)
all_gt_infos = [key for rank_keys in gathered_gt_infos for key in rank_keys]
else:
all_gt_infos = local_gt_infos
final_embeddings = embeds_tensor.cpu().float().numpy()
return final_embeddings, all_gt_infos
def main():
if "RANK" in os.environ and dist.is_available() and not dist.is_initialized():
dist.init_process_group(backend="nccl", timeout=datetime.timedelta(minutes=60))
local_rank = dist.get_rank() if dist.is_initialized() else 0
world_size = dist.get_world_size() if dist.is_initialized() else 1
# DEBUG PRINTS for Distributed Setup
print_master("Distributed init debug info:")
print_master(f"RANK: {os.environ.get('RANK')}")
print_master(f"LOCAL_RANK: {os.environ.get('LOCAL_RANK')}")
print_master(f"WORLD_SIZE: {os.environ.get('WORLD_SIZE')}")
print_master(f"MASTER_ADDR: {os.environ.get('MASTER_ADDR')}")
print_master(f"MASTER_PORT: {os.environ.get('MASTER_PORT')}")
if dist.is_initialized():
print_rank(f"dist.get_rank(): {dist.get_rank()}")
print_rank(f"dist.get_world_size(): {dist.get_world_size()}")
for arg in sys.argv:
if arg.startswith("--local-rank="):
rank = arg.split("=")[1]
sys.argv.remove(arg)
sys.argv.append('--local_rank')
sys.argv.append(rank)
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model_args: ModelArguments
data_args: DataArguments
training_args: TrainingArguments
os.makedirs(data_args.encode_output_path, exist_ok=True)
# --- Model Loading ---
hf_config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
if not getattr(model_args, "model_backbone", None):
model_backbone = get_backbone_name(hf_config=hf_config, model_type=model_args.model_type)
setattr(model_args, 'model_backbone', model_backbone)
setattr(training_args, 'model_backbone', model_backbone)
print_master(f'Model Backbone: {model_args.model_backbone}')
# --- DDP-Safe Model Loading ---
# Step 1: Only the master process (rank 0) downloads the model.
if local_rank == 0:
processor = load_processor(model_args, data_args)
model = MMEBModel.load(model_args, is_trainable=False, processor=processor)
print_master(f"[rank=0] Loading the model from Huggingface: {model_args.model_name}...")
# Step 2: All processes wait here. The non-master processes will pause
# until the master process (rank 0) finishes downloading and exits this barrier.
if torch.distributed.is_initialized():
torch.distributed.barrier()
# Step 3: Now that the model is cached, the non-master processes load it from the local cache.
if local_rank != 0:
print_rank(f"Loading the model from cache...")
processor = load_processor(model_args, data_args)
time.sleep(random.randint(2 * local_rank, 3 * local_rank))
model = MMEBModel.load(model_args, is_trainable=False, processor=processor)
model.eval()
model = model.to(training_args.device, dtype=torch.bfloat16)
# model.set_inference_layers(qry_layers=24, tgt_layers=24)
with open(data_args.dataset_config, 'r') as yaml_file:
dataset_configs = yaml.safe_load(yaml_file)
# --- Main Evaluation Loop ---
for dataset_idx, (dataset_name, task_config) in enumerate(dataset_configs.items()):
# 0. load dataset
if dist.is_initialized():
dist.barrier()
print_master(f"--- Evaluating {dataset_name} ---")
query_embed_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_qry")
cand_embed_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_tgt")
dataset_info_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_info.jsonl")
do_query = not os.path.exists(query_embed_path) or not os.path.exists(dataset_info_path)
do_cand = not os.path.exists(cand_embed_path)
if do_query or do_cand:
if data_args.data_basedir is not None:
# Construct full paths for data files if --data_basedir is provided
for key in ["image_root", "video_root", "frame_root", "clip_root", "data_path"]:
if data_args.data_basedir and task_config.get(key):
task_config[key] = os.path.join(data_args.data_basedir, task_config[key])
full_eval_qry_dataset, corpus = AutoEvalPairDataset.instantiate(model_args=model_args, data_args=data_args, **task_config)
full_eval_cand_dataset = generate_cand_dataset(full_eval_qry_dataset, corpus)
eval_qry_dataset, eval_cand_dataset = full_eval_qry_dataset, full_eval_cand_dataset
# Pad datasets to be divisible by world_size before splitting
if dist.is_initialized():
padded_qry_dataset, _ = pad_dataset_to_divisible(full_eval_qry_dataset, world_size)
padded_cand_dataset, _ = pad_dataset_to_divisible(full_eval_cand_dataset, world_size)
eval_qry_dataset = split_dataset_by_node(padded_qry_dataset, rank=local_rank, world_size=world_size)
eval_cand_dataset = split_dataset_by_node(padded_cand_dataset, rank=local_rank, world_size=world_size)
else:
padded_qry_dataset, padded_cand_dataset = full_eval_qry_dataset, full_eval_cand_dataset
# --- 1. Compute Query Embeddings ---
if do_query:
print_master("Encoding queries...")
eval_qry_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "qry")
eval_qry_loader = DataLoader(eval_qry_dataset, batch_size=training_args.per_device_eval_batch_size, collate_fn=eval_qry_collator, num_workers=training_args.dataloader_num_workers)
query_embeds, gt_infos = encode_embeddings(model, eval_qry_loader, training_args, model_args, padded_qry_dataset, encode_side="qry", description=f"Queries for {dataset_name}")
query_embeds = query_embeds[:len(full_eval_qry_dataset)] # world_size>1, trim the padded data points
gt_infos = gt_infos[:len(full_eval_qry_dataset)]
if local_rank == 0:
with open(query_embed_path, 'wb') as f:
pickle.dump(query_embeds, f)
with open(dataset_info_path, 'w') as f:
for info in gt_infos:
f.write(json.dumps(info) + '\n')
print_master(f"Saved query embeddings to {query_embed_path}")
if dist.is_initialized():
dist.barrier()
# --- 2. Compute Candidate Embeddings ---
if do_cand:
print_master("Encoding candidates...")
eval_cand_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "cand")
eval_cand_loader = DataLoader(eval_cand_dataset, batch_size=training_args.per_device_eval_batch_size, collate_fn=eval_cand_collator, num_workers=training_args.dataloader_num_workers)
cand_embeds, all_cand_ids = encode_embeddings(model, eval_cand_loader, training_args, model_args, padded_cand_dataset, encode_side="cand", description=f"Candidates for {dataset_name}")
cand_embeds = cand_embeds[:len(full_eval_cand_dataset)] # world_size>1, trim the padded data points
all_cand_ids = all_cand_ids[:len(full_eval_cand_dataset)]
if local_rank == 0:
cand_embed_dict = {cand_id: embed for cand_id, embed in zip(all_cand_ids, cand_embeds)}
with open(cand_embed_path, 'wb') as f: pickle.dump(cand_embed_dict, f)
print_master(f"Saved candidate embeddings to {cand_embed_path}")
if dist.is_initialized():
dist.barrier()
# --- 3. Compute Scores (on master rank only) ---
if local_rank == 0:
score_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_score.json")
if os.path.exists(score_path):
try:
with open(score_path, "r") as f:
score_dict = json.load(f)
print_master(f"Score of {dataset_name} (loaded from previous run): {score_path}")
formatted = {k: f"{v:.4f}" for k, v in score_dict.items()}
print_master(formatted)
continue
except Exception as e:
print_master(f"Failed to load score for {dataset_name}, skipping {dataset_name}")
with open(query_embed_path, 'rb') as f: qry_embeds = pickle.load(f)
with open(cand_embed_path, 'rb') as f: cand_embed_dict = pickle.load(f)
gt_infos = [json.loads(l) for l in open(dataset_info_path)]
pred_dicts = []
rank_against_all_candidates = task_config.get("eval_type", "global") == "global"
if rank_against_all_candidates:
cand_keys = list(cand_embed_dict.keys())
cand_embeds = np.stack([cand_embed_dict[key] for key in cand_keys])
# Handle late-interaction scoring
if qry_embeds.ndim == 3: # Query: [N_q, L_q, H] | Candidate: [N_c, L_c, H]
qry_embed = torch.from_numpy(qry_embeds)
cand_embeds = [torch.from_numpy(np.array(t)) for t in cand_embeds]
scores = processor.score(qry_embed, cand_embeds, batch_size=64) # use ColPali score function
ranked_candids = torch.argsort(-scores, dim=1).cpu().numpy().tolist()
else: # Dense
cosine_scores = np.dot(qry_embeds, cand_embeds.T)
ranked_candids = np.argsort(-cosine_scores, axis=1)
for qid, (ranked_candid, gt_info) in tqdm(enumerate(zip(ranked_candids, gt_infos)), desc=f"Calculating scores for {dataset_name}"):
rel_docids = gt_info["label_name"] if isinstance(gt_info["label_name"], list) else [gt_info["label_name"]]
rel_scores = gt_info["rel_scores"] if "rel_scores" in gt_info else None
assert rel_scores is None or len(rel_docids) == len(rel_scores)
pred_dicts.append({
"prediction": [cand_keys[i] for i in ranked_candid],
"label": rel_docids,
"rel_scores": rel_scores,
})
else:
for qid, (qry_embed, gt_info) in tqdm(enumerate(zip(qry_embeds, gt_infos)), desc=f"Calculating scores for {dataset_name}"):
cand_embeds = np.stack([cand_embed_dict[key] for key in gt_info["cand_names"]])
if qry_embeds.ndim == 3: # Query: [N_q, L_q, H] | Candidate: [N_c, L_c, H]
qry_embed = torch.from_numpy(np.array(qry_embed)).unsqueeze(0)
cand_embeds = [torch.from_numpy(np.array(t)) for t in cand_embeds]
scores = processor.score(qry_embed, cand_embeds, batch_size=1024) # use ColPali score function
ranked_candids = torch.argsort(-scores, dim=1).cpu().numpy().tolist()[0]
else:
cosine_score = np.dot(qry_embed, cand_embeds.T)
ranked_candids = np.argsort(-cosine_score)
rel_docids = gt_info["label_name"] if isinstance(gt_info["label_name"], list) else [gt_info["label_name"]]
rel_scores = gt_info["rel_scores"] if "rel_scores" in gt_info else None
assert rel_scores is None or len(rel_docids) == len(rel_scores)
pred_dicts.append({
"prediction": [gt_info["cand_names"][i] for i in ranked_candids],
"label": rel_docids,
"rel_scores": rel_scores,
})
score_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_score.json")
pred_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_pred.jsonl")
metrics_to_report = task_config["metrics"] if task_config.get("metrics", None) is not None else ["hit", "ndcg", "precision", "recall", "f1", "map", "mrr"]
metrics = RankingMetrics(metrics_to_report)
score_dict = metrics.evaluate(pred_dicts)
formatted = {k: f"{v:.4f}" for k, v in score_dict.items()}
score_dict["num_pred"] = len(pred_dicts)
score_dict["num_data"] = len(gt_infos)
print_master(f"Score of {dataset_name}:")
print_master(formatted)
print_master(f"Outputting final score to: {score_path}")
with open(score_path, "w") as f:
json.dump(score_dict, f, indent=4)
with open(pred_path, "w") as f:
for pred in pred_dicts:
f.write(json.dumps(pred) + '\n')
if __name__ == "__main__":
main()