Safetensors
soumyatghosh's picture
Upload folder using huggingface_hub
4527b5f verified
"""
Module: preprocess.py
This module provides a preprocessing pipeline for single-cell RNA sequencing (scRNA-seq) data
stored in AnnData format. It includes functions for loading data, filtering cells and genes,
normalizing and scaling data, and saving processed results. The pipeline is designed to be
configurable via hyperparameters and supports various preprocessing steps such as mitochondrial
gene filtering, highly variable gene selection, and log transformation.
Main Features:
- Load and preprocess scRNA-seq data in AnnData format.
- Filter cells and genes based on various criteria.
- Normalize, scale, and log-transform data.
- Save processed data and metadata to disk.
- Configurable via JSON-based hyperparameters.
Dependencies:
- anndata, numpy, pandas, scanpy, scipy, sklearn
Usage:
- Run this script as a standalone program with a configuration file specifying the hyperparameters.
- Import the `preprocess` function and call it with the data path, metadata path, and hyperparameters.
"""
import gc
import json
import os
import warnings
from argparse import ArgumentParser
from typing import Sequence, Optional, Union
from pathlib import Path
import anndata as ad
import numpy as np
import pandas as pd
import scanpy as sc
from anndata import ImplicitModificationWarning
import scipy.sparse as sp
from scipy.sparse import csr_matrix, issparse
from sklearn.utils import sparsefuncs, sparsefuncs_fast
from teddy.data_processing.utils.gene_mapping.gene_mapper import (
map_mouse_human,
map_mouse_human2,
)
# --- 1. Reference list of the 37 human mitochondrial genes (Ensembl IDs) -----
_HUMAN_MITO_ENSEMBL= {
"ENSG00000211459", "ENSG00000210082", # rRNAs
# tRNAs (22)
"ENSG00000210049", "ENSG00000210077", "ENSG00000209082",
"ENSG00000210100", "ENSG00000210107", "ENSG00000210112",
"ENSG00000210119", "ENSG00000210122", "ENSG00000210116",
"ENSG00000210117", "ENSG00000210118", "ENSG00000210124",
"ENSG00000210126", "ENSG00000210134", "ENSG00000210135",
"ENSG00000210142", "ENSG00000210144", "ENSG00000210148",
"ENSG00000210150", "ENSG00000210155", "ENSG00000210196",
"ENSG00000210151",
# protein-coding (13)
"ENSG00000198888", "ENSG00000198763", "ENSG00000198840",
"ENSG00000198886", "ENSG00000212907", "ENSG00000198786",
"ENSG00000198695", "ENSG00000198804", "ENSG00000198712",
"ENSG00000198938", "ENSG00000198899", "ENSG00000228253",
"ENSG00000198727",
}
_HUMAN_MITO_SYMBOLS = {
"MT-RNR1", "MT-RNR2", "MT-TF", "MT-TV", "MT-TL1", "MT-TI", "MT-TQ",
"MT-TM", "MT-TW", "MT-TA", "MT-TN", "MT-TC", "MT-TY", "MT-TD", "MT-TK",
"MT-TG", "MT-TR", "MT-TH", "MT-TS2", "MT-TL2", "MT-TT", "MT-TE", "MT-TP",
"MT-TS1", "MT-ND1", "MT-ND2", "MT-ND3", "MT-ND4", "MT-ND4L", "MT-ND5",
"MT-ND6", "MT-CO1", "MT-CO2", "MT-CO3", "MT-ATP6", "MT-ATP8", "MT-CYB",
}
def load_data_and_metadata(data_path: str, metadata_path: str):
"""
Load an AnnData h5ad file (data_processing) and a JSON file (metadata).
"""
data = ad.read_h5ad(data_path)
with open(metadata_path, "r") as f:
metadata = json.load(f)
return data, metadata
def set_raw_if_necessary(data: ad.AnnData):
"""
If data_processing.raw is None, checks if data_processing.X is integer for ~64 cells.
If so, set data_processing.raw = data_processing. Otherwise return None (skip).
"""
if data.raw is not None:
return data # Already has raw
# If there is a 'counts' layer
if 'counts' in data.layers:
X = data.layers['counts']
# convert only 64 rows instead of converting the whole thing
if isinstance(X, np.ndarray):
X_sample = X[:64]
elif issparse(X):
X_sample = X[:64].toarray()
# Check first 64 rows for integrality
if np.all(np.equal(np.mod(X_sample, 1), 0)):
data.raw = ad.AnnData(X = data.layers['counts'], var = data.var.copy())
return data
# If above steps fail, check that data.X has raw counts already
X = data.X
# convert only 64 rows instead of converting the whole thing
if isinstance(X, np.ndarray):
X_sample = X[:64]
elif issparse(X):
X_sample = X[:64].toarray()
# Check first 64 rows for integrality
if np.all(np.equal(np.mod(X_sample, 1), 0)):
data.raw = data
return data
else:
print("No integer-valued matrix found")
return None
def initialize_processed_layer(data: ad.AnnData):
"""
If 'processed' layer is missing, copy from data_processing.raw.X
"""
if "processed" not in data.layers:
data.layers["processed"] = data.raw.X.astype("float32")
return data
# Replacing inline code with a small helper:
# (we simply inline the code from the original snippet)
# You can also fully factor it out for clarity:
# ---------------------------------------------------
# Actually let's define that properly here to keep it consistent:
def filter_reference_id(data: ad.AnnData, hyperparameters: dict):
human_map = pd.read_csv("teddy/data_processing/utils/gene_mapping/data/human_mapping.txt", sep="\t")
mouse_map = pd.read_csv("teddy/data_processing/utils/gene_mapping/data/2407_mouse_gene_mapping.txt", sep="\t")
orthologs = pd.read_csv(
"teddy/data_processing/utils/gene_mapping/data/mouse_to_human_orthologs.one2one.txt", sep="\t"
)
if hyperparameters.get("mouse_nonorthologs", False):
reference_id = map_mouse_human2(
data_frame=data.var,
query_column=None,
human_map_db=human_map,
mouse_map_db=mouse_map,
orthology_db=orthologs,
)["reference_id"]
else:
reference_id = map_mouse_human(
data_frame=data.var,
query_column=None,
human_map_db=human_map,
mouse_map_db=mouse_map,
orthology_db=orthologs,
)["reference_id"]
valid_mask = reference_id != ""
data = data[:, valid_mask].copy()
reference_id = reference_id[valid_mask].reset_index(drop=True)
if not isinstance(data.layers["processed"], np.ndarray):
corrected = data.layers["processed"].toarray()
else:
corrected = data.layers["processed"]
unique_ids = reference_id.unique()
vars_to_keep = []
for rid in unique_ids:
repeated_idx = np.where(reference_id == rid)[0]
vars_to_keep.append(repeated_idx[0])
if len(repeated_idx) > 1:
corrected[:, repeated_idx[0]] = corrected[:, repeated_idx].max(axis=1)
vars_to_keep = sorted(vars_to_keep)
corrected = corrected[:, vars_to_keep]
data = data[:, vars_to_keep]
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=ImplicitModificationWarning)
data.layers["processed"] = csr_matrix(corrected)
data.var["reference_id"] = list(reference_id[vars_to_keep])
gc.collect()
return data
# End of inline helper
# ---------------------------------------------------
def remove_assays(data: ad.AnnData, assays_to_remove: list):
"""
Removes observations from specified 'assay' categories if 'assay' is in data_processing.obs.
"""
data = data[~data.obs.assay.isin(assays_to_remove)].copy()
gc.collect()
return data
def filter_cells_by_gene_counts(data: ad.AnnData, min_count: int):
"""
Removes cells (observations) whose total gene counts < min_count.
"""
mask = sc.pp.filter_cells(data.layers["processed"], min_counts=min_count)[0]
data = data[np.where(mask)].copy()
del mask
gc.collect()
return data
def filter_cells_by_mitochondrial_fraction(data: ad.AnnData, max_mito_prop: float):
"""
Remove low-quality cells whose mitochondrial read fraction exceeds *max_fraction*.
DO NOT RUN THIS IN ANY PREPROCESSING PIPELINE UNTIL YOU HAVE SET RAW COUNTS
Parameters
----------
data
`AnnData` object containing counts. Works with dense or sparse matrices.
max_mito_prop
Threshold above which cells are discarded.
Returns
-------
AnnData
A **copy** of `data` with poor-quality cells removed and two new
columns added to ``.obs``:
- **mito_prop** – per-cell mitochondrial fraction
- **poor_quality_mito** – boolean flag marking dropped cells
"""
# We can safely assume that counts live in data.X because we set those
# prior to running this step in the preprocess function.
counts = data.X
var_index = data.var_names
if var_index[0].startswith("ENSG"):
ref = _HUMAN_MITO_ENSEMBL
else:
ref = _HUMAN_MITO_SYMBOLS
mito_idx = np.flatnonzero(var_index.isin(ref))
if mito_idx.size == 0:
_logger.info("No mitochondrial genes found, returning data")
return data
if sp.issparse(counts):
total = counts.sum(axis=1).A1
mito = counts[:, mito_idx].sum(axis=1).A1
else:
total = counts.sum(axis=1)
mito = counts[:, mito_idx].sum(axis=1)
mito_prop = mito / np.maximum(total, 1)
data.obs["mito_prop"] = mito_prop
data.obs["poor_quality_mito"] = mito_prop > max_mito_prop
filtered = data[~data.obs["poor_quality_mito"]].copy()
gc.collect()
return filtered
def filter_highly_variable_genes(data: ad.AnnData, method: str):
"""
Filter genes to those that are highly variable using scanpy.
method must be "seurat_v3" or "cell_ranger".
"""
if "highly_variable" in data.var:
data = data[:, data.var["highly_variable"]]
else:
sc.pp.highly_variable_genes(data, flavor=method, n_top_genes=10000)
gc.collect()
return data
def normalize_data_inplace(matrix_csr: csr_matrix, norm_value: float):
"""
In-place row normalization + scale. matrix_csr must be a CSR matrix.
"""
# In-place row normalize (L1)
sparsefuncs_fast.inplace_csr_row_normalize_l1(matrix_csr)
# Multiply each row by norm_value
scale_factors = np.array([norm_value] * matrix_csr.shape[0])
sparsefuncs.inplace_row_scale(matrix_csr, scale_factors)
gc.collect()
def scale_columns_by_median_dict(layer: csr_matrix, data: ad.AnnData, median_dict_path: str, median_column: str):
"""
Read a JSON median_dict, scale columns by 1/median. The lookup key is either
data_processing.var.index or data_processing.var[median_column].
"""
with open(median_dict_path) as f:
median_dict = json.load(f)
if median_column == "index":
median_var = data.var.index
else:
median_var = data.var[median_column]
factors = []
for g in median_var:
if g in median_dict:
factors.append(1.0 / median_dict[g])
else:
factors.append(1.0)
factors = np.array(factors)
# Apply in-place column scale
sparsefuncs.inplace_csr_column_scale(layer, factors)
def log_transform_layer(data: ad.AnnData, layer_name: str = "processed"):
"""
Apply sc.pp.log1p in place to data_processing.layers[layer_name].
"""
sc.pp.log1p(data, layer=layer_name, copy=False)
def compute_and_save_medians(data: ad.AnnData, data_path: str, hyperparameters: dict):
"""
Convert zeros to NaN, compute column medians ignoring NaN, and save results as JSON.
"""
with warnings.catch_warnings():
warnings.filterwarnings("ignore", r"All-NaN (slice|axis) encountered")
mat = data.layers["processed"].toarray()
mat[mat == 0] = np.nan
medians = np.nanmedian(mat, axis=0)
if hyperparameters["median_column"] == "index":
median_var = data.var.index.copy()
if not isinstance(median_var, pd.Series):
median_var = pd.Series(median_var)
else:
median_var = data.var[hyperparameters["median_column"]].copy()
valid_idxs = np.where(~np.isnan(medians))[0]
median_values = {median_var.iloc[k]: medians[k].item() for k in valid_idxs}
save_path = data_path.replace(hyperparameters["load_dir"], hyperparameters["save_dir"])
save_path = save_path.replace(".h5ad", "_medians.json")
with open(save_path, "w") as f:
json.dump(median_values, f, indent=4)
def update_metadata(metadata: dict, data: ad.AnnData, hyperparameters: dict):
"""
Update metadata with cell_count and track processing arguments.
"""
metadata["cell_count"] = data.n_obs
if "processing_args" in metadata:
metadata["processing_args"] = [metadata["processing_args"]] + [hyperparameters]
else:
# original fallback
metadata["processings_args"] = [hyperparameters]
return metadata
def save_and_cleanup(data: ad.AnnData, metadata: dict, data_path: str, metadata_path: str, hyperparameters: dict):
"""
Write processed data_processing and metadata to disk, then GC cleanup.
"""
load_dir = hyperparameters["load_dir"]
save_dir = hyperparameters["save_dir"]
data_filename = os.path.basename(data_path) # e.g. "sample_data.h5ad"
metadata_filename = os.path.basename(metadata_path) # e.g. "sample_data_metadata.json"
save_processed_path = os.path.join(save_dir, data_filename)
save_metadata_path = os.path.join(save_dir, metadata_filename)
# Make sure the directories exist
os.makedirs(os.path.dirname(save_processed_path), exist_ok=True)
os.makedirs(os.path.dirname(save_metadata_path), exist_ok=True)
if data.n_obs == 0:
return None, None
# Ensure relevant layers are sparse matrices
if not isinstance(data.raw.X, csr_matrix):
data.raw.X = csr_matrix(data.raw.X)
if not isinstance(data.X, csr_matrix):
data.X = csr_matrix(data.X)
if "processed" in data.layers and not isinstance(data.layers["processed"], csr_matrix):
data.layers["processed"] = csr_matrix(data.layers["processed"])
try:
data.write_h5ad(save_processed_path, compression="gzip")
except Exception:
# Rare bug with categorical indexes
if data.obs.index.name in data.obs.columns:
del data.obs[data.obs.index.name]
data.write_h5ad(save_processed_path, compression="gzip")
del data
gc.collect()
with open(save_metadata_path, "w") as f:
json.dump(metadata, f, indent=4)
return True, True
def preprocess(data_path: str, metadata_path: str, hyperparameters: dict):
"""
Original pipeline steps:
1. Load data_processing & metadata
2. Ensure data_processing.raw if counts are integer
3. Initialize 'processed' layer
4. Filter genes by reference_id
5. Remove assays
6. Filter cells (min gene counts)
7. Filter cells (max mito fraction)
8. HVG filtering
9. Normalize total
10. Median-based column scaling
11. Log transform
12. Compute medians (optional)
13. Update metadata and save
"""
# 1. Load
data, metadata = load_data_and_metadata(data_path, metadata_path)
# 2. Ensure data_processing.raw if needed
data = set_raw_if_necessary(data)
if data is None:
return None, None
# 3. Initialize 'processed'
data = initialize_processed_layer(data)
# Perturbseq fine-tuning pipeline
# 4. Possible map/reference_id
if hyperparameters["reference_id_only"]:
data = filter_reference_id(data, hyperparameters)
# 5. Remove assays
if "assay" in data.obs and hyperparameters["remove_assays"]:
data = remove_assays(data, hyperparameters["remove_assays"])
# 6. Filter cells by min gene counts
if hyperparameters["min_gene_counts"]:
data = filter_cells_by_gene_counts(data, hyperparameters["min_gene_counts"])
# 7. Filter cells by mitochondrial fraction
if hyperparameters["max_mitochondrial_prop"]:
# The "original" version *always* used feature_name, so fallback=False
data = filter_cells_by_mitochondrial_fraction(
data, hyperparameters["max_mitochondrial_prop"])
# 8. HVG filtering
if hyperparameters["hvg_method"] in ["seurat_v3", "cell_ranger"]:
data = filter_highly_variable_genes(data, hyperparameters["hvg_method"])
# 9. Normalize total (row L1 + scale)
if hyperparameters["normalized_total"]:
if not isinstance(data.layers["processed"], csr_matrix):
data.layers["processed"] = csr_matrix(data.layers["processed"])
normalize_data_inplace(data.layers["processed"], hyperparameters["normalized_total"])
# 10. Scale columns using median_dict
if hyperparameters["median_dict"]:
scale_columns_by_median_dict(
data.layers["processed"], data, hyperparameters["median_dict"], hyperparameters["median_column"]
)
# 11. Log1p transform
if hyperparameters["log1p"]:
log_transform_layer(data, "processed")
# 12. Possibly compute medians
if hyperparameters["compute_medians"]:
compute_and_save_medians(data, data_path, hyperparameters)
# 13. Update metadata, save & cleanup
metadata = update_metadata(metadata, data, hyperparameters)
return save_and_cleanup(data, metadata, data_path, metadata_path, hyperparameters)
###############################################################################
# Main block
###############################################################################
if __name__ == "__main__":
parser = ArgumentParser(description="Preprocess scRNA-seq data stored in AnnData format.")
parser.add_argument(
"--data_path",
type=str,
required=True,
help="Path to the input .h5ad file."
)
parser.add_argument(
"--metadata_path",
type=str,
required=True,
help="Path to the input metadata JSON file."
)
parser.add_argument(
"--config_path",
type=str,
required=True,
help="Path to the JSON configuration file containing hyperparameters."
)
args = parser.parse_args()
# Load hyperparameters from JSON
with open(args.config_path, "r") as f:
hyperparameters = json.load(f)
# Call the pipeline
success, _ = preprocess(
data_path=args.data_path,
metadata_path=args.metadata_path,
hyperparameters=hyperparameters
)
if success:
print("Preprocessing completed successfully.")
else:
print("Preprocessing returned no data (0 cells), no file saved.")