npvinHnivqn
commited on
Commit
•
7d36bc4
1
Parent(s):
ecb39f0
Update README file
Browse files
README.md
CHANGED
@@ -3,197 +3,76 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
## Original result
|
7 |
+
```
|
8 |
+
IoU metric: bbox
|
9 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
|
10 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
|
11 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
|
12 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
13 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
14 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
|
15 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
|
16 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.002
|
17 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.013
|
18 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
19 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
20 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.013
|
21 |
+
```
|
22 |
+
|
23 |
+
## After training result
|
24 |
+
```
|
25 |
+
IoU metric: bbox
|
26 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.025
|
27 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.053
|
28 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.021
|
29 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
30 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
31 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.025
|
32 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.070
|
33 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.133
|
34 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.154
|
35 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
36 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
37 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.155
|
38 |
+
```
|
39 |
+
|
40 |
+
## Config
|
41 |
+
- dataset: NIH
|
42 |
+
- original model: hustvl/yolos-tiny
|
43 |
+
- lr: 0.0001
|
44 |
+
- dropout_rate: 0.15
|
45 |
+
- weight_decay: 0.05
|
46 |
+
- max_epochs: 20
|
47 |
+
- train samples: 885
|
48 |
+
|
49 |
+
## Logging
|
50 |
+
### Training process
|
51 |
+
```
|
52 |
+
{'validation_loss': tensor(6.7559, device='cuda:0'), 'validation_loss_ce': tensor(2.5739, device='cuda:0'), 'validation_loss_bbox': tensor(0.4952, device='cuda:0'), 'validation_loss_giou': tensor(0.8531, device='cuda:0'), 'validation_cardinality_error': tensor(99., device='cuda:0')}
|
53 |
+
{'training_loss': tensor(2.4990, device='cuda:0'), 'train_loss_ce': tensor(0.4887, device='cuda:0'), 'train_loss_bbox': tensor(0.1862, device='cuda:0'), 'train_loss_giou': tensor(0.5398, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4497, device='cuda:0'), 'validation_loss_ce': tensor(0.4524, device='cuda:0'), 'validation_loss_bbox': tensor(0.1829, device='cuda:0'), 'validation_loss_giou': tensor(0.5414, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
54 |
+
{'training_loss': tensor(2.4763, device='cuda:0'), 'train_loss_ce': tensor(0.4236, device='cuda:0'), 'train_loss_bbox': tensor(0.1986, device='cuda:0'), 'train_loss_giou': tensor(0.5300, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2358, device='cuda:0'), 'validation_loss_ce': tensor(0.4386, device='cuda:0'), 'validation_loss_bbox': tensor(0.1531, device='cuda:0'), 'validation_loss_giou': tensor(0.5160, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
55 |
+
{'training_loss': tensor(2.0404, device='cuda:0'), 'train_loss_ce': tensor(0.4148, device='cuda:0'), 'train_loss_bbox': tensor(0.1398, device='cuda:0'), 'train_loss_giou': tensor(0.4634, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3295, device='cuda:0'), 'validation_loss_ce': tensor(0.4369, device='cuda:0'), 'validation_loss_bbox': tensor(0.1697, device='cuda:0'), 'validation_loss_giou': tensor(0.5220, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
56 |
+
{'training_loss': tensor(2.0230, device='cuda:0'), 'train_loss_ce': tensor(0.3600, device='cuda:0'), 'train_loss_bbox': tensor(0.1205, device='cuda:0'), 'train_loss_giou': tensor(0.5302, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2546, device='cuda:0'), 'validation_loss_ce': tensor(0.4068, device='cuda:0'), 'validation_loss_bbox': tensor(0.1611, device='cuda:0'), 'validation_loss_giou': tensor(0.5210, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
57 |
+
{'training_loss': tensor(2.1597, device='cuda:0'), 'train_loss_ce': tensor(0.4342, device='cuda:0'), 'train_loss_bbox': tensor(0.1431, device='cuda:0'), 'train_loss_giou': tensor(0.5049, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0929, device='cuda:0'), 'validation_loss_ce': tensor(0.4126, device='cuda:0'), 'validation_loss_bbox': tensor(0.1394, device='cuda:0'), 'validation_loss_giou': tensor(0.4916, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
58 |
+
{'training_loss': tensor(2.0645, device='cuda:0'), 'train_loss_ce': tensor(0.4740, device='cuda:0'), 'train_loss_bbox': tensor(0.1324, device='cuda:0'), 'train_loss_giou': tensor(0.4642, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2642, device='cuda:0'), 'validation_loss_ce': tensor(0.4195, device='cuda:0'), 'validation_loss_bbox': tensor(0.1665, device='cuda:0'), 'validation_loss_giou': tensor(0.5060, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
59 |
+
{'training_loss': tensor(1.7443, device='cuda:0'), 'train_loss_ce': tensor(0.3507, device='cuda:0'), 'train_loss_bbox': tensor(0.1351, device='cuda:0'), 'train_loss_giou': tensor(0.3591, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9930, device='cuda:0'), 'validation_loss_ce': tensor(0.4063, device='cuda:0'), 'validation_loss_bbox': tensor(0.1294, device='cuda:0'), 'validation_loss_giou': tensor(0.4698, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
60 |
+
{'training_loss': tensor(2.2440, device='cuda:0'), 'train_loss_ce': tensor(0.3884, device='cuda:0'), 'train_loss_bbox': tensor(0.1348, device='cuda:0'), 'train_loss_giou': tensor(0.5907, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0082, device='cuda:0'), 'validation_loss_ce': tensor(0.4112, device='cuda:0'), 'validation_loss_bbox': tensor(0.1296, device='cuda:0'), 'validation_loss_giou': tensor(0.4744, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
61 |
+
{'training_loss': tensor(1.7194, device='cuda:0'), 'train_loss_ce': tensor(0.3257, device='cuda:0'), 'train_loss_bbox': tensor(0.1185, device='cuda:0'), 'train_loss_giou': tensor(0.4007, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0462, device='cuda:0'), 'validation_loss_ce': tensor(0.4009, device='cuda:0'), 'validation_loss_bbox': tensor(0.1423, device='cuda:0'), 'validation_loss_giou': tensor(0.4670, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
62 |
+
{'training_loss': tensor(1.3192, device='cuda:0'), 'train_loss_ce': tensor(0.3495, device='cuda:0'), 'train_loss_bbox': tensor(0.1083, device='cuda:0'), 'train_loss_giou': tensor(0.2141, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0731, device='cuda:0'), 'validation_loss_ce': tensor(0.4010, device='cuda:0'), 'validation_loss_bbox': tensor(0.1389, device='cuda:0'), 'validation_loss_giou': tensor(0.4888, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
63 |
+
{'training_loss': tensor(2.5797, device='cuda:0'), 'train_loss_ce': tensor(0.4210, device='cuda:0'), 'train_loss_bbox': tensor(0.1568, device='cuda:0'), 'train_loss_giou': tensor(0.6874, device='cuda:0'), 'train_cardinality_error': tensor(1.4000, device='cuda:0'), 'validation_loss': tensor(2.1459, device='cuda:0'), 'validation_loss_ce': tensor(0.4006, device='cuda:0'), 'validation_loss_bbox': tensor(0.1465, device='cuda:0'), 'validation_loss_giou': tensor(0.5065, device='cuda:0'), 'validation_cardinality_error': tensor(0.9394, device='cuda:0')}
|
64 |
+
{'training_loss': tensor(1.9156, device='cuda:0'), 'train_loss_ce': tensor(0.3240, device='cuda:0'), 'train_loss_bbox': tensor(0.1310, device='cuda:0'), 'train_loss_giou': tensor(0.4683, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2520, device='cuda:0'), 'validation_loss_ce': tensor(0.3980, device='cuda:0'), 'validation_loss_bbox': tensor(0.1614, device='cuda:0'), 'validation_loss_giou': tensor(0.5236, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
65 |
+
{'training_loss': tensor(2.9559, device='cuda:0'), 'train_loss_ce': tensor(0.4028, device='cuda:0'), 'train_loss_bbox': tensor(0.2567, device='cuda:0'), 'train_loss_giou': tensor(0.6347, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4024, device='cuda:0'), 'validation_loss_ce': tensor(0.3812, device='cuda:0'), 'validation_loss_bbox': tensor(0.1705, device='cuda:0'), 'validation_loss_giou': tensor(0.5843, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
66 |
+
{'training_loss': tensor(2.1148, device='cuda:0'), 'train_loss_ce': tensor(0.4487, device='cuda:0'), 'train_loss_bbox': tensor(0.1306, device='cuda:0'), 'train_loss_giou': tensor(0.5065, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2119, device='cuda:0'), 'validation_loss_ce': tensor(0.3946, device='cuda:0'), 'validation_loss_bbox': tensor(0.1521, device='cuda:0'), 'validation_loss_giou': tensor(0.5285, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
67 |
+
{'training_loss': tensor(1.6145, device='cuda:0'), 'train_loss_ce': tensor(0.3484, device='cuda:0'), 'train_loss_bbox': tensor(0.0966, device='cuda:0'), 'train_loss_giou': tensor(0.3917, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2147, device='cuda:0'), 'validation_loss_ce': tensor(0.4000, device='cuda:0'), 'validation_loss_bbox': tensor(0.1524, device='cuda:0'), 'validation_loss_giou': tensor(0.5264, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
68 |
+
{'training_loss': tensor(2.4464, device='cuda:0'), 'train_loss_ce': tensor(0.3513, device='cuda:0'), 'train_loss_bbox': tensor(0.1503, device='cuda:0'), 'train_loss_giou': tensor(0.6718, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0945, device='cuda:0'), 'validation_loss_ce': tensor(0.3839, device='cuda:0'), 'validation_loss_bbox': tensor(0.1390, device='cuda:0'), 'validation_loss_giou': tensor(0.5079, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
69 |
+
{'training_loss': tensor(2.1035, device='cuda:0'), 'train_loss_ce': tensor(0.3531, device='cuda:0'), 'train_loss_bbox': tensor(0.1833, device='cuda:0'), 'train_loss_giou': tensor(0.4169, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0258, device='cuda:0'), 'validation_loss_ce': tensor(0.3667, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.4833, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
70 |
+
{'training_loss': tensor(1.8120, device='cuda:0'), 'train_loss_ce': tensor(0.3834, device='cuda:0'), 'train_loss_bbox': tensor(0.1274, device='cuda:0'), 'train_loss_giou': tensor(0.3959, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0069, device='cuda:0'), 'validation_loss_ce': tensor(0.3738, device='cuda:0'), 'validation_loss_bbox': tensor(0.1400, device='cuda:0'), 'validation_loss_giou': tensor(0.4665, device='cuda:0'), 'validation_cardinality_error': tensor(0.9697, device='cuda:0')}
|
71 |
+
{'training_loss': tensor(1.2792, device='cuda:0'), 'train_loss_ce': tensor(0.3943, device='cuda:0'), 'train_loss_bbox': tensor(0.0620, device='cuda:0'), 'train_loss_giou': tensor(0.2874, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(1.9124, device='cuda:0'), 'validation_loss_ce': tensor(0.3761, device='cuda:0'), 'validation_loss_bbox': tensor(0.1317, device='cuda:0'), 'validation_loss_giou': tensor(0.4388, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
72 |
+
{'training_loss': tensor(1.8847, device='cuda:0'), 'train_loss_ce': tensor(0.3796, device='cuda:0'), 'train_loss_bbox': tensor(0.1281, device='cuda:0'), 'train_loss_giou': tensor(0.4323, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.0097, device='cuda:0'), 'validation_loss_ce': tensor(0.3599, device='cuda:0'), 'validation_loss_bbox': tensor(0.1377, device='cuda:0'), 'validation_loss_giou': tensor(0.4806, device='cuda:0'), 'validation_cardinality_error': tensor(0.6263, device='cuda:0')}
|
73 |
+
```
|
74 |
+
|
75 |
+
## Examples
|
76 |
+
{'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}
|
77 |
+
|
78 |
+
![Example](./example.png)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|