ppo-LunarLander-v2 / config.json
MerlinTK's picture
Upload my first PPO model
cc143da
raw
history blame
14.5 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc62674da70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc62674db00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc62674db90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc62674dc20>", "_build": "<function ActorCriticPolicy._build at 0x7fc62674dcb0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc62674dd40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc62674ddd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc62674de60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc62674def0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc62674df80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc626752050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc62671b8d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655152517.131147, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAApk4bvgrEH7vA2Ia2hE+VsxJHHzzqJ641AACAPwAAgD9TwDi+17BpPDYuuDo/AfK4uncAvu727bkAAIA/AACAP/0Nnz6BzoA/oBUvPvujhL7Xns4+Lk/cvQAAAAAAAAAA5i1cPY9WXLpDb4O6FlhqtpxzkTnNYpc5AACAPwAAgD8zFsM8XP9OuhDKGzr8kdQ0Kkcmu2QNN7kAAIA/AACAP02aEj3hZtu6oauQPAAjnzz+4v27DMGIPQAAgD8AAIA/Guyyva6Bobrasxm4F4jXsyN11LlQwTg3AACAPwAAgD8ae0o+n0C7u8tFcDgGWcK1PbYfvfHSircAAIA/AACAP5r1jDxcZzu6mbFIu9XWO7UE+HK7jVVmOgAAgD8AAIA/YBVHvim8RznElhu4M85ENHhFFbz74jU3AACAPwAAgD89g4y+5OsvPkoDFT6LTki+lRCaPKXOAD0AAAAAAAAAAHPgf75IUfy6oqwEOJS8bjTjJkU8bxsbtwAAgD8AAIA/esg2vshc2Dteo1E6lXj/tyGAaL0gXXe5AACAPwAAgD9N3hW9XOt3uvovmDrN7ks0BORdu7FRrrkAAIA/AACAP82vR70K5Ww+SkNQvR0WDr5MBZq8cQmIPQAAAAAAAAAAjW3VvVyDOroagpo6DvfbNytvPzrbxky4AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/vLJiuH/WkCUhpRSlIwBbJRN6AOMAXSUR0CEsa5GSZBtdX2UKGgGaAloD0MIUFCKVu45X0CUhpRSlGgVTegDaBZHQIS1JHTZxrB1fZQoaAZoCWgPQwhj1SDM7Z4DQJSGlFKUaBVL+WgWR0CEt+92X9iudX2UKGgGaAloD0MIbD6uDRU+ZECUhpRSlGgVTegDaBZHQITAMYEW69V1fZQoaAZoCWgPQwii0/NuLGAxQJSGlFKUaBVL+GgWR0CEy+pLmITHdX2UKGgGaAloD0MIZHRAEva8U0CUhpRSlGgVTegDaBZHQITSYkHD7651fZQoaAZoCWgPQwhjCtY4m49hQJSGlFKUaBVN6ANoFkdAhNc7O3UhFHV9lChoBmgJaA9DCAa+olsvtmJAlIaUUpRoFU3oA2gWR0CE4I8YAKfGdX2UKGgGaAloD0MI0qkrn2UJYkCUhpRSlGgVTegDaBZHQITg54D9wWF1fZQoaAZoCWgPQwjSOT/FcUQ2QJSGlFKUaBVLumgWR0CE55cSGrS3dX2UKGgGaAloD0MIAad38f4VZECUhpRSlGgVTegDaBZHQITopDkU9IR1fZQoaAZoCWgPQwizXgzlxKdjQJSGlFKUaBVN6ANoFkdAhOrHqVyFPHV9lChoBmgJaA9DCDdxcr/D2GZAlIaUUpRoFU3oA2gWR0CE9ggJ1JUYdX2UKGgGaAloD0MIiSR6GUXrY0CUhpRSlGgVTegDaBZHQIT/mOIZZSx1fZQoaAZoCWgPQwhCJ4QOurQvwJSGlFKUaBVNMgFoFkdAhQP+BpYcN3V9lChoBmgJaA9DCBLeHoSATWBAlIaUUpRoFU3oA2gWR0CFHNf2K2rodX2UKGgGaAloD0MITMKFPIJGaUCUhpRSlGgVTa0BaBZHQIUiHJ1aGHp1fZQoaAZoCWgPQwgNVTGVfnxfQJSGlFKUaBVN6ANoFkdAhSO3XZoPCnV9lChoBmgJaA9DCJSl1vuN5mVAlIaUUpRoFU3oA2gWR0CFK4VO9FnadX2UKGgGaAloD0MI/OQoQBQTXUCUhpRSlGgVTegDaBZHQIUrkehf0Ep1fZQoaAZoCWgPQwhtIF1sWgFoQJSGlFKUaBVN6ANoFkdAhS8xGUfPonV9lChoBmgJaA9DCMO3sG68D2NAlIaUUpRoFU3oA2gWR0CFMnSpBHCodX2UKGgGaAloD0MId/NUh1xhY0CUhpRSlGgVTegDaBZHQIU8ixTsIE91fZQoaAZoCWgPQwgn9tA+VnhjQJSGlFKUaBVN6ANoFkdAhUtqyv9tM3V9lChoBmgJaA9DCI4fKo2Y5ThAlIaUUpRoFU0RAWgWR0CFVCPy08eTdX2UKGgGaAloD0MIKXXJOMZLYECUhpRSlGgVTegDaBZHQIVYTq0MPSV1fZQoaAZoCWgPQwjqz36kCG1gQJSGlFKUaBVN6ANoFkdAhWQevpyIYXV9lChoBmgJaA9DCEc5mE2A/VtAlIaUUpRoFU3oA2gWR0CFbPQ7cO9WdX2UKGgGaAloD0MIij20j5UHYECUhpRSlGgVTegDaBZHQIVuMedTYNB1fZQoaAZoCWgPQwiPxTapaMw7QJSGlFKUaBVNMAFoFkdAhjvLbHp8nnV9lChoBmgJaA9DCEGchxMYqGBAlIaUUpRoFU3oA2gWR0CGO/IMBp6AdX2UKGgGaAloD0MIfxXgu81JX0CUhpRSlGgVTegDaBZHQIZFhF1B+nZ1fZQoaAZoCWgPQwjpD808uaNZQJSGlFKUaBVN6ANoFkdAhkmeB6KLsXV9lChoBmgJaA9DCNXo1QClvTBAlIaUUpRoFU06AWgWR0CGUfOjZcs2dX2UKGgGaAloD0MIbvyJygYccECUhpRSlGgVTXcDaBZHQIZd2tCAtnR1fZQoaAZoCWgPQwhJERlWcQxkQJSGlFKUaBVN6ANoFkdAhl8fub7TD3V9lChoBmgJaA9DCMxFfCfm/mBAlIaUUpRoFU3oA2gWR0CGYvxXnyNGdX2UKGgGaAloD0MIHqm+84s2WUCUhpRSlGgVTegDaBZHQIZkIRywOe91fZQoaAZoCWgPQwixU6wahBNQQJSGlFKUaBVLtWgWR0CGZsh37k4ndX2UKGgGaAloD0MI0xbX+MxJZECUhpRSlGgVTegDaBZHQIZpyFTNt651fZQoaAZoCWgPQwgkKH6MuclaQJSGlFKUaBVN6ANoFkdAhm8/ub7TD3V9lChoBmgJaA9DCBUeNLvuP2RAlIaUUpRoFU3oA2gWR0CGd5JOFg2IdX2UKGgGaAloD0MIr+5YbJNaN0CUhpRSlGgVS95oFkdAhnrs5wOvuHV9lChoBmgJaA9DCJhsPNhiny9AlIaUUpRoFU0/AWgWR0CGfzxiG34LdX2UKGgGaAloD0MIF7ZmKy96YkCUhpRSlGgVTegDaBZHQIaDMB2fTTh1fZQoaAZoCWgPQwixUkFF1V5gQJSGlFKUaBVN6ANoFkdAho0Eona37XV9lChoBmgJaA9DCNXKhF/qymBAlIaUUpRoFU3oA2gWR0CGls3dbgTAdX2UKGgGaAloD0MIGk6Zm28lXECUhpRSlGgVTegDaBZHQIagA46wMYx1fZQoaAZoCWgPQwg6kPXUalBlQJSGlFKUaBVN6ANoFkdAhq/9l2/zrnV9lChoBmgJaA9DCDtUU5J1lGFAlIaUUpRoFU3oA2gWR0CGsCkzoEB9dX2UKGgGaAloD0MId2hYjDonY0CUhpRSlGgVTegDaBZHQIa5/rD63y91fZQoaAZoCWgPQwhVv9L58ANmQJSGlFKUaBVN6ANoFkdAhr4Jl8PWhHV9lChoBmgJaA9DCKpIhbGFDFpAlIaUUpRoFU3oA2gWR0CG0+w5eZ5SdX2UKGgGaAloD0MILEgzFk2xYUCUhpRSlGgVTegDaBZHQIbYXoNd7fJ1fZQoaAZoCWgPQwhxHHi1XAhkQJSGlFKUaBVN6ANoFkdAhtzte2NNrXV9lChoBmgJaA9DCFfrxOX4vWNAlIaUUpRoFU3oA2gWR0CG4JSG8EmqdX2UKGgGaAloD0MIkbkyqDalZUCUhpRSlGgVTegDaBZHQIbnB4hUzbh1fZQoaAZoCWgPQwhpAkUsYrJdQJSGlFKUaBVN6ANoFkdAhvCTV2A5JnV9lChoBmgJaA9DCOD0Lt4PaGFAlIaUUpRoFU3oA2gWR0CG9DIvrWy1dX2UKGgGaAloD0MIJ77aUZz/XkCUhpRSlGgVTegDaBZHQIb4nRgJC0F1fZQoaAZoCWgPQwhubkxP2EJkQJSGlFKUaBVN6ANoFkdAhvybzCk43nV9lChoBmgJaA9DCLtGy4EeiWNAlIaUUpRoFU3oA2gWR0CHBkNIbwSbdX2UKGgGaAloD0MIqoHmc+7HZkCUhpRSlGgVTegDaBZHQIcPbfJmukl1fZQoaAZoCWgPQwiYFvVJ7iJDQJSGlFKUaBVNJAFoFkdAhxFnNorWiHV9lChoBmgJaA9DCKewUkFFt2RAlIaUUpRoFU3oA2gWR0CHGCwW3z+WdX2UKGgGaAloD0MIYORlTaxRYECUhpRSlGgVTegDaBZHQIfk3/aQFLZ1fZQoaAZoCWgPQwgm/FI/77lgQJSGlFKUaBVN6ANoFkdAh+UXoTwlSnV9lChoBmgJaA9DCC/84HxqO2JAlIaUUpRoFU3oA2gWR0CH7gSnLq2SdX2UKGgGaAloD0MIfJi9bLs+ZUCUhpRSlGgVTegDaBZHQIfyD70nPVx1fZQoaAZoCWgPQwjY9Qt2wz42QJSGlFKUaBVNFwFoFkdAiAWwxN7BwnV9lChoBmgJaA9DCG5pNSRuoGdAlIaUUpRoFU3oA2gWR0CIBxcj7hvSdX2UKGgGaAloD0MIJh5QNmUfZkCUhpRSlGgVTegDaBZHQIgLEaIeo1l1fZQoaAZoCWgPQwilFkomJx1iQJSGlFKUaBVN6ANoFkdAiA9MNtqHoHV9lChoBmgJaA9DCK3CZoAL6WJAlIaUUpRoFU3oA2gWR0CIErN+LFXJdX2UKGgGaAloD0MIFOrpI3DqYkCUhpRSlGgVTegDaBZHQIgY3vhIe5p1fZQoaAZoCWgPQwjJHqFmyM5hQJSGlFKUaBVN6ANoFkdAiCWW2oegc3V9lChoBmgJaA9DCHEd44oL+GBAlIaUUpRoFU3oA2gWR0CIKkdpZfUndX2UKGgGaAloD0MIxooaTMM6XUCUhpRSlGgVTegDaBZHQIguZgPVd5Z1fZQoaAZoCWgPQwgaa39newA/QJSGlFKUaBVNIQFoFkdAiDOTru6VdHV9lChoBmgJaA9DCAVqMXiYlGRAlIaUUpRoFU3oA2gWR0CIOFdC3PRidX2UKGgGaAloD0MI2BGHbKCqYUCUhpRSlGgVTegDaBZHQIhB7ZamoBJ1fZQoaAZoCWgPQwj7QPLOoStfQJSGlFKUaBVN6ANoFkdAiEPf0VafSXV9lChoBmgJaA9DCNP3GoLjC2RAlIaUUpRoFU3oA2gWR0CISixYaHbidX2UKGgGaAloD0MI+RVruEh5YUCUhpRSlGgVTegDaBZHQIhYSh8IAwR1fZQoaAZoCWgPQwiqtwa2ylhiQJSGlFKUaBVN6ANoFkdAiGGmVZ9uxnV9lChoBmgJaA9DCDV/TGvTymdAlIaUUpRoFU3oA2gWR0CIZcCKaXrudX2UKGgGaAloD0MIa9eEtEanZECUhpRSlGgVTegDaBZHQIh6uaBqbjN1fZQoaAZoCWgPQwh+calKWzxlQJSGlFKUaBVN6ANoFkdAiHxLAgxJunV9lChoBmgJaA9DCFEWvr7WaVhAlIaUUpRoFU3oA2gWR0CIgKN2ki2VdX2UKGgGaAloD0MIxCKGHcZqY0CUhpRSlGgVTegDaBZHQIiE972L5yl1fZQoaAZoCWgPQwjmWN5Vj2ptQJSGlFKUaBVN4QJoFkdAiIYecYqG13V9lChoBmgJaA9DCPt5U5GKmmRAlIaUUpRoFU3oA2gWR0CIjoJqqOtGdX2UKGgGaAloD0MI7KUpApyoY0CUhpRSlGgVTegDaBZHQIibuipNsWR1fZQoaAZoCWgPQwj1nV+UoAlfQJSGlFKUaBVN6ANoFkdAiKBn6dlNDnV9lChoBmgJaA9DCHvdIjDWdm5AlIaUUpRoFU0MA2gWR0CIp3HyVfNSdX2UKGgGaAloD0MIiEz5EFQfZECUhpRSlGgVTegDaBZHQIiqkDnvDxd1fZQoaAZoCWgPQwjo3O16aVxdQJSGlFKUaBVN6ANoFkdAiK+RsdkrgHV9lChoBmgJaA9DCD6UaMljvmVAlIaUUpRoFU3oA2gWR0CIuUmAskIHdX2UKGgGaAloD0MIO/2gLtL7YUCUhpRSlGgVTegDaBZHQIi7XDziCJ51fZQoaAZoCWgPQwgMycnErYojQJSGlFKUaBVL8mgWR0CIyAt8uzyCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}