MexicanVanGogh commited on
Commit
398cd83
1 Parent(s): 635f1fa

End of training

Browse files
Files changed (4) hide show
  1. README.md +194 -0
  2. config.json +102 -0
  3. pytorch_model.bin +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b1
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-b1-finetuned-segments-greenhousev3-sep-23
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b1-finetuned-segments-greenhousev3-sep-23
17
+
18
+ This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.1125
21
+ - Mean Iou: 0.5453
22
+ - Mean Accuracy: 0.6559
23
+ - Overall Accuracy: 0.9663
24
+ - Accuracy Unlabeled: nan
25
+ - Accuracy Object: 0.3211
26
+ - Accuracy Road: nan
27
+ - Accuracy Plant: 0.9572
28
+ - Accuracy Iron: 0.6167
29
+ - Accuracy Wood: nan
30
+ - Accuracy Wall: 0.9672
31
+ - Accuracy Raw Road: 0.9898
32
+ - Accuracy Bottom Wall: 0.9350
33
+ - Accuracy Roof: 0.8308
34
+ - Accuracy Grass: 0.0
35
+ - Accuracy Mulch: 0.9322
36
+ - Accuracy Person: 0.0770
37
+ - Accuracy Tomato: 0.5883
38
+ - Iou Unlabeled: 0.0
39
+ - Iou Object: 0.3099
40
+ - Iou Road: nan
41
+ - Iou Plant: 0.9055
42
+ - Iou Iron: 0.5542
43
+ - Iou Wood: nan
44
+ - Iou Wall: 0.8982
45
+ - Iou Raw Road: 0.9817
46
+ - Iou Bottom Wall: 0.8835
47
+ - Iou Roof: 0.5494
48
+ - Iou Grass: 0.0
49
+ - Iou Mulch: 0.8760
50
+ - Iou Person: 0.0770
51
+ - Iou Tomato: 0.5078
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 6e-05
71
+ - train_batch_size: 2
72
+ - eval_batch_size: 2
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 15
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Object | Accuracy Road | Accuracy Plant | Accuracy Iron | Accuracy Wood | Accuracy Wall | Accuracy Raw Road | Accuracy Bottom Wall | Accuracy Roof | Accuracy Grass | Accuracy Mulch | Accuracy Person | Accuracy Tomato | Iou Unlabeled | Iou Object | Iou Road | Iou Plant | Iou Iron | Iou Wood | Iou Wall | Iou Raw Road | Iou Bottom Wall | Iou Roof | Iou Grass | Iou Mulch | Iou Person | Iou Tomato |
81
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:--------------:|:-------------:|:-------------:|:-------------:|:-----------------:|:--------------------:|:-------------:|:--------------:|:--------------:|:---------------:|:---------------:|:-------------:|:----------:|:--------:|:---------:|:--------:|:--------:|:--------:|:------------:|:---------------:|:--------:|:---------:|:---------:|:----------:|:----------:|
82
+ | 1.7141 | 0.14 | 20 | 1.8034 | 0.2250 | 0.2942 | 0.8500 | nan | 0.0 | nan | 0.8676 | 0.0572 | nan | 0.4739 | 0.9174 | 0.0070 | 0.0 | 0.0 | 0.9137 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.7913 | 0.0484 | nan | 0.4272 | 0.9013 | 0.0067 | 0.0 | 0.0 | 0.5248 | 0.0 | 0.0 |
83
+ | 1.2362 | 0.29 | 40 | 1.0830 | 0.2354 | 0.3385 | 0.8922 | nan | 0.0 | nan | 0.9343 | 0.0024 | nan | 0.9554 | 0.9425 | 0.0319 | 0.0 | 0.0 | 0.8574 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8099 | 0.0024 | nan | 0.6184 | 0.9338 | 0.0316 | 0.0 | 0.0 | 0.6643 | 0.0 | 0.0 |
84
+ | 0.8914 | 0.43 | 60 | 0.8181 | 0.2795 | 0.3403 | 0.8999 | nan | 0.0 | nan | 0.9318 | 0.0 | nan | 0.9741 | 0.9550 | 0.0172 | 0.0 | 0.0 | 0.8653 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8202 | 0.0 | nan | 0.5889 | 0.9448 | 0.0171 | 0.0 | 0.0 | 0.7041 | 0.0 | 0.0 |
85
+ | 0.9467 | 0.57 | 80 | 0.7991 | 0.2819 | 0.3424 | 0.9050 | nan | 0.0 | nan | 0.9376 | 0.0002 | nan | 0.9851 | 0.9600 | 0.0135 | 0.0 | 0.0 | 0.8695 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8296 | 0.0002 | nan | 0.5714 | 0.9482 | 0.0135 | 0.0 | 0.0 | 0.7384 | 0.0 | 0.0 |
86
+ | 0.6862 | 0.71 | 100 | 0.6458 | 0.2876 | 0.3437 | 0.9102 | nan | 0.0 | nan | 0.9676 | 0.0008 | nan | 0.9702 | 0.9644 | 0.0335 | 0.0 | 0.0 | 0.8437 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8354 | 0.0008 | nan | 0.5931 | 0.9532 | 0.0333 | 0.0 | 0.0 | 0.7484 | 0.0 | 0.0 |
87
+ | 0.5597 | 0.86 | 120 | 0.6119 | 0.3009 | 0.3553 | 0.9180 | nan | 0.0 | nan | 0.9600 | 0.0 | nan | 0.9803 | 0.9692 | 0.1290 | 0.0 | 0.0 | 0.8696 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8512 | 0.0 | nan | 0.5986 | 0.9593 | 0.1234 | 0.0 | 0.0 | 0.7773 | 0.0 | 0.0 |
88
+ | 0.6017 | 1.0 | 140 | 0.5414 | 0.3052 | 0.3604 | 0.9202 | nan | 0.0 | nan | 0.9453 | 0.0 | nan | 0.9821 | 0.9651 | 0.1552 | 0.0 | 0.0 | 0.9169 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8653 | 0.0 | nan | 0.6036 | 0.9580 | 0.1464 | 0.0 | 0.0 | 0.7840 | 0.0 | 0.0 |
89
+ | 0.5384 | 1.14 | 160 | 0.5002 | 0.3049 | 0.3574 | 0.9217 | nan | 0.0 | nan | 0.9638 | 0.0000 | nan | 0.9814 | 0.9805 | 0.1654 | 0.0 | 0.0 | 0.8407 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8643 | 0.0000 | nan | 0.6027 | 0.9675 | 0.1356 | 0.0 | 0.0 | 0.7834 | 0.0 | 0.0 |
90
+ | 0.4033 | 1.29 | 180 | 0.4647 | 0.3209 | 0.3710 | 0.9297 | nan | 0.0 | nan | 0.9451 | 0.0004 | nan | 0.9768 | 0.9758 | 0.2587 | 0.0 | 0.0 | 0.9242 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8746 | 0.0004 | nan | 0.6373 | 0.9661 | 0.2420 | 0.0 | 0.0 | 0.8099 | 0.0 | 0.0 |
91
+ | 0.5176 | 1.43 | 200 | 0.3954 | 0.3318 | 0.3795 | 0.9341 | nan | 0.0 | nan | 0.9534 | 0.0025 | nan | 0.9731 | 0.9779 | 0.3491 | 0.0 | 0.0 | 0.9180 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8768 | 0.0025 | nan | 0.6573 | 0.9687 | 0.3225 | 0.0 | 0.0 | 0.8224 | 0.0 | 0.0 |
92
+ | 0.4023 | 1.57 | 220 | 0.3557 | 0.3314 | 0.3801 | 0.9335 | nan | 0.0 | nan | 0.9569 | 0.0006 | nan | 0.9776 | 0.9744 | 0.3516 | 0.0 | 0.0 | 0.9199 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8763 | 0.0006 | nan | 0.6543 | 0.9678 | 0.3231 | 0.0 | 0.0 | 0.8234 | 0.0 | 0.0 |
93
+ | 0.2951 | 1.71 | 240 | 0.2924 | 0.3660 | 0.4099 | 0.9450 | nan | 0.0 | nan | 0.9500 | 0.0019 | nan | 0.8813 | 0.9852 | 0.7700 | 0.0 | 0.0 | 0.9204 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8835 | 0.0019 | nan | 0.7306 | 0.9738 | 0.5973 | 0.0 | 0.0 | 0.8387 | 0.0 | 0.0 |
94
+ | 0.3506 | 1.86 | 260 | 0.3224 | 0.3265 | 0.3744 | 0.9357 | nan | 0.0 | nan | 0.9619 | 0.0365 | nan | 0.9830 | 0.9837 | 0.2436 | 0.0 | 0.0 | 0.9094 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8856 | 0.0362 | nan | 0.6267 | 0.9740 | 0.2280 | 0.0 | 0.0 | 0.8412 | 0.0 | 0.0 |
95
+ | 0.3657 | 2.0 | 280 | 0.2804 | 0.3434 | 0.3870 | 0.9388 | nan | 0.0 | nan | 0.9678 | 0.0782 | nan | 0.9508 | 0.9854 | 0.3762 | 0.0 | 0.0 | 0.8987 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8852 | 0.0772 | nan | 0.6656 | 0.9739 | 0.3422 | 0.0 | 0.0 | 0.8327 | 0.0 | 0.0 |
96
+ | 0.2412 | 2.14 | 300 | 0.2594 | 0.3645 | 0.4066 | 0.9443 | nan | 0.0 | nan | 0.9690 | 0.1055 | nan | 0.9485 | 0.9839 | 0.5606 | 0.0 | 0.0 | 0.9052 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8857 | 0.1035 | nan | 0.7056 | 0.9754 | 0.4937 | 0.0 | 0.0 | 0.8458 | 0.0 | 0.0 |
97
+ | 0.2567 | 2.29 | 320 | 0.2326 | 0.3705 | 0.4114 | 0.9462 | nan | 0.0 | nan | 0.9670 | 0.1156 | nan | 0.9272 | 0.9867 | 0.6242 | 0.0 | 0.0 | 0.9048 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8884 | 0.1118 | nan | 0.7225 | 0.9763 | 0.5302 | 0.0 | 0.0 | 0.8468 | 0.0 | 0.0 |
98
+ | 0.2492 | 2.43 | 340 | 0.2431 | 0.3614 | 0.4053 | 0.9434 | nan | 0.0 | nan | 0.9435 | 0.1508 | nan | 0.9445 | 0.9868 | 0.4945 | 0.0 | 0.0 | 0.9386 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8903 | 0.1454 | nan | 0.6800 | 0.9768 | 0.4370 | 0.0 | 0.0 | 0.8458 | 0.0 | 0.0 |
99
+ | 0.1749 | 2.57 | 360 | 0.2203 | 0.3706 | 0.4136 | 0.9460 | nan | 0.0 | nan | 0.9427 | 0.1543 | nan | 0.9606 | 0.9877 | 0.5690 | 0.0 | 0.0 | 0.9355 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8899 | 0.1494 | nan | 0.7185 | 0.9769 | 0.4918 | 0.0 | 0.0 | 0.8496 | 0.0 | 0.0 |
100
+ | 0.151 | 2.71 | 380 | 0.2358 | 0.3485 | 0.3943 | 0.9399 | nan | 0.0 | nan | 0.9690 | 0.2393 | nan | 0.9741 | 0.9855 | 0.2582 | 0.0 | 0.0 | 0.9115 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8880 | 0.2257 | nan | 0.6414 | 0.9776 | 0.2503 | 0.0 | 0.0 | 0.8510 | 0.0 | 0.0 |
101
+ | 0.1666 | 2.86 | 400 | 0.2173 | 0.3758 | 0.4190 | 0.9462 | nan | 0.0 | nan | 0.9420 | 0.2676 | nan | 0.9611 | 0.9896 | 0.5138 | 0.0 | 0.0 | 0.9350 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8911 | 0.2478 | nan | 0.7010 | 0.9779 | 0.4633 | 0.0 | 0.0 | 0.8529 | 0.0 | 0.0 |
102
+ | 0.1763 | 3.0 | 420 | 0.2301 | 0.3671 | 0.4123 | 0.9428 | nan | 0.0 | nan | 0.9694 | 0.3084 | nan | 0.9556 | 0.9858 | 0.4124 | 0.0 | 0.0 | 0.9032 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8892 | 0.2812 | nan | 0.6668 | 0.9771 | 0.3709 | 0.0 | 0.0 | 0.8526 | 0.0 | 0.0 |
103
+ | 0.1455 | 3.14 | 440 | 0.2156 | 0.3759 | 0.4203 | 0.9456 | nan | 0.0 | nan | 0.9527 | 0.3286 | nan | 0.9813 | 0.9845 | 0.4374 | 0.0 | 0.0 | 0.9390 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8933 | 0.3025 | nan | 0.6899 | 0.9774 | 0.4171 | 0.0 | 0.0 | 0.8548 | 0.0 | 0.0 |
104
+ | 0.0989 | 3.29 | 460 | 0.2041 | 0.3849 | 0.4273 | 0.9482 | nan | 0.0 | nan | 0.9621 | 0.3761 | nan | 0.9744 | 0.9896 | 0.4825 | 0.0 | 0.0 | 0.9154 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8953 | 0.3346 | nan | 0.7064 | 0.9788 | 0.4597 | 0.0 | 0.0 | 0.8592 | 0.0 | 0.0 |
105
+ | 0.1759 | 3.43 | 480 | 0.1829 | 0.4023 | 0.4439 | 0.9515 | nan | 0.0 | nan | 0.9624 | 0.4045 | nan | 0.9691 | 0.9838 | 0.6330 | 0.0 | 0.0 | 0.9303 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8947 | 0.3423 | nan | 0.7565 | 0.9779 | 0.5970 | 0.0 | 0.0 | 0.8572 | 0.0 | 0.0 |
106
+ | 0.3152 | 3.57 | 500 | 0.1731 | 0.4315 | 0.4644 | 0.9581 | nan | 0.0 | nan | 0.9594 | 0.4372 | nan | 0.9699 | 0.9886 | 0.8291 | 0.0 | 0.0 | 0.9242 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8952 | 0.3682 | nan | 0.8613 | 0.9789 | 0.7872 | 0.0 | 0.0 | 0.8559 | 0.0 | 0.0 |
107
+ | 0.9017 | 3.71 | 520 | 0.1722 | 0.4074 | 0.4441 | 0.9547 | nan | 0.0 | nan | 0.9525 | 0.2988 | nan | 0.9763 | 0.9889 | 0.7355 | 0.0 | 0.0 | 0.9326 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8961 | 0.2834 | nan | 0.7847 | 0.9791 | 0.6738 | 0.0 | 0.0 | 0.8638 | 0.0 | 0.0 |
108
+ | 0.1219 | 3.86 | 540 | 0.1610 | 0.4425 | 0.4765 | 0.9593 | nan | 0.0 | nan | 0.9445 | 0.4777 | nan | 0.9548 | 0.9866 | 0.9316 | 0.0 | 0.0 | 0.9461 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8926 | 0.4234 | nan | 0.8744 | 0.9786 | 0.8405 | 0.0 | 0.0 | 0.8582 | 0.0 | 0.0 |
109
+ | 0.588 | 4.0 | 560 | 0.1554 | 0.4270 | 0.4624 | 0.9579 | nan | 0.0 | nan | 0.9540 | 0.3812 | nan | 0.9663 | 0.9865 | 0.8627 | 0.0 | 0.0 | 0.9362 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8961 | 0.3401 | nan | 0.8397 | 0.9788 | 0.7802 | 0.0 | 0.0 | 0.8618 | 0.0 | 0.0 |
110
+ | 0.1087 | 4.14 | 580 | 0.1937 | 0.3874 | 0.4351 | 0.9479 | nan | 0.0 | nan | 0.9602 | 0.5236 | nan | 0.9825 | 0.9886 | 0.4074 | 0.0 | 0.0 | 0.9240 | 0.0 | 0.0002 | nan | 0.0 | nan | 0.8979 | 0.4352 | nan | 0.6902 | 0.9795 | 0.3925 | 0.0 | 0.0 | 0.8657 | 0.0 | 0.0002 |
111
+ | 0.1144 | 4.29 | 600 | 0.1500 | 0.4352 | 0.4684 | 0.9599 | nan | 0.0 | nan | 0.9605 | 0.3967 | nan | 0.9354 | 0.9900 | 0.9496 | 0.0 | 0.0 | 0.9196 | 0.0 | 0.0002 | nan | 0.0 | nan | 0.8975 | 0.3602 | nan | 0.8614 | 0.9795 | 0.8244 | 0.0 | 0.0 | 0.8636 | 0.0 | 0.0002 |
112
+ | 0.1177 | 4.43 | 620 | 0.1703 | 0.4123 | 0.4519 | 0.9538 | nan | 0.0 | nan | 0.9567 | 0.4940 | nan | 0.9778 | 0.9897 | 0.6235 | 0.0002 | 0.0 | 0.9286 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8965 | 0.4280 | nan | 0.7631 | 0.9796 | 0.6028 | 0.0002 | 0.0 | 0.8656 | 0.0 | 0.0 |
113
+ | 0.1962 | 4.57 | 640 | 0.1607 | 0.4279 | 0.4713 | 0.9555 | nan | 0.0 | nan | 0.9448 | 0.6255 | nan | 0.9671 | 0.9883 | 0.7151 | 0.0 | 0.0 | 0.9436 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8955 | 0.5144 | nan | 0.7934 | 0.9797 | 0.6604 | 0.0 | 0.0 | 0.8636 | 0.0 | 0.0 |
114
+ | 0.9385 | 4.71 | 660 | 0.1460 | 0.4379 | 0.4702 | 0.9602 | nan | 0.0 | nan | 0.9585 | 0.4420 | nan | 0.9742 | 0.9898 | 0.8835 | 0.0 | 0.0 | 0.9237 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8984 | 0.3961 | nan | 0.8585 | 0.9797 | 0.8185 | 0.0 | 0.0 | 0.8652 | 0.0 | 0.0 |
115
+ | 0.1003 | 4.86 | 680 | 0.1486 | 0.4337 | 0.4712 | 0.9579 | nan | 0.0 | nan | 0.9556 | 0.5660 | nan | 0.9676 | 0.9895 | 0.7746 | 0.0 | 0.0 | 0.9302 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8986 | 0.4905 | nan | 0.8197 | 0.9796 | 0.7163 | 0.0 | 0.0 | 0.8665 | 0.0 | 0.0 |
116
+ | 1.0698 | 5.0 | 700 | 0.1393 | 0.4447 | 0.4753 | 0.9615 | nan | 0.0 | nan | 0.9630 | 0.4648 | nan | 0.9739 | 0.9888 | 0.9156 | 0.0 | 0.0 | 0.9226 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8988 | 0.4126 | nan | 0.8729 | 0.9805 | 0.8631 | 0.0 | 0.0 | 0.8640 | 0.0 | 0.0 |
117
+ | 0.386 | 5.14 | 720 | 0.1418 | 0.4426 | 0.4744 | 0.9610 | nan | 0.0 | nan | 0.9585 | 0.4981 | nan | 0.9691 | 0.9900 | 0.8743 | 0.0 | 0.0 | 0.9289 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8997 | 0.4358 | nan | 0.8546 | 0.9807 | 0.8316 | 0.0 | 0.0 | 0.8661 | 0.0 | 0.0 |
118
+ | 0.1439 | 5.29 | 740 | 0.1403 | 0.4538 | 0.4845 | 0.9617 | nan | 0.0 | nan | 0.9688 | 0.5731 | nan | 0.9456 | 0.9912 | 0.9460 | 0.0 | 0.0 | 0.9045 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8967 | 0.4913 | nan | 0.8886 | 0.9801 | 0.8750 | 0.0 | 0.0 | 0.8600 | 0.0 | 0.0 |
119
+ | 0.1473 | 5.43 | 760 | 0.1368 | 0.4576 | 0.4890 | 0.9625 | nan | 0.0 | nan | 0.9584 | 0.6277 | nan | 0.9777 | 0.9914 | 0.9029 | 0.0 | 0.0 | 0.9206 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8993 | 0.5325 | nan | 0.8871 | 0.9801 | 0.8694 | 0.0 | 0.0 | 0.8653 | 0.0 | 0.0 |
120
+ | 0.1094 | 5.57 | 780 | 0.1381 | 0.4574 | 0.4870 | 0.9631 | nan | 0.0 | nan | 0.9585 | 0.5691 | nan | 0.9725 | 0.9893 | 0.9267 | 0.0096 | 0.0 | 0.9315 | 0.0 | 0.0 | nan | 0.0 | nan | 0.9004 | 0.5083 | nan | 0.8914 | 0.9807 | 0.8743 | 0.0096 | 0.0 | 0.8672 | 0.0 | 0.0 |
121
+ | 0.6891 | 5.71 | 800 | 0.1378 | 0.4540 | 0.4862 | 0.9608 | nan | 0.0 | nan | 0.9417 | 0.5784 | nan | 0.9697 | 0.9889 | 0.9246 | 0.0 | 0.0 | 0.9444 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8913 | 0.5007 | nan | 0.8906 | 0.9804 | 0.8736 | 0.0 | 0.0 | 0.8577 | 0.0 | 0.0 |
122
+ | 0.0856 | 5.86 | 820 | 0.1376 | 0.4516 | 0.4859 | 0.9619 | nan | 0.0 | nan | 0.9559 | 0.6057 | nan | 0.9763 | 0.9894 | 0.8856 | 0.0 | 0.0 | 0.9320 | 0.0 | 0.0001 | nan | 0.0 | nan | 0.8997 | 0.5042 | nan | 0.8716 | 0.9806 | 0.8434 | 0.0 | 0.0 | 0.8677 | 0.0 | 0.0001 |
123
+ | 0.5748 | 6.0 | 840 | 0.1351 | 0.4364 | 0.4669 | 0.9616 | nan | 0.0 | nan | 0.9539 | 0.3308 | nan | 0.9733 | 0.9901 | 0.9492 | 0.0061 | 0.0 | 0.9327 | 0.0 | 0.0003 | nan | 0.0 | nan | 0.8998 | 0.3175 | nan | 0.8763 | 0.9804 | 0.8524 | 0.0061 | 0.0 | 0.8678 | 0.0 | 0.0003 |
124
+ | 0.1633 | 6.14 | 860 | 0.1318 | 0.4492 | 0.4790 | 0.9621 | nan | 0.0 | nan | 0.9640 | 0.4390 | nan | 0.9799 | 0.9879 | 0.9282 | 0.0448 | 0.0 | 0.9246 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8996 | 0.4098 | nan | 0.8783 | 0.9802 | 0.8604 | 0.0448 | 0.0 | 0.8685 | 0.0 | 0.0 |
125
+ | 0.1508 | 6.29 | 880 | 0.1276 | 0.4642 | 0.4947 | 0.9629 | nan | 0.0 | nan | 0.9522 | 0.5745 | nan | 0.9750 | 0.9880 | 0.9377 | 0.0724 | 0.0 | 0.9418 | 0.0 | 0.0 | nan | 0.0 | nan | 0.8981 | 0.5069 | nan | 0.8957 | 0.9805 | 0.8849 | 0.0724 | 0.0 | 0.8671 | 0.0 | 0.0 |
126
+ | 0.5258 | 6.43 | 900 | 0.1325 | 0.4911 | 0.5204 | 0.9629 | nan | 0.0181 | nan | 0.9590 | 0.5986 | nan | 0.9723 | 0.9921 | 0.8980 | 0.3665 | 0.0 | 0.9204 | 0.0 | 0.0 | nan | 0.0180 | nan | 0.8986 | 0.5176 | nan | 0.8880 | 0.9791 | 0.8641 | 0.3651 | 0.0 | 0.8718 | 0.0 | 0.0 |
127
+ | 0.2897 | 6.57 | 920 | 0.1319 | 0.4515 | 0.4807 | 0.9616 | nan | 0.0001 | nan | 0.9472 | 0.5170 | nan | 0.9768 | 0.9896 | 0.9117 | 0.0031 | 0.0 | 0.9416 | 0.0 | 0.0001 | nan | 0.0001 | nan | 0.8935 | 0.4660 | nan | 0.8812 | 0.9805 | 0.8764 | 0.0031 | 0.0 | 0.8655 | 0.0 | 0.0001 |
128
+ | 0.1457 | 6.71 | 940 | 0.1287 | 0.4606 | 0.4917 | 0.9631 | nan | 0.0033 | nan | 0.9602 | 0.6031 | nan | 0.9739 | 0.9892 | 0.9248 | 0.0272 | 0.0 | 0.9273 | 0.0 | 0.0001 | nan | 0.0033 | nan | 0.8989 | 0.5207 | nan | 0.8906 | 0.9805 | 0.8761 | 0.0272 | 0.0 | 0.8697 | 0.0 | 0.0001 |
129
+ | 0.096 | 6.86 | 960 | 0.1272 | 0.4619 | 0.4909 | 0.9637 | nan | 0.0 | nan | 0.9615 | 0.5837 | nan | 0.9690 | 0.9911 | 0.9435 | 0.0291 | 0.0 | 0.9218 | 0.0 | 0.0001 | nan | 0.0 | nan | 0.9003 | 0.5169 | nan | 0.8966 | 0.9806 | 0.8866 | 0.0291 | 0.0 | 0.8704 | 0.0 | 0.0001 |
130
+ | 0.1295 | 7.0 | 980 | 0.1279 | 0.5081 | 0.5394 | 0.9645 | nan | 0.0 | nan | 0.9617 | 0.6600 | nan | 0.9625 | 0.9880 | 0.9475 | 0.4581 | 0.0 | 0.9324 | 0.0 | 0.0235 | nan | 0.0 | nan | 0.9011 | 0.5645 | nan | 0.9115 | 0.9809 | 0.8874 | 0.4511 | 0.0 | 0.8693 | 0.0 | 0.0235 |
131
+ | 0.5631 | 7.14 | 1000 | 0.1264 | 0.4597 | 0.4910 | 0.9631 | nan | 0.0 | nan | 0.9532 | 0.5904 | nan | 0.9775 | 0.9899 | 0.9372 | 0.0181 | 0.0 | 0.9331 | 0.0 | 0.0016 | nan | 0.0 | nan | 0.8981 | 0.5234 | nan | 0.8912 | 0.9810 | 0.8743 | 0.0181 | 0.0 | 0.8692 | 0.0 | 0.0016 |
132
+ | 0.3537 | 7.29 | 1020 | 0.1234 | 0.5045 | 0.5369 | 0.9636 | nan | 0.1071 | nan | 0.9639 | 0.6744 | nan | 0.9674 | 0.9890 | 0.9059 | 0.3331 | 0.0 | 0.9238 | 0.0 | 0.0411 | nan | 0.1065 | nan | 0.8995 | 0.5626 | nan | 0.8947 | 0.9801 | 0.8622 | 0.3311 | 0.0 | 0.8720 | 0.0 | 0.0411 |
133
+ | 0.3131 | 7.43 | 1040 | 0.1259 | 0.5199 | 0.5624 | 0.9639 | nan | 0.0581 | nan | 0.9472 | 0.6255 | nan | 0.9689 | 0.9915 | 0.9279 | 0.6937 | 0.0 | 0.9380 | 0.0 | 0.0354 | nan | 0.0581 | nan | 0.8981 | 0.5413 | nan | 0.9004 | 0.9801 | 0.8818 | 0.5523 | 0.0 | 0.8720 | 0.0 | 0.0354 |
134
+ | 0.0886 | 7.57 | 1060 | 0.1209 | 0.4994 | 0.5283 | 0.9645 | nan | 0.0576 | nan | 0.9618 | 0.5799 | nan | 0.9694 | 0.9900 | 0.9566 | 0.3078 | 0.0 | 0.9246 | 0.0 | 0.0636 | nan | 0.0575 | nan | 0.9004 | 0.5266 | nan | 0.9052 | 0.9806 | 0.8873 | 0.2989 | 0.0 | 0.8729 | 0.0 | 0.0636 |
135
+ | 0.0638 | 7.71 | 1080 | 0.1243 | 0.4697 | 0.4980 | 0.9634 | nan | 0.0374 | nan | 0.9597 | 0.5165 | nan | 0.9802 | 0.9896 | 0.9312 | 0.0504 | 0.0 | 0.9281 | 0.0 | 0.0850 | nan | 0.0374 | nan | 0.9000 | 0.4756 | nan | 0.8859 | 0.9808 | 0.8802 | 0.0504 | 0.0 | 0.8711 | 0.0 | 0.0850 |
136
+ | 0.2029 | 7.86 | 1100 | 0.1310 | 0.4746 | 0.5101 | 0.9603 | nan | 0.0143 | nan | 0.9598 | 0.5807 | nan | 0.9722 | 0.9914 | 0.7901 | 0.2850 | 0.0 | 0.9247 | 0.0 | 0.0932 | nan | 0.0143 | nan | 0.9021 | 0.5080 | nan | 0.8301 | 0.9805 | 0.7509 | 0.2704 | 0.0 | 0.8717 | 0.0 | 0.0932 |
137
+ | 0.1243 | 8.0 | 1120 | 0.1249 | 0.4536 | 0.5256 | 0.9634 | nan | 0.0031 | nan | 0.9472 | 0.5002 | nan | 0.9756 | 0.9890 | 0.9493 | 0.4187 | 0.0 | 0.9461 | 0.0 | 0.0527 | 0.0 | 0.0031 | nan | 0.8984 | 0.4669 | nan | 0.8958 | 0.9807 | 0.8876 | 0.3899 | 0.0 | 0.8685 | 0.0 | 0.0527 |
138
+ | 0.1786 | 8.14 | 1140 | 0.1198 | 0.5003 | 0.5306 | 0.9643 | nan | 0.0000 | nan | 0.9528 | 0.5977 | nan | 0.9750 | 0.9902 | 0.9279 | 0.4234 | 0.0 | 0.9391 | 0.0 | 0.0301 | nan | 0.0000 | nan | 0.9001 | 0.5248 | nan | 0.9045 | 0.9810 | 0.8913 | 0.4011 | 0.0 | 0.8703 | 0.0 | 0.0301 |
139
+ | 0.076 | 8.29 | 1160 | 0.1214 | 0.4841 | 0.5141 | 0.9641 | nan | 0.0 | nan | 0.9659 | 0.6607 | nan | 0.9761 | 0.9898 | 0.9385 | 0.2066 | 0.0 | 0.9166 | 0.0 | 0.0009 | nan | 0.0 | nan | 0.8988 | 0.5709 | nan | 0.9057 | 0.9811 | 0.8927 | 0.2066 | 0.0 | 0.8684 | 0.0 | 0.0009 |
140
+ | 0.0774 | 8.43 | 1180 | 0.1202 | 0.5146 | 0.5492 | 0.9645 | nan | 0.0 | nan | 0.9575 | 0.6616 | nan | 0.9669 | 0.9896 | 0.9339 | 0.5195 | 0.0 | 0.9323 | 0.0 | 0.0798 | nan | 0.0 | nan | 0.8995 | 0.5640 | nan | 0.9091 | 0.9812 | 0.8893 | 0.4680 | 0.0 | 0.8696 | 0.0 | 0.0798 |
141
+ | 0.0833 | 8.57 | 1200 | 0.1242 | 0.4656 | 0.5507 | 0.9631 | nan | 0.0 | nan | 0.9615 | 0.6232 | nan | 0.9681 | 0.9909 | 0.8749 | 0.5879 | 0.0 | 0.9236 | 0.0 | 0.1271 | 0.0 | 0.0 | nan | 0.9024 | 0.5474 | nan | 0.8745 | 0.9811 | 0.8309 | 0.4533 | 0.0 | 0.8705 | 0.0 | 0.1270 |
142
+ | 0.092 | 8.71 | 1220 | 0.1226 | 0.4582 | 0.5362 | 0.9630 | nan | 0.0 | nan | 0.9543 | 0.6130 | nan | 0.9741 | 0.9902 | 0.8765 | 0.5253 | 0.0 | 0.9365 | 0.0 | 0.0286 | 0.0 | 0.0 | nan | 0.9011 | 0.5448 | nan | 0.8753 | 0.9813 | 0.8282 | 0.4674 | 0.0 | 0.8717 | 0.0 | 0.0286 |
143
+ | 0.1834 | 8.86 | 1240 | 0.1320 | 0.4891 | 0.5360 | 0.9603 | nan | 0.0 | nan | 0.9651 | 0.6013 | nan | 0.9658 | 0.9872 | 0.8071 | 0.6385 | 0.0 | 0.9281 | 0.0 | 0.0029 | nan | 0.0 | nan | 0.8989 | 0.5296 | nan | 0.8417 | 0.9807 | 0.7621 | 0.4941 | 0.0 | 0.8704 | 0.0 | 0.0029 |
144
+ | 0.0952 | 9.0 | 1260 | 0.1194 | 0.4848 | 0.5883 | 0.9648 | nan | 0.0004 | nan | 0.9578 | 0.6626 | nan | 0.9485 | 0.9916 | 0.9500 | 0.9151 | 0.0 | 0.9262 | 0.0 | 0.1197 | 0.0 | 0.0004 | nan | 0.9018 | 0.5703 | nan | 0.9065 | 0.9809 | 0.8868 | 0.5799 | 0.0 | 0.8709 | 0.0 | 0.1196 |
145
+ | 0.0921 | 9.14 | 1280 | 0.1190 | 0.4889 | 0.5931 | 0.9641 | nan | 0.0070 | nan | 0.9466 | 0.5978 | nan | 0.9638 | 0.9907 | 0.9261 | 0.9188 | 0.0 | 0.9422 | 0.0 | 0.2312 | 0.0 | 0.0070 | nan | 0.9009 | 0.5246 | nan | 0.8946 | 0.9810 | 0.8785 | 0.5848 | 0.0 | 0.8693 | 0.0 | 0.2261 |
146
+ | 0.1261 | 9.29 | 1300 | 0.1183 | 0.4895 | 0.5744 | 0.9647 | nan | 0.0155 | nan | 0.9533 | 0.6007 | nan | 0.9732 | 0.9910 | 0.9330 | 0.6671 | 0.0 | 0.9329 | 0.0 | 0.2519 | 0.0 | 0.0155 | nan | 0.9031 | 0.5271 | nan | 0.8993 | 0.9808 | 0.8815 | 0.5508 | 0.0 | 0.8712 | 0.0 | 0.2448 |
147
+ | 0.0745 | 9.43 | 1320 | 0.1185 | 0.4776 | 0.5540 | 0.9650 | nan | 0.0009 | nan | 0.9629 | 0.6146 | nan | 0.9704 | 0.9898 | 0.9290 | 0.5108 | 0.0 | 0.9275 | 0.0 | 0.1882 | 0.0 | 0.0009 | nan | 0.9030 | 0.5365 | nan | 0.9031 | 0.9814 | 0.8878 | 0.4604 | 0.0 | 0.8714 | 0.0 | 0.1866 |
148
+ | 0.1516 | 9.57 | 1340 | 0.1178 | 0.4861 | 0.5679 | 0.9648 | nan | 0.0263 | nan | 0.9576 | 0.6394 | nan | 0.9659 | 0.9892 | 0.9318 | 0.5333 | 0.0 | 0.9346 | 0.0 | 0.2690 | 0.0 | 0.0262 | nan | 0.9022 | 0.5507 | nan | 0.9005 | 0.9811 | 0.8834 | 0.4571 | 0.0 | 0.8720 | 0.0 | 0.2595 |
149
+ | 0.3253 | 9.71 | 1360 | 0.1193 | 0.4869 | 0.5849 | 0.9643 | nan | 0.0261 | nan | 0.9617 | 0.5521 | nan | 0.9622 | 0.9912 | 0.9385 | 0.8778 | 0.0 | 0.9202 | 0.0 | 0.2038 | 0.0 | 0.0260 | nan | 0.9017 | 0.5101 | nan | 0.8950 | 0.9808 | 0.8835 | 0.5760 | 0.0 | 0.8699 | 0.0 | 0.2001 |
150
+ | 0.2121 | 9.86 | 1380 | 0.1168 | 0.5361 | 0.5924 | 0.9650 | nan | 0.1243 | nan | 0.9582 | 0.6017 | nan | 0.9540 | 0.9907 | 0.9409 | 0.9112 | 0.0 | 0.9310 | 0.0 | 0.1041 | nan | 0.1229 | nan | 0.9003 | 0.5431 | nan | 0.9013 | 0.9815 | 0.8906 | 0.5798 | 0.0 | 0.8734 | 0.0 | 0.1040 |
151
+ | 0.085 | 10.0 | 1400 | 0.1164 | 0.5204 | 0.6257 | 0.9649 | nan | 0.4440 | nan | 0.9535 | 0.6118 | nan | 0.9663 | 0.9897 | 0.9279 | 0.8919 | 0.0 | 0.9355 | 0.0 | 0.1623 | 0.0 | 0.4215 | nan | 0.9001 | 0.5335 | nan | 0.8963 | 0.9814 | 0.8738 | 0.6014 | 0.0 | 0.8754 | 0.0 | 0.1615 |
152
+ | 0.1237 | 10.14 | 1420 | 0.1196 | 0.4833 | 0.5919 | 0.9630 | nan | 0.1217 | nan | 0.9504 | 0.6237 | nan | 0.9531 | 0.9900 | 0.8974 | 0.9224 | 0.0 | 0.9395 | 0.0 | 0.1131 | 0.0 | 0.1196 | nan | 0.8976 | 0.5394 | nan | 0.8817 | 0.9816 | 0.8541 | 0.5444 | 0.0 | 0.8685 | 0.0 | 0.1130 |
153
+ | 0.0778 | 10.29 | 1440 | 0.1163 | 0.4907 | 0.5914 | 0.9647 | nan | 0.0384 | nan | 0.9546 | 0.5737 | nan | 0.9601 | 0.9905 | 0.9384 | 0.9075 | 0.0 | 0.9349 | 0.0 | 0.2068 | 0.0 | 0.0381 | nan | 0.9017 | 0.5264 | nan | 0.8986 | 0.9814 | 0.8853 | 0.5824 | 0.0 | 0.8706 | 0.0 | 0.2039 |
154
+ | 0.276 | 10.43 | 1460 | 0.1186 | 0.4839 | 0.5949 | 0.9644 | nan | 0.0617 | nan | 0.9545 | 0.5744 | nan | 0.9394 | 0.9909 | 0.9623 | 0.9308 | 0.0 | 0.9331 | 0.0 | 0.1968 | 0.0 | 0.0611 | nan | 0.9010 | 0.5341 | nan | 0.8974 | 0.9811 | 0.8843 | 0.4825 | 0.0 | 0.8707 | 0.0 | 0.1944 |
155
+ | 0.0833 | 10.57 | 1480 | 0.1180 | 0.4992 | 0.5864 | 0.9646 | nan | 0.0859 | nan | 0.9632 | 0.5940 | nan | 0.9785 | 0.9906 | 0.9101 | 0.6922 | 0.0 | 0.9189 | 0.0 | 0.3169 | 0.0 | 0.0846 | nan | 0.9029 | 0.5215 | nan | 0.8920 | 0.9814 | 0.8725 | 0.5606 | 0.0 | 0.8699 | 0.0 | 0.3047 |
156
+ | 0.0626 | 10.71 | 1500 | 0.1138 | 0.5109 | 0.6003 | 0.9659 | nan | 0.1694 | nan | 0.9590 | 0.6081 | nan | 0.9677 | 0.9899 | 0.9487 | 0.6401 | 0.0 | 0.9307 | 0.0 | 0.3895 | 0.0 | 0.1665 | nan | 0.9037 | 0.5491 | nan | 0.9051 | 0.9817 | 0.8933 | 0.4915 | 0.0 | 0.8739 | 0.0 | 0.3656 |
157
+ | 0.0843 | 10.86 | 1520 | 0.1164 | 0.5212 | 0.6196 | 0.9656 | nan | 0.2538 | nan | 0.9556 | 0.6182 | nan | 0.9678 | 0.9893 | 0.9399 | 0.7178 | 0.0 | 0.9349 | 0.0 | 0.4379 | 0.0 | 0.2486 | nan | 0.9036 | 0.5491 | nan | 0.8989 | 0.9814 | 0.8820 | 0.5099 | 0.0 | 0.8747 | 0.0 | 0.4054 |
158
+ | 0.0748 | 11.0 | 1540 | 0.1166 | 0.5058 | 0.6050 | 0.9638 | nan | 0.1470 | nan | 0.9664 | 0.6641 | nan | 0.9622 | 0.9897 | 0.8770 | 0.7405 | 0.0 | 0.9179 | 0.0 | 0.3904 | 0.0 | 0.1446 | nan | 0.9027 | 0.5706 | nan | 0.8764 | 0.9815 | 0.8304 | 0.5253 | 0.0 | 0.8709 | 0.0 | 0.3667 |
159
+ | 0.251 | 11.14 | 1560 | 0.1189 | 0.5012 | 0.5997 | 0.9632 | nan | 0.1103 | nan | 0.9530 | 0.6107 | nan | 0.9653 | 0.9903 | 0.8490 | 0.7298 | 0.0 | 0.9382 | 0.0 | 0.4499 | 0.0 | 0.1083 | nan | 0.9041 | 0.5460 | nan | 0.8595 | 0.9814 | 0.8067 | 0.5198 | 0.0 | 0.8722 | 0.0 | 0.4167 |
160
+ | 0.099 | 11.29 | 1580 | 0.1203 | 0.5136 | 0.6309 | 0.9630 | nan | 0.2045 | nan | 0.9540 | 0.6517 | nan | 0.9553 | 0.9898 | 0.8443 | 0.9056 | 0.0 | 0.9359 | 0.0018 | 0.4975 | 0.0 | 0.1984 | nan | 0.9041 | 0.5702 | nan | 0.8536 | 0.9812 | 0.7943 | 0.5336 | 0.0 | 0.8732 | 0.0018 | 0.4527 |
161
+ | 0.0969 | 11.43 | 1600 | 0.1148 | 0.5181 | 0.6377 | 0.9655 | nan | 0.1381 | nan | 0.9552 | 0.6125 | nan | 0.9518 | 0.9906 | 0.9514 | 0.9347 | 0.0 | 0.9314 | 0.0182 | 0.5308 | 0.0 | 0.1347 | nan | 0.9051 | 0.5557 | nan | 0.8972 | 0.9810 | 0.8900 | 0.4893 | 0.0 | 0.8728 | 0.0182 | 0.4727 |
162
+ | 0.105 | 11.57 | 1620 | 0.1136 | 0.5240 | 0.6345 | 0.9661 | nan | 0.0966 | nan | 0.9573 | 0.6593 | nan | 0.9487 | 0.9910 | 0.9644 | 0.9181 | 0.0 | 0.9290 | 0.0245 | 0.4905 | 0.0 | 0.0949 | nan | 0.9050 | 0.5898 | nan | 0.9156 | 0.9812 | 0.8861 | 0.5716 | 0.0 | 0.8726 | 0.0245 | 0.4468 |
163
+ | 0.0978 | 11.71 | 1640 | 0.1112 | 0.5398 | 0.6519 | 0.9666 | nan | 0.3155 | nan | 0.9596 | 0.6668 | nan | 0.9599 | 0.9903 | 0.9425 | 0.9217 | 0.0 | 0.9286 | 0.0035 | 0.4821 | 0.0 | 0.3043 | nan | 0.9050 | 0.5871 | nan | 0.9099 | 0.9816 | 0.8938 | 0.5741 | 0.0 | 0.8750 | 0.0035 | 0.4429 |
164
+ | 0.1009 | 11.86 | 1660 | 0.1140 | 0.5424 | 0.6429 | 0.9662 | nan | 0.4360 | nan | 0.9559 | 0.6194 | nan | 0.9686 | 0.9908 | 0.9243 | 0.8090 | 0.0 | 0.9328 | 0.0 | 0.4353 | 0.0 | 0.4192 | nan | 0.9042 | 0.5488 | nan | 0.8999 | 0.9817 | 0.8822 | 0.5902 | 0.0 | 0.8764 | 0.0 | 0.4058 |
165
+ | 0.0573 | 12.0 | 1680 | 0.1169 | 0.5129 | 0.6061 | 0.9643 | nan | 0.2006 | nan | 0.9633 | 0.5626 | nan | 0.9751 | 0.9894 | 0.8825 | 0.7501 | 0.0 | 0.9258 | 0.0005 | 0.4177 | 0.0 | 0.1969 | nan | 0.9036 | 0.5158 | nan | 0.8742 | 0.9817 | 0.8405 | 0.5772 | 0.0 | 0.8738 | 0.0005 | 0.3905 |
166
+ | 0.2137 | 12.14 | 1700 | 0.1145 | 0.5186 | 0.6097 | 0.9657 | nan | 0.1593 | nan | 0.9563 | 0.6110 | nan | 0.9712 | 0.9915 | 0.9334 | 0.6697 | 0.0 | 0.9276 | 0.0141 | 0.4725 | 0.0 | 0.1564 | nan | 0.9047 | 0.5504 | nan | 0.8990 | 0.9813 | 0.8819 | 0.5281 | 0.0 | 0.8729 | 0.0141 | 0.4350 |
167
+ | 0.0529 | 12.29 | 1720 | 0.1148 | 0.5112 | 0.6113 | 0.9643 | nan | 0.1748 | nan | 0.9537 | 0.6439 | nan | 0.9616 | 0.9901 | 0.8829 | 0.7997 | 0.0 | 0.9383 | 0.0020 | 0.3778 | 0.0 | 0.1720 | nan | 0.9028 | 0.5636 | nan | 0.8788 | 0.9817 | 0.8399 | 0.5625 | 0.0 | 0.8729 | 0.0020 | 0.3579 |
168
+ | 0.0939 | 12.43 | 1740 | 0.1140 | 0.5193 | 0.6202 | 0.9658 | nan | 0.2000 | nan | 0.9593 | 0.6405 | nan | 0.9631 | 0.9904 | 0.9261 | 0.8236 | 0.0 | 0.9297 | 0.0053 | 0.3847 | 0.0 | 0.1967 | nan | 0.9045 | 0.5615 | nan | 0.8989 | 0.9817 | 0.8788 | 0.5656 | 0.0 | 0.8745 | 0.0053 | 0.3637 |
169
+ | 0.3645 | 12.57 | 1760 | 0.1139 | 0.5230 | 0.6288 | 0.9661 | nan | 0.1784 | nan | 0.9574 | 0.6247 | nan | 0.9610 | 0.9910 | 0.9341 | 0.8759 | 0.0 | 0.9318 | 0.0086 | 0.4537 | 0.0 | 0.1751 | nan | 0.9057 | 0.5555 | nan | 0.9009 | 0.9817 | 0.8873 | 0.5658 | 0.0 | 0.8750 | 0.0086 | 0.4202 |
170
+ | 0.059 | 12.71 | 1780 | 0.1135 | 0.5335 | 0.6514 | 0.9662 | nan | 0.3569 | nan | 0.9585 | 0.6072 | nan | 0.9498 | 0.9903 | 0.9389 | 0.9152 | 0.0 | 0.9329 | 0.0066 | 0.5093 | 0.0 | 0.3471 | nan | 0.9054 | 0.5511 | nan | 0.8946 | 0.9818 | 0.8898 | 0.4874 | 0.0 | 0.8766 | 0.0066 | 0.4613 |
171
+ | 0.0858 | 12.86 | 1800 | 0.1125 | 0.5379 | 0.6539 | 0.9664 | nan | 0.3137 | nan | 0.9584 | 0.6422 | nan | 0.9556 | 0.9899 | 0.9413 | 0.9072 | 0.0 | 0.9325 | 0.0149 | 0.5374 | 0.0 | 0.3043 | nan | 0.9055 | 0.5711 | nan | 0.9011 | 0.9817 | 0.8885 | 0.5301 | 0.0 | 0.8761 | 0.0149 | 0.4817 |
172
+ | 0.1214 | 13.0 | 1820 | 0.1125 | 0.5777 | 0.6362 | 0.9664 | nan | 0.2598 | nan | 0.9588 | 0.6371 | nan | 0.9550 | 0.9915 | 0.9384 | 0.8787 | 0.0 | 0.9292 | 0.0020 | 0.4480 | nan | 0.2535 | nan | 0.9046 | 0.5677 | nan | 0.9063 | 0.9817 | 0.8949 | 0.5532 | 0.0 | 0.8752 | 0.0020 | 0.4154 |
173
+ | 0.0777 | 13.14 | 1840 | 0.1121 | 0.5724 | 0.6277 | 0.9664 | nan | 0.2290 | nan | 0.9585 | 0.6583 | nan | 0.9573 | 0.9907 | 0.9374 | 0.8183 | 0.0 | 0.9327 | 0.0078 | 0.4151 | nan | 0.2242 | nan | 0.9047 | 0.5775 | nan | 0.9069 | 0.9819 | 0.8945 | 0.5350 | 0.0 | 0.8754 | 0.0078 | 0.3881 |
174
+ | 0.0604 | 13.29 | 1860 | 0.1120 | 0.5285 | 0.6265 | 0.9664 | nan | 0.2304 | nan | 0.9614 | 0.6635 | nan | 0.9627 | 0.9899 | 0.9353 | 0.7254 | 0.0 | 0.9298 | 0.0515 | 0.4414 | 0.0 | 0.2253 | nan | 0.9051 | 0.5774 | nan | 0.9069 | 0.9819 | 0.8916 | 0.5179 | 0.0 | 0.8753 | 0.0515 | 0.4093 |
175
+ | 0.0777 | 13.43 | 1880 | 0.1126 | 0.5330 | 0.6363 | 0.9664 | nan | 0.2318 | nan | 0.9582 | 0.6585 | nan | 0.9621 | 0.9912 | 0.9260 | 0.7547 | 0.0 | 0.9304 | 0.0351 | 0.5516 | 0.0 | 0.2261 | nan | 0.9059 | 0.5700 | nan | 0.9037 | 0.9818 | 0.8896 | 0.5181 | 0.0 | 0.8749 | 0.0351 | 0.4904 |
176
+ | 0.1656 | 13.57 | 1900 | 0.1118 | 0.5376 | 0.6433 | 0.9666 | nan | 0.2547 | nan | 0.9574 | 0.6450 | nan | 0.9625 | 0.9902 | 0.9408 | 0.7648 | 0.0 | 0.9334 | 0.0328 | 0.5951 | 0.0 | 0.2477 | nan | 0.9064 | 0.5716 | nan | 0.9040 | 0.9818 | 0.8904 | 0.5272 | 0.0 | 0.8759 | 0.0328 | 0.5139 |
177
+ | 0.1135 | 13.71 | 1920 | 0.1124 | 0.5465 | 0.6552 | 0.9664 | nan | 0.3391 | nan | 0.9566 | 0.6563 | nan | 0.9676 | 0.9904 | 0.9186 | 0.7762 | 0.0 | 0.9330 | 0.0598 | 0.6098 | 0.0 | 0.3288 | nan | 0.9058 | 0.5657 | nan | 0.8998 | 0.9818 | 0.8795 | 0.5401 | 0.0 | 0.8765 | 0.0598 | 0.5202 |
178
+ | 0.1027 | 13.86 | 1940 | 0.1116 | 0.5470 | 0.6630 | 0.9665 | nan | 0.3323 | nan | 0.9548 | 0.6378 | nan | 0.9625 | 0.9905 | 0.9412 | 0.8770 | 0.0 | 0.9333 | 0.0409 | 0.6226 | 0.0 | 0.3206 | nan | 0.9056 | 0.5696 | nan | 0.9023 | 0.9815 | 0.8864 | 0.5550 | 0.0 | 0.8764 | 0.0409 | 0.5250 |
179
+ | 0.0643 | 14.0 | 1960 | 0.1114 | 0.5428 | 0.6566 | 0.9664 | nan | 0.3071 | nan | 0.9559 | 0.6102 | nan | 0.9606 | 0.9909 | 0.9410 | 0.8906 | 0.0 | 0.9321 | 0.0379 | 0.5968 | 0.0 | 0.2974 | nan | 0.9054 | 0.5564 | nan | 0.9014 | 0.9816 | 0.8908 | 0.5536 | 0.0 | 0.8760 | 0.0379 | 0.5136 |
180
+ | 0.1415 | 14.14 | 1980 | 0.1119 | 0.5438 | 0.6528 | 0.9665 | nan | 0.3167 | nan | 0.9575 | 0.6319 | nan | 0.9614 | 0.9904 | 0.9350 | 0.8373 | 0.0 | 0.9325 | 0.0414 | 0.5765 | 0.0 | 0.3069 | nan | 0.9052 | 0.5637 | nan | 0.9026 | 0.9817 | 0.8887 | 0.5583 | 0.0 | 0.8760 | 0.0414 | 0.5011 |
181
+ | 0.067 | 14.29 | 2000 | 0.1129 | 0.5370 | 0.6451 | 0.9662 | nan | 0.2473 | nan | 0.9541 | 0.6180 | nan | 0.9642 | 0.9902 | 0.9329 | 0.8373 | 0.0 | 0.9375 | 0.0540 | 0.5604 | 0.0 | 0.2406 | nan | 0.9049 | 0.5542 | nan | 0.9002 | 0.9818 | 0.8878 | 0.5529 | 0.0 | 0.8751 | 0.0540 | 0.4923 |
182
+ | 0.0582 | 14.43 | 2020 | 0.1115 | 0.5479 | 0.6622 | 0.9665 | nan | 0.3303 | nan | 0.9537 | 0.6409 | nan | 0.9621 | 0.9912 | 0.9365 | 0.8623 | 0.0 | 0.9334 | 0.0621 | 0.6120 | 0.0 | 0.3182 | nan | 0.9055 | 0.5670 | nan | 0.9018 | 0.9816 | 0.8890 | 0.5543 | 0.0 | 0.8759 | 0.0621 | 0.5194 |
183
+ | 0.0741 | 14.57 | 2040 | 0.1127 | 0.5413 | 0.6559 | 0.9663 | nan | 0.2726 | nan | 0.9537 | 0.6321 | nan | 0.9591 | 0.9905 | 0.9401 | 0.8882 | 0.0 | 0.9365 | 0.0543 | 0.5883 | 0.0 | 0.2637 | nan | 0.9051 | 0.5648 | nan | 0.9018 | 0.9817 | 0.8896 | 0.5522 | 0.0 | 0.8751 | 0.0543 | 0.5077 |
184
+ | 0.1112 | 14.71 | 2060 | 0.1138 | 0.5394 | 0.6460 | 0.9661 | nan | 0.3055 | nan | 0.9624 | 0.6267 | nan | 0.9663 | 0.9900 | 0.9171 | 0.8108 | 0.0 | 0.9267 | 0.0515 | 0.5494 | 0.0 | 0.2965 | nan | 0.9051 | 0.5500 | nan | 0.8981 | 0.9818 | 0.8816 | 0.5466 | 0.0 | 0.8753 | 0.0515 | 0.4859 |
185
+ | 0.0564 | 14.86 | 2080 | 0.1115 | 0.5496 | 0.6632 | 0.9665 | nan | 0.3458 | nan | 0.9584 | 0.6470 | nan | 0.9627 | 0.9905 | 0.9370 | 0.8501 | 0.0 | 0.9284 | 0.0755 | 0.5995 | 0.0 | 0.3335 | nan | 0.9057 | 0.5703 | nan | 0.9018 | 0.9816 | 0.8866 | 0.5508 | 0.0 | 0.8760 | 0.0755 | 0.5137 |
186
+ | 0.0904 | 15.0 | 2100 | 0.1125 | 0.5453 | 0.6559 | 0.9663 | nan | 0.3211 | nan | 0.9572 | 0.6167 | nan | 0.9672 | 0.9898 | 0.9350 | 0.8308 | 0.0 | 0.9322 | 0.0770 | 0.5883 | 0.0 | 0.3099 | nan | 0.9055 | 0.5542 | nan | 0.8982 | 0.9817 | 0.8835 | 0.5494 | 0.0 | 0.8760 | 0.0770 | 0.5078 |
187
+
188
+
189
+ ### Framework versions
190
+
191
+ - Transformers 4.33.2
192
+ - Pytorch 2.0.1
193
+ - Datasets 3.0.0
194
+ - Tokenizers 0.13.3
config.json ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b1",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "object",
33
+ "2": "road",
34
+ "3": "plant",
35
+ "4": "iron",
36
+ "5": "wood",
37
+ "6": "wall",
38
+ "7": "raw_road",
39
+ "8": "bottom_wall",
40
+ "9": "roof",
41
+ "10": "grass",
42
+ "11": "mulch",
43
+ "12": "person",
44
+ "13": "Tomato"
45
+ },
46
+ "image_size": 224,
47
+ "initializer_range": 0.02,
48
+ "label2id": {
49
+ "Tomato": 13,
50
+ "bottom_wall": 8,
51
+ "grass": 10,
52
+ "iron": 4,
53
+ "mulch": 11,
54
+ "object": 1,
55
+ "person": 12,
56
+ "plant": 3,
57
+ "raw_road": 7,
58
+ "road": 2,
59
+ "roof": 9,
60
+ "unlabeled": 0,
61
+ "wall": 6,
62
+ "wood": 5
63
+ },
64
+ "layer_norm_eps": 1e-06,
65
+ "mlp_ratios": [
66
+ 4,
67
+ 4,
68
+ 4,
69
+ 4
70
+ ],
71
+ "model_type": "segformer",
72
+ "num_attention_heads": [
73
+ 1,
74
+ 2,
75
+ 5,
76
+ 8
77
+ ],
78
+ "num_channels": 3,
79
+ "num_encoder_blocks": 4,
80
+ "patch_sizes": [
81
+ 7,
82
+ 3,
83
+ 3,
84
+ 3
85
+ ],
86
+ "reshape_last_stage": true,
87
+ "semantic_loss_ignore_index": 255,
88
+ "sr_ratios": [
89
+ 8,
90
+ 4,
91
+ 2,
92
+ 1
93
+ ],
94
+ "strides": [
95
+ 4,
96
+ 2,
97
+ 2,
98
+ 2
99
+ ],
100
+ "torch_dtype": "float32",
101
+ "transformers_version": "4.33.2"
102
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec7dff001c274a106a084c0c43c59ffd04bdf73f943c2590ededcc9732567c68
3
+ size 54796685
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3a1b2710ce2096d2a4a89d133441160f5892196c440b60ca35922ca7051246d
3
+ size 4155