jason-mrtw commited on
Commit
fcdaa9b
·
verified ·
1 Parent(s): bbd2417

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "/home/mtk01/cs/hf_models_8B/stage2/Breeze_VL_stage2_epoch1_hq",
4
+ "architectures": [
5
+ "InternVLChatModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
10
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
11
+ },
12
+ "downsample_ratio": 0.5,
13
+ "dynamic_image_size": true,
14
+ "force_image_size": 448,
15
+ "hidden_size": 4096,
16
+ "llm_config": {
17
+ "_name_or_path": "/home/mtk01/cs/llama31_8b_run6/",
18
+ "add_cross_attention": false,
19
+ "architectures": [
20
+ "LlamaForCausalLM"
21
+ ],
22
+ "attention_bias": false,
23
+ "attention_dropout": 0.0,
24
+ "bad_words_ids": null,
25
+ "begin_suppress_tokens": null,
26
+ "bos_token_id": 128000,
27
+ "chunk_size_feed_forward": 0,
28
+ "cross_attention_hidden_size": null,
29
+ "decoder_start_token_id": null,
30
+ "diversity_penalty": 0.0,
31
+ "do_sample": false,
32
+ "early_stopping": false,
33
+ "encoder_no_repeat_ngram_size": 0,
34
+ "eos_token_id": 128009,
35
+ "exponential_decay_length_penalty": null,
36
+ "finetuning_task": null,
37
+ "forced_bos_token_id": null,
38
+ "forced_eos_token_id": null,
39
+ "head_dim": 128,
40
+ "hidden_act": "silu",
41
+ "hidden_size": 4096,
42
+ "id2label": {
43
+ "0": "LABEL_0",
44
+ "1": "LABEL_1"
45
+ },
46
+ "initializer_range": 0.02,
47
+ "intermediate_size": 14336,
48
+ "is_decoder": false,
49
+ "is_encoder_decoder": false,
50
+ "label2id": {
51
+ "LABEL_0": 0,
52
+ "LABEL_1": 1
53
+ },
54
+ "length_penalty": 1.0,
55
+ "max_length": 20,
56
+ "max_position_embeddings": 131072,
57
+ "min_length": 0,
58
+ "mlp_bias": false,
59
+ "model_type": "llama",
60
+ "no_repeat_ngram_size": 0,
61
+ "num_attention_heads": 32,
62
+ "num_beam_groups": 1,
63
+ "num_beams": 1,
64
+ "num_hidden_layers": 32,
65
+ "num_key_value_heads": 8,
66
+ "num_return_sequences": 1,
67
+ "output_attentions": false,
68
+ "output_hidden_states": false,
69
+ "output_scores": false,
70
+ "pad_token_id": null,
71
+ "prefix": null,
72
+ "pretraining_tp": 1,
73
+ "problem_type": null,
74
+ "pruned_heads": {},
75
+ "remove_invalid_values": false,
76
+ "repetition_penalty": 1.0,
77
+ "return_dict": true,
78
+ "return_dict_in_generate": false,
79
+ "rms_norm_eps": 1e-05,
80
+ "rope_scaling": {
81
+ "factor": 8.0,
82
+ "high_freq_factor": 4.0,
83
+ "low_freq_factor": 1.0,
84
+ "original_max_position_embeddings": 8192,
85
+ "rope_type": "llama3"
86
+ },
87
+ "rope_theta": 500000.0,
88
+ "sep_token_id": null,
89
+ "suppress_tokens": null,
90
+ "task_specific_params": null,
91
+ "temperature": 1.0,
92
+ "tf_legacy_loss": false,
93
+ "tie_encoder_decoder": false,
94
+ "tie_word_embeddings": false,
95
+ "tokenizer_class": null,
96
+ "top_k": 50,
97
+ "top_p": 1.0,
98
+ "torch_dtype": "bfloat16",
99
+ "torchscript": false,
100
+ "transformers_version": "4.44.2",
101
+ "typical_p": 1.0,
102
+ "use_bfloat16": false,
103
+ "use_cache": false,
104
+ "vocab_size": 128256
105
+ },
106
+ "max_dynamic_patch": 12,
107
+ "min_dynamic_patch": 1,
108
+ "model_type": "internvl_chat",
109
+ "pad2square": false,
110
+ "ps_version": "v2",
111
+ "select_layer": -1,
112
+ "template": "internlm2-chat",
113
+ "tie_word_embeddings": false,
114
+ "torch_dtype": "bfloat16",
115
+ "transformers_version": null,
116
+ "use_backbone_lora": 0,
117
+ "use_llm_lora": 0,
118
+ "use_thumbnail": true,
119
+ "vision_config": {
120
+ "_name_or_path": "",
121
+ "add_cross_attention": false,
122
+ "architectures": [
123
+ "InternVisionModel"
124
+ ],
125
+ "attention_dropout": 0.0,
126
+ "auto_map": {
127
+ "AutoConfig": "configuration_intern_vit.InternVisionConfig",
128
+ "AutoModel": "modeling_intern_vit.InternVisionModel"
129
+ },
130
+ "bad_words_ids": null,
131
+ "begin_suppress_tokens": null,
132
+ "bos_token_id": null,
133
+ "chunk_size_feed_forward": 0,
134
+ "cross_attention_hidden_size": null,
135
+ "decoder_start_token_id": null,
136
+ "diversity_penalty": 0.0,
137
+ "do_sample": false,
138
+ "drop_path_rate": 0.1,
139
+ "dropout": 0.0,
140
+ "early_stopping": false,
141
+ "encoder_no_repeat_ngram_size": 0,
142
+ "eos_token_id": null,
143
+ "exponential_decay_length_penalty": null,
144
+ "finetuning_task": null,
145
+ "forced_bos_token_id": null,
146
+ "forced_eos_token_id": null,
147
+ "hidden_act": "gelu",
148
+ "hidden_size": 1024,
149
+ "id2label": {
150
+ "0": "LABEL_0",
151
+ "1": "LABEL_1"
152
+ },
153
+ "image_size": 448,
154
+ "initializer_factor": 1.0,
155
+ "initializer_range": 0.02,
156
+ "intermediate_size": 4096,
157
+ "is_decoder": false,
158
+ "is_encoder_decoder": false,
159
+ "label2id": {
160
+ "LABEL_0": 0,
161
+ "LABEL_1": 1
162
+ },
163
+ "layer_norm_eps": 1e-06,
164
+ "length_penalty": 1.0,
165
+ "max_length": 20,
166
+ "min_length": 0,
167
+ "model_type": "intern_vit_6b",
168
+ "no_repeat_ngram_size": 0,
169
+ "norm_type": "layer_norm",
170
+ "num_attention_heads": 16,
171
+ "num_beam_groups": 1,
172
+ "num_beams": 1,
173
+ "num_channels": 3,
174
+ "num_hidden_layers": 24,
175
+ "num_return_sequences": 1,
176
+ "output_attentions": false,
177
+ "output_hidden_states": false,
178
+ "output_scores": false,
179
+ "pad_token_id": null,
180
+ "patch_size": 14,
181
+ "prefix": null,
182
+ "problem_type": null,
183
+ "pruned_heads": {},
184
+ "qk_normalization": false,
185
+ "qkv_bias": true,
186
+ "remove_invalid_values": false,
187
+ "repetition_penalty": 1.0,
188
+ "return_dict": true,
189
+ "return_dict_in_generate": false,
190
+ "sep_token_id": null,
191
+ "suppress_tokens": null,
192
+ "task_specific_params": null,
193
+ "temperature": 1.0,
194
+ "tf_legacy_loss": false,
195
+ "tie_encoder_decoder": false,
196
+ "tie_word_embeddings": true,
197
+ "tokenizer_class": null,
198
+ "top_k": 50,
199
+ "top_p": 1.0,
200
+ "torch_dtype": "bfloat16",
201
+ "torchscript": false,
202
+ "transformers_version": "4.44.2",
203
+ "typical_p": 1.0,
204
+ "use_bfloat16": false,
205
+ "use_flash_attn": true
206
+ }
207
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
configuration_internvl_chat.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig, Qwen2Config, MistralConfig
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+
15
+ logger = logging.get_logger(__name__)
16
+
17
+
18
+ class InternVLChatConfig(PretrainedConfig):
19
+ model_type = 'internvl_chat'
20
+ is_composition = True
21
+
22
+ def __init__(
23
+ self,
24
+ vision_config=None,
25
+ llm_config=None,
26
+ use_backbone_lora=0,
27
+ use_llm_lora=0,
28
+ select_layer=-1,
29
+ force_image_size=None,
30
+ downsample_ratio=0.5,
31
+ template=None,
32
+ dynamic_image_size=False,
33
+ use_thumbnail=False,
34
+ ps_version='v1',
35
+ min_dynamic_patch=1,
36
+ max_dynamic_patch=6,
37
+ **kwargs):
38
+ super().__init__(**kwargs)
39
+
40
+ if vision_config is None:
41
+ vision_config = {}
42
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
43
+
44
+ if llm_config is None:
45
+ llm_config = {}
46
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
47
+
48
+ self.vision_config = InternVisionConfig(**vision_config)
49
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
50
+ self.llm_config = LlamaConfig(**llm_config)
51
+ elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
52
+ self.llm_config = Qwen2Config(**llm_config)
53
+ elif llm_config['architectures'][0] == 'MistralForCausalLM':
54
+ self.llm_config = MistralConfig(**llm_config)
55
+ else:
56
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
57
+ self.use_backbone_lora = use_backbone_lora
58
+ self.use_llm_lora = use_llm_lora
59
+ self.select_layer = select_layer
60
+ self.force_image_size = force_image_size
61
+ self.downsample_ratio = downsample_ratio
62
+ self.template = template
63
+ self.dynamic_image_size = dynamic_image_size
64
+ self.use_thumbnail = use_thumbnail
65
+ self.ps_version = ps_version # pixel shuffle version
66
+ self.min_dynamic_patch = min_dynamic_patch
67
+ self.max_dynamic_patch = max_dynamic_patch
68
+
69
+ logger.info(f'vision_select_layer: {self.select_layer}')
70
+ logger.info(f'ps_version: {self.ps_version}')
71
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
72
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
73
+
74
+ def to_dict(self):
75
+ """
76
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
77
+
78
+ Returns:
79
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
80
+ """
81
+ output = copy.deepcopy(self.__dict__)
82
+ output['vision_config'] = self.vision_config.to_dict()
83
+ output['llm_config'] = self.llm_config.to_dict()
84
+ output['model_type'] = self.__class__.model_type
85
+ output['use_backbone_lora'] = self.use_backbone_lora
86
+ output['use_llm_lora'] = self.use_llm_lora
87
+ output['select_layer'] = self.select_layer
88
+ output['force_image_size'] = self.force_image_size
89
+ output['downsample_ratio'] = self.downsample_ratio
90
+ output['template'] = self.template
91
+ output['dynamic_image_size'] = self.dynamic_image_size
92
+ output['use_thumbnail'] = self.use_thumbnail
93
+ output['ps_version'] = self.ps_version
94
+ output['min_dynamic_patch'] = self.min_dynamic_patch
95
+ output['max_dynamic_patch'] = self.max_dynamic_patch
96
+
97
+ return output
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.44.2"
4
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd8ea345c5dafd70b0ee50dc78e8701081a2e7cb280fe7553918e803c2cb5d75
3
+ size 4913641320
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12b426b0f63b4105514318f82acf88014867a060c1aea28962d39af028c7850b
3
+ size 4915917648
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52d3e3c101706349f621c20adc2b40525a7f64d8c7b43498fe8f413a215990bb
3
+ size 4999820928
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37982cb28c1485de237b93c01d0c09d4c4df7753aa13201cee3044dcce7160fc
3
+ size 1906387512
model.safetensors.index.json ADDED
@@ -0,0 +1,644 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16735688704
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "language_model.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
99
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
100
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
103
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
108
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
109
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
110
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
111
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
112
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
113
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
114
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
115
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
116
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
128
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
131
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
132
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
133
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
134
+ "language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "language_model.model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "language_model.model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "language_model.model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
225
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
226
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
227
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
228
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
229
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "language_model.model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
235
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
236
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
237
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
238
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
239
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
240
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
241
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
242
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
270
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
271
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
273
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
274
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
279
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
280
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
281
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
282
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
283
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
284
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
285
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
286
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
287
+ "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
290
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
293
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
295
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
296
+ "language_model.model.norm.weight": "model-00004-of-00004.safetensors",
297
+ "mlp1.0.bias": "model-00004-of-00004.safetensors",
298
+ "mlp1.0.weight": "model-00004-of-00004.safetensors",
299
+ "mlp1.1.bias": "model-00004-of-00004.safetensors",
300
+ "mlp1.1.weight": "model-00004-of-00004.safetensors",
301
+ "mlp1.3.bias": "model-00004-of-00004.safetensors",
302
+ "mlp1.3.weight": "model-00004-of-00004.safetensors",
303
+ "vision_model.embeddings.class_embedding": "model-00001-of-00004.safetensors",
304
+ "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00004.safetensors",
305
+ "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
306
+ "vision_model.embeddings.position_embedding": "model-00001-of-00004.safetensors",
307
+ "vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00004.safetensors",
308
+ "vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00004.safetensors",
309
+ "vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
310
+ "vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
311
+ "vision_model.encoder.layers.0.ls1": "model-00001-of-00004.safetensors",
312
+ "vision_model.encoder.layers.0.ls2": "model-00001-of-00004.safetensors",
313
+ "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
314
+ "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
315
+ "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
316
+ "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
317
+ "vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00004.safetensors",
318
+ "vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00004.safetensors",
319
+ "vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00004.safetensors",
320
+ "vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00004.safetensors",
321
+ "vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00004.safetensors",
322
+ "vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00004.safetensors",
323
+ "vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
324
+ "vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
325
+ "vision_model.encoder.layers.1.ls1": "model-00001-of-00004.safetensors",
326
+ "vision_model.encoder.layers.1.ls2": "model-00001-of-00004.safetensors",
327
+ "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
328
+ "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
329
+ "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
330
+ "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
331
+ "vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00004.safetensors",
332
+ "vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00004.safetensors",
333
+ "vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00004.safetensors",
334
+ "vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00004.safetensors",
335
+ "vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00004.safetensors",
336
+ "vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00004.safetensors",
337
+ "vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
338
+ "vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
339
+ "vision_model.encoder.layers.10.ls1": "model-00001-of-00004.safetensors",
340
+ "vision_model.encoder.layers.10.ls2": "model-00001-of-00004.safetensors",
341
+ "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
342
+ "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
343
+ "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
344
+ "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
345
+ "vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00004.safetensors",
346
+ "vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00004.safetensors",
347
+ "vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00004.safetensors",
348
+ "vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00004.safetensors",
349
+ "vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00004.safetensors",
350
+ "vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00004.safetensors",
351
+ "vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
352
+ "vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
353
+ "vision_model.encoder.layers.11.ls1": "model-00001-of-00004.safetensors",
354
+ "vision_model.encoder.layers.11.ls2": "model-00001-of-00004.safetensors",
355
+ "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
356
+ "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
357
+ "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
358
+ "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
359
+ "vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00004.safetensors",
360
+ "vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00004.safetensors",
361
+ "vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00004.safetensors",
362
+ "vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00004.safetensors",
363
+ "vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00004.safetensors",
364
+ "vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00004.safetensors",
365
+ "vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
366
+ "vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
367
+ "vision_model.encoder.layers.12.ls1": "model-00001-of-00004.safetensors",
368
+ "vision_model.encoder.layers.12.ls2": "model-00001-of-00004.safetensors",
369
+ "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
370
+ "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
371
+ "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
372
+ "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
373
+ "vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00004.safetensors",
374
+ "vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00004.safetensors",
375
+ "vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00004.safetensors",
376
+ "vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00004.safetensors",
377
+ "vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00004.safetensors",
378
+ "vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00004.safetensors",
379
+ "vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
380
+ "vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
381
+ "vision_model.encoder.layers.13.ls1": "model-00001-of-00004.safetensors",
382
+ "vision_model.encoder.layers.13.ls2": "model-00001-of-00004.safetensors",
383
+ "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
384
+ "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
385
+ "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
386
+ "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
387
+ "vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00004.safetensors",
388
+ "vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00004.safetensors",
389
+ "vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00004.safetensors",
390
+ "vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00004.safetensors",
391
+ "vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00004.safetensors",
392
+ "vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00004.safetensors",
393
+ "vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
394
+ "vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
395
+ "vision_model.encoder.layers.14.ls1": "model-00001-of-00004.safetensors",
396
+ "vision_model.encoder.layers.14.ls2": "model-00001-of-00004.safetensors",
397
+ "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
398
+ "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
399
+ "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
400
+ "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
401
+ "vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00004.safetensors",
402
+ "vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00004.safetensors",
403
+ "vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00004.safetensors",
404
+ "vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00004.safetensors",
405
+ "vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00004.safetensors",
406
+ "vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00004.safetensors",
407
+ "vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
408
+ "vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
409
+ "vision_model.encoder.layers.15.ls1": "model-00001-of-00004.safetensors",
410
+ "vision_model.encoder.layers.15.ls2": "model-00001-of-00004.safetensors",
411
+ "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
412
+ "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
413
+ "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
414
+ "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
415
+ "vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00004.safetensors",
416
+ "vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00004.safetensors",
417
+ "vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00004.safetensors",
418
+ "vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00004.safetensors",
419
+ "vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00004.safetensors",
420
+ "vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00004.safetensors",
421
+ "vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
422
+ "vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
423
+ "vision_model.encoder.layers.16.ls1": "model-00001-of-00004.safetensors",
424
+ "vision_model.encoder.layers.16.ls2": "model-00001-of-00004.safetensors",
425
+ "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
426
+ "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
427
+ "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
428
+ "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
429
+ "vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00004.safetensors",
430
+ "vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00004.safetensors",
431
+ "vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00004.safetensors",
432
+ "vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00004.safetensors",
433
+ "vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00004.safetensors",
434
+ "vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00004.safetensors",
435
+ "vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
436
+ "vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
437
+ "vision_model.encoder.layers.17.ls1": "model-00001-of-00004.safetensors",
438
+ "vision_model.encoder.layers.17.ls2": "model-00001-of-00004.safetensors",
439
+ "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
440
+ "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
441
+ "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
442
+ "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
443
+ "vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00004.safetensors",
444
+ "vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00004.safetensors",
445
+ "vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00004.safetensors",
446
+ "vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00004.safetensors",
447
+ "vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00004.safetensors",
448
+ "vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00004.safetensors",
449
+ "vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
450
+ "vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
451
+ "vision_model.encoder.layers.18.ls1": "model-00001-of-00004.safetensors",
452
+ "vision_model.encoder.layers.18.ls2": "model-00001-of-00004.safetensors",
453
+ "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
454
+ "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
455
+ "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
456
+ "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
457
+ "vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00004.safetensors",
458
+ "vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00004.safetensors",
459
+ "vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00004.safetensors",
460
+ "vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00004.safetensors",
461
+ "vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00004.safetensors",
462
+ "vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00004.safetensors",
463
+ "vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
464
+ "vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
465
+ "vision_model.encoder.layers.19.ls1": "model-00001-of-00004.safetensors",
466
+ "vision_model.encoder.layers.19.ls2": "model-00001-of-00004.safetensors",
467
+ "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
468
+ "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
469
+ "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
470
+ "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
471
+ "vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00004.safetensors",
472
+ "vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00004.safetensors",
473
+ "vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00004.safetensors",
474
+ "vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00004.safetensors",
475
+ "vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00004.safetensors",
476
+ "vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00004.safetensors",
477
+ "vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
478
+ "vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
479
+ "vision_model.encoder.layers.2.ls1": "model-00001-of-00004.safetensors",
480
+ "vision_model.encoder.layers.2.ls2": "model-00001-of-00004.safetensors",
481
+ "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
482
+ "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
483
+ "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
484
+ "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
485
+ "vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00004.safetensors",
486
+ "vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00004.safetensors",
487
+ "vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00004.safetensors",
488
+ "vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00004.safetensors",
489
+ "vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00004.safetensors",
490
+ "vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00004.safetensors",
491
+ "vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
492
+ "vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
493
+ "vision_model.encoder.layers.20.ls1": "model-00001-of-00004.safetensors",
494
+ "vision_model.encoder.layers.20.ls2": "model-00001-of-00004.safetensors",
495
+ "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
496
+ "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
497
+ "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
498
+ "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
499
+ "vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00004.safetensors",
500
+ "vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00004.safetensors",
501
+ "vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00004.safetensors",
502
+ "vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00004.safetensors",
503
+ "vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00004.safetensors",
504
+ "vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00004.safetensors",
505
+ "vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
506
+ "vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
507
+ "vision_model.encoder.layers.21.ls1": "model-00001-of-00004.safetensors",
508
+ "vision_model.encoder.layers.21.ls2": "model-00001-of-00004.safetensors",
509
+ "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
510
+ "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
511
+ "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
512
+ "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
513
+ "vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00004.safetensors",
514
+ "vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00004.safetensors",
515
+ "vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00004.safetensors",
516
+ "vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00004.safetensors",
517
+ "vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00004.safetensors",
518
+ "vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00004.safetensors",
519
+ "vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
520
+ "vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
521
+ "vision_model.encoder.layers.22.ls1": "model-00001-of-00004.safetensors",
522
+ "vision_model.encoder.layers.22.ls2": "model-00001-of-00004.safetensors",
523
+ "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
524
+ "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
525
+ "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
526
+ "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
527
+ "vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00004.safetensors",
528
+ "vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00004.safetensors",
529
+ "vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00004.safetensors",
530
+ "vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00004.safetensors",
531
+ "vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00004.safetensors",
532
+ "vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00004.safetensors",
533
+ "vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
534
+ "vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
535
+ "vision_model.encoder.layers.23.ls1": "model-00001-of-00004.safetensors",
536
+ "vision_model.encoder.layers.23.ls2": "model-00001-of-00004.safetensors",
537
+ "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
538
+ "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
539
+ "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
540
+ "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
541
+ "vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00004.safetensors",
542
+ "vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00004.safetensors",
543
+ "vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00004.safetensors",
544
+ "vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00004.safetensors",
545
+ "vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00004.safetensors",
546
+ "vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00004.safetensors",
547
+ "vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
548
+ "vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
549
+ "vision_model.encoder.layers.3.ls1": "model-00001-of-00004.safetensors",
550
+ "vision_model.encoder.layers.3.ls2": "model-00001-of-00004.safetensors",
551
+ "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
552
+ "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
553
+ "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
554
+ "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
555
+ "vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00004.safetensors",
556
+ "vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00004.safetensors",
557
+ "vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00004.safetensors",
558
+ "vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00004.safetensors",
559
+ "vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00004.safetensors",
560
+ "vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00004.safetensors",
561
+ "vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
562
+ "vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
563
+ "vision_model.encoder.layers.4.ls1": "model-00001-of-00004.safetensors",
564
+ "vision_model.encoder.layers.4.ls2": "model-00001-of-00004.safetensors",
565
+ "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
566
+ "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
567
+ "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
568
+ "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
569
+ "vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00004.safetensors",
570
+ "vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00004.safetensors",
571
+ "vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00004.safetensors",
572
+ "vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00004.safetensors",
573
+ "vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00004.safetensors",
574
+ "vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00004.safetensors",
575
+ "vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
576
+ "vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
577
+ "vision_model.encoder.layers.5.ls1": "model-00001-of-00004.safetensors",
578
+ "vision_model.encoder.layers.5.ls2": "model-00001-of-00004.safetensors",
579
+ "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
580
+ "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
581
+ "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
582
+ "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
583
+ "vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00004.safetensors",
584
+ "vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00004.safetensors",
585
+ "vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00004.safetensors",
586
+ "vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00004.safetensors",
587
+ "vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00004.safetensors",
588
+ "vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00004.safetensors",
589
+ "vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
590
+ "vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
591
+ "vision_model.encoder.layers.6.ls1": "model-00001-of-00004.safetensors",
592
+ "vision_model.encoder.layers.6.ls2": "model-00001-of-00004.safetensors",
593
+ "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
594
+ "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
595
+ "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
596
+ "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
597
+ "vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00004.safetensors",
598
+ "vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00004.safetensors",
599
+ "vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00004.safetensors",
600
+ "vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00004.safetensors",
601
+ "vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00004.safetensors",
602
+ "vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00004.safetensors",
603
+ "vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
604
+ "vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
605
+ "vision_model.encoder.layers.7.ls1": "model-00001-of-00004.safetensors",
606
+ "vision_model.encoder.layers.7.ls2": "model-00001-of-00004.safetensors",
607
+ "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
608
+ "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
609
+ "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
610
+ "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
611
+ "vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00004.safetensors",
612
+ "vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00004.safetensors",
613
+ "vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00004.safetensors",
614
+ "vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00004.safetensors",
615
+ "vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00004.safetensors",
616
+ "vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00004.safetensors",
617
+ "vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
618
+ "vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
619
+ "vision_model.encoder.layers.8.ls1": "model-00001-of-00004.safetensors",
620
+ "vision_model.encoder.layers.8.ls2": "model-00001-of-00004.safetensors",
621
+ "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
622
+ "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
623
+ "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
624
+ "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
625
+ "vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00004.safetensors",
626
+ "vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00004.safetensors",
627
+ "vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00004.safetensors",
628
+ "vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00004.safetensors",
629
+ "vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00004.safetensors",
630
+ "vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00004.safetensors",
631
+ "vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
632
+ "vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
633
+ "vision_model.encoder.layers.9.ls1": "model-00001-of-00004.safetensors",
634
+ "vision_model.encoder.layers.9.ls2": "model-00001-of-00004.safetensors",
635
+ "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
636
+ "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
637
+ "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
638
+ "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
639
+ "vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00004.safetensors",
640
+ "vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00004.safetensors",
641
+ "vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00004.safetensors",
642
+ "vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00004.safetensors"
643
+ }
644
+ }
modeling_intern_vit.py ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ from typing import Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from einops import rearrange
12
+ from timm.models.layers import DropPath
13
+ from torch import nn
14
+ from transformers.activations import ACT2FN
15
+ from transformers.modeling_outputs import (BaseModelOutput,
16
+ BaseModelOutputWithPooling)
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import logging
19
+
20
+ from .configuration_intern_vit import InternVisionConfig
21
+
22
+ try:
23
+ from flash_attn.bert_padding import pad_input, unpad_input
24
+ from flash_attn.flash_attn_interface import \
25
+ flash_attn_varlen_qkvpacked_func
26
+ has_flash_attn = True
27
+ except:
28
+ print('FlashAttention2 is not installed.')
29
+ has_flash_attn = False
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+
34
+ class FlashAttention(nn.Module):
35
+ """Implement the scaled dot product attention with softmax.
36
+ Arguments
37
+ ---------
38
+ softmax_scale: The temperature to use for the softmax attention.
39
+ (default: 1/sqrt(d_keys) where d_keys is computed at
40
+ runtime)
41
+ attention_dropout: The dropout rate to apply to the attention
42
+ (default: 0.0)
43
+ """
44
+
45
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
46
+ super().__init__()
47
+ self.softmax_scale = softmax_scale
48
+ self.dropout_p = attention_dropout
49
+
50
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
51
+ max_s=None, need_weights=False):
52
+ """Implements the multihead softmax attention.
53
+ Arguments
54
+ ---------
55
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
56
+ if unpadded: (nnz, 3, h, d)
57
+ key_padding_mask: a bool tensor of shape (B, S)
58
+ """
59
+ assert not need_weights
60
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
61
+ assert qkv.is_cuda
62
+
63
+ if cu_seqlens is None:
64
+ batch_size = qkv.shape[0]
65
+ seqlen = qkv.shape[1]
66
+ if key_padding_mask is None:
67
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
68
+ max_s = seqlen
69
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
70
+ device=qkv.device)
71
+ output = flash_attn_varlen_qkvpacked_func(
72
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
73
+ softmax_scale=self.softmax_scale, causal=causal
74
+ )
75
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
76
+ else:
77
+ nheads = qkv.shape[-2]
78
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
79
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
80
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
81
+ output_unpad = flash_attn_varlen_qkvpacked_func(
82
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
83
+ softmax_scale=self.softmax_scale, causal=causal
84
+ )
85
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
86
+ indices, batch_size, seqlen),
87
+ 'b s (h d) -> b s h d', h=nheads)
88
+ else:
89
+ assert max_s is not None
90
+ output = flash_attn_varlen_qkvpacked_func(
91
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
92
+ softmax_scale=self.softmax_scale, causal=causal
93
+ )
94
+
95
+ return output, None
96
+
97
+
98
+ class InternRMSNorm(nn.Module):
99
+ def __init__(self, hidden_size, eps=1e-6):
100
+ super().__init__()
101
+ self.weight = nn.Parameter(torch.ones(hidden_size))
102
+ self.variance_epsilon = eps
103
+
104
+ def forward(self, hidden_states):
105
+ input_dtype = hidden_states.dtype
106
+ hidden_states = hidden_states.to(torch.float32)
107
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
108
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
109
+ return self.weight * hidden_states.to(input_dtype)
110
+
111
+
112
+ try:
113
+ from apex.normalization import FusedRMSNorm
114
+
115
+ InternRMSNorm = FusedRMSNorm # noqa
116
+
117
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
118
+ except ImportError:
119
+ # using the normal InternRMSNorm
120
+ pass
121
+ except Exception:
122
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
123
+ pass
124
+
125
+
126
+ NORM2FN = {
127
+ 'rms_norm': InternRMSNorm,
128
+ 'layer_norm': nn.LayerNorm,
129
+ }
130
+
131
+
132
+ class InternVisionEmbeddings(nn.Module):
133
+ def __init__(self, config: InternVisionConfig):
134
+ super().__init__()
135
+ self.config = config
136
+ self.embed_dim = config.hidden_size
137
+ self.image_size = config.image_size
138
+ self.patch_size = config.patch_size
139
+
140
+ self.class_embedding = nn.Parameter(
141
+ torch.randn(1, 1, self.embed_dim),
142
+ )
143
+
144
+ self.patch_embedding = nn.Conv2d(
145
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
146
+ )
147
+
148
+ self.num_patches = (self.image_size // self.patch_size) ** 2
149
+ self.num_positions = self.num_patches + 1
150
+
151
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
152
+
153
+ def _get_pos_embed(self, pos_embed, H, W):
154
+ target_dtype = pos_embed.dtype
155
+ pos_embed = pos_embed.float().reshape(
156
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
157
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
158
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
159
+ return pos_embed
160
+
161
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
162
+ target_dtype = self.patch_embedding.weight.dtype
163
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
164
+ batch_size, _, height, width = patch_embeds.shape
165
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
166
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
167
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
168
+ position_embedding = torch.cat([
169
+ self.position_embedding[:, :1, :],
170
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
171
+ ], dim=1)
172
+ embeddings = embeddings + position_embedding.to(target_dtype)
173
+ return embeddings
174
+
175
+
176
+ class InternAttention(nn.Module):
177
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
178
+
179
+ def __init__(self, config: InternVisionConfig):
180
+ super().__init__()
181
+ self.config = config
182
+ self.embed_dim = config.hidden_size
183
+ self.num_heads = config.num_attention_heads
184
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
185
+ if config.use_flash_attn and not has_flash_attn:
186
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
187
+ self.head_dim = self.embed_dim // self.num_heads
188
+ if self.head_dim * self.num_heads != self.embed_dim:
189
+ raise ValueError(
190
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
191
+ f' {self.num_heads}).'
192
+ )
193
+
194
+ self.scale = self.head_dim ** -0.5
195
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
196
+ self.attn_drop = nn.Dropout(config.attention_dropout)
197
+ self.proj_drop = nn.Dropout(config.dropout)
198
+
199
+ self.qk_normalization = config.qk_normalization
200
+
201
+ if self.qk_normalization:
202
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
203
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+
205
+ if self.use_flash_attn:
206
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
207
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
208
+
209
+ def _naive_attn(self, x):
210
+ B, N, C = x.shape
211
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
212
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
213
+
214
+ if self.qk_normalization:
215
+ B_, H_, N_, D_ = q.shape
216
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
217
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+
219
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
220
+ attn = attn.softmax(dim=-1)
221
+ attn = self.attn_drop(attn)
222
+
223
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
224
+ x = self.proj(x)
225
+ x = self.proj_drop(x)
226
+ return x
227
+
228
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
229
+ qkv = self.qkv(x)
230
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
231
+
232
+ if self.qk_normalization:
233
+ q, k, v = qkv.unbind(2)
234
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
235
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
236
+ qkv = torch.stack([q, k, v], dim=2)
237
+
238
+ context, _ = self.inner_attn(
239
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
240
+ )
241
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
242
+ outs = self.proj_drop(outs)
243
+ return outs
244
+
245
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
246
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
247
+ return x
248
+
249
+
250
+ class InternMLP(nn.Module):
251
+ def __init__(self, config: InternVisionConfig):
252
+ super().__init__()
253
+ self.config = config
254
+ self.act = ACT2FN[config.hidden_act]
255
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
256
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
257
+
258
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
259
+ hidden_states = self.fc1(hidden_states)
260
+ hidden_states = self.act(hidden_states)
261
+ hidden_states = self.fc2(hidden_states)
262
+ return hidden_states
263
+
264
+
265
+ class InternVisionEncoderLayer(nn.Module):
266
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
267
+ super().__init__()
268
+ self.embed_dim = config.hidden_size
269
+ self.intermediate_size = config.intermediate_size
270
+ self.norm_type = config.norm_type
271
+
272
+ self.attn = InternAttention(config)
273
+ self.mlp = InternMLP(config)
274
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
275
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+
277
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
278
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
280
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+
282
+ def forward(
283
+ self,
284
+ hidden_states: torch.Tensor,
285
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
286
+ """
287
+ Args:
288
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
289
+ """
290
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
291
+
292
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
293
+
294
+ return hidden_states
295
+
296
+
297
+ class InternVisionEncoder(nn.Module):
298
+ """
299
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
300
+ [`InternEncoderLayer`].
301
+
302
+ Args:
303
+ config (`InternConfig`):
304
+ The corresponding vision configuration for the `InternEncoder`.
305
+ """
306
+
307
+ def __init__(self, config: InternVisionConfig):
308
+ super().__init__()
309
+ self.config = config
310
+ # stochastic depth decay rule
311
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
312
+ self.layers = nn.ModuleList([
313
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
314
+ self.gradient_checkpointing = True
315
+
316
+ def forward(
317
+ self,
318
+ inputs_embeds,
319
+ output_hidden_states: Optional[bool] = None,
320
+ return_dict: Optional[bool] = None,
321
+ ) -> Union[Tuple, BaseModelOutput]:
322
+ r"""
323
+ Args:
324
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
325
+ Embedded representation of the inputs. Should be float, not int tokens.
326
+ output_hidden_states (`bool`, *optional*):
327
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
328
+ for more detail.
329
+ return_dict (`bool`, *optional*):
330
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
331
+ """
332
+ output_hidden_states = (
333
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
334
+ )
335
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
336
+
337
+ encoder_states = () if output_hidden_states else None
338
+ hidden_states = inputs_embeds
339
+
340
+ for idx, encoder_layer in enumerate(self.layers):
341
+ if output_hidden_states:
342
+ encoder_states = encoder_states + (hidden_states,)
343
+ if self.gradient_checkpointing and self.training:
344
+ layer_outputs = torch.utils.checkpoint.checkpoint(
345
+ encoder_layer,
346
+ hidden_states)
347
+ else:
348
+ layer_outputs = encoder_layer(
349
+ hidden_states,
350
+ )
351
+ hidden_states = layer_outputs
352
+
353
+ if output_hidden_states:
354
+ encoder_states = encoder_states + (hidden_states,)
355
+
356
+ if not return_dict:
357
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
358
+ return BaseModelOutput(
359
+ last_hidden_state=hidden_states, hidden_states=encoder_states
360
+ )
361
+
362
+
363
+ class InternVisionModel(PreTrainedModel):
364
+ main_input_name = 'pixel_values'
365
+ _supports_flash_attn_2 = True
366
+ config_class = InternVisionConfig
367
+ _no_split_modules = ['InternVisionEncoderLayer']
368
+
369
+ def __init__(self, config: InternVisionConfig):
370
+ super().__init__(config)
371
+ self.config = config
372
+
373
+ self.embeddings = InternVisionEmbeddings(config)
374
+ self.encoder = InternVisionEncoder(config)
375
+
376
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
377
+ pos_emb = self.embeddings.position_embedding
378
+ _, num_positions, embed_dim = pos_emb.shape
379
+ cls_emb = pos_emb[:, :1, :]
380
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
381
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
382
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
383
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
384
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
385
+ self.embeddings.image_size = new_size
386
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
387
+
388
+ def get_input_embeddings(self):
389
+ return self.embeddings
390
+
391
+ def forward(
392
+ self,
393
+ pixel_values: Optional[torch.FloatTensor] = None,
394
+ output_hidden_states: Optional[bool] = None,
395
+ return_dict: Optional[bool] = None,
396
+ pixel_embeds: Optional[torch.FloatTensor] = None,
397
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
398
+ output_hidden_states = (
399
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
400
+ )
401
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
402
+
403
+ if pixel_values is None and pixel_embeds is None:
404
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
405
+
406
+ if pixel_embeds is not None:
407
+ hidden_states = pixel_embeds
408
+ else:
409
+ if len(pixel_values.shape) == 4:
410
+ hidden_states = self.embeddings(pixel_values)
411
+ else:
412
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
413
+ encoder_outputs = self.encoder(
414
+ inputs_embeds=hidden_states,
415
+ output_hidden_states=output_hidden_states,
416
+ return_dict=return_dict,
417
+ )
418
+ last_hidden_state = encoder_outputs.last_hidden_state
419
+ pooled_output = last_hidden_state[:, 0, :]
420
+
421
+ if not return_dict:
422
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
423
+
424
+ return BaseModelOutputWithPooling(
425
+ last_hidden_state=last_hidden_state,
426
+ pooler_output=pooled_output,
427
+ hidden_states=encoder_outputs.hidden_states,
428
+ attentions=encoder_outputs.attentions,
429
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import warnings
7
+ from typing import Any, List, Optional, Tuple, Union
8
+
9
+ import torch.utils.checkpoint
10
+ import transformers
11
+ from torch import nn
12
+ from torch.nn import CrossEntropyLoss
13
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
14
+ Qwen2ForCausalLM, MistralForCausalLM)
15
+ from transformers.modeling_outputs import CausalLMOutputWithPast
16
+ from transformers.modeling_utils import PreTrainedModel
17
+ from transformers.utils import ModelOutput, logging
18
+
19
+ from .configuration_internvl_chat import InternVLChatConfig
20
+ from mtkresearch.llm.prompt import MRPromptV3
21
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ def version_cmp(v1, v2, op='eq'):
27
+ import operator
28
+
29
+ from packaging import version
30
+ op_func = getattr(operator, op)
31
+ return op_func(version.parse(v1), version.parse(v2))
32
+
33
+
34
+ class InternVLChatModel(PreTrainedModel):
35
+ config_class = InternVLChatConfig
36
+ main_input_name = 'pixel_values'
37
+ base_model_prefix = 'language_model'
38
+ _supports_flash_attn_2 = True
39
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer', 'MistralDecoderLayer']
40
+
41
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
42
+ super().__init__(config)
43
+
44
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
45
+ image_size = config.force_image_size or config.vision_config.image_size
46
+ patch_size = config.vision_config.patch_size
47
+ self.patch_size = patch_size
48
+ self.select_layer = config.select_layer
49
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
50
+ self.downsample_ratio = config.downsample_ratio
51
+ self.ps_version = config.ps_version
52
+ use_flash_attn = use_flash_attn if has_flash_attn else False
53
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
54
+ config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
55
+
56
+ logger.info(f'num_image_token: {self.num_image_token}')
57
+ logger.info(f'ps_version: {self.ps_version}')
58
+ if vision_model is not None:
59
+ self.vision_model = vision_model
60
+ else:
61
+ self.vision_model = InternVisionModel(config.vision_config)
62
+ if language_model is not None:
63
+ self.language_model = language_model
64
+ else:
65
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
66
+ self.language_model = LlamaForCausalLM(config.llm_config)
67
+ elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
68
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
69
+ elif config.llm_config.architectures[0] == 'MistralForCausalLM':
70
+ self.language_model = MistralForCausalLM(config.llm_config)
71
+ else:
72
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
73
+
74
+ vit_hidden_size = config.vision_config.hidden_size
75
+ llm_hidden_size = config.llm_config.hidden_size
76
+
77
+ self.mlp1 = nn.Sequential(
78
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
79
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
80
+ nn.GELU(),
81
+ nn.Linear(llm_hidden_size, llm_hidden_size)
82
+ )
83
+
84
+ self.img_context_token_id = None
85
+ self.mr_prompt = MRPromptV3()
86
+
87
+ def forward(
88
+ self,
89
+ pixel_values: torch.FloatTensor,
90
+ input_ids: torch.LongTensor = None,
91
+ attention_mask: Optional[torch.Tensor] = None,
92
+ position_ids: Optional[torch.LongTensor] = None,
93
+ image_flags: Optional[torch.LongTensor] = None,
94
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
95
+ labels: Optional[torch.LongTensor] = None,
96
+ use_cache: Optional[bool] = None,
97
+ output_attentions: Optional[bool] = None,
98
+ output_hidden_states: Optional[bool] = None,
99
+ return_dict: Optional[bool] = None,
100
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
101
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
102
+
103
+ image_flags = image_flags.squeeze(-1)
104
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
105
+
106
+ vit_embeds = self.extract_feature(pixel_values)
107
+ vit_embeds = vit_embeds[image_flags == 1]
108
+ vit_batch_size = pixel_values.shape[0]
109
+
110
+ B, N, C = input_embeds.shape
111
+ input_embeds = input_embeds.reshape(B * N, C)
112
+
113
+ if torch.distributed.get_rank() == 0:
114
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
115
+
116
+ input_ids = input_ids.reshape(B * N)
117
+ selected = (input_ids == self.img_context_token_id)
118
+ try:
119
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
120
+ except Exception as e:
121
+ vit_embeds = vit_embeds.reshape(-1, C)
122
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
123
+ f'vit_embeds.shape={vit_embeds.shape}')
124
+ n_token = selected.sum()
125
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
126
+
127
+ input_embeds = input_embeds.reshape(B, N, C)
128
+
129
+ outputs = self.language_model(
130
+ inputs_embeds=input_embeds,
131
+ attention_mask=attention_mask,
132
+ position_ids=position_ids,
133
+ past_key_values=past_key_values,
134
+ use_cache=use_cache,
135
+ output_attentions=output_attentions,
136
+ output_hidden_states=output_hidden_states,
137
+ return_dict=return_dict,
138
+ )
139
+ logits = outputs.logits
140
+
141
+ loss = None
142
+ if labels is not None:
143
+ # Shift so that tokens < n predict n
144
+ shift_logits = logits[..., :-1, :].contiguous()
145
+ shift_labels = labels[..., 1:].contiguous()
146
+ # Flatten the tokens
147
+ loss_fct = CrossEntropyLoss()
148
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
149
+ shift_labels = shift_labels.view(-1)
150
+ # Enable model parallelism
151
+ shift_labels = shift_labels.to(shift_logits.device)
152
+ loss = loss_fct(shift_logits, shift_labels)
153
+
154
+ if not return_dict:
155
+ output = (logits,) + outputs[1:]
156
+ return (loss,) + output if loss is not None else output
157
+
158
+ return CausalLMOutputWithPast(
159
+ loss=loss,
160
+ logits=logits,
161
+ past_key_values=outputs.past_key_values,
162
+ hidden_states=outputs.hidden_states,
163
+ attentions=outputs.attentions,
164
+ )
165
+
166
+ def pixel_shuffle(self, x, scale_factor=0.5):
167
+ n, w, h, c = x.size()
168
+ # N, W, H, C --> N, W, H * scale, C // scale
169
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
170
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
171
+ x = x.permute(0, 2, 1, 3).contiguous()
172
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
173
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
174
+ int(c / (scale_factor * scale_factor)))
175
+ if self.ps_version == 'v1':
176
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
177
+ 'which results in a transposed image.')
178
+ else:
179
+ x = x.permute(0, 2, 1, 3).contiguous()
180
+ return x
181
+
182
+ def extract_feature(self, pixel_values):
183
+ if self.select_layer == -1:
184
+ vit_embeds = self.vision_model(
185
+ pixel_values=pixel_values,
186
+ output_hidden_states=False,
187
+ return_dict=True).last_hidden_state
188
+ else:
189
+ vit_embeds = self.vision_model(
190
+ pixel_values=pixel_values,
191
+ output_hidden_states=True,
192
+ return_dict=True).hidden_states[self.select_layer]
193
+ vit_embeds = vit_embeds[:, 1:, :]
194
+
195
+ h = w = int(vit_embeds.shape[1] ** 0.5)
196
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
197
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
198
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
199
+ vit_embeds = self.mlp1(vit_embeds)
200
+ return vit_embeds
201
+
202
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
203
+ num_patches_list=None, IMG_START_TOKEN='<|start_img|>', IMG_END_TOKEN='<|end_img|>', IMG_CONTEXT_TOKEN='<|img|>',
204
+ verbose=False):
205
+
206
+ if history is None and pixel_values is not None and '<image>' not in question:
207
+ question = '<image>\n' + question
208
+
209
+ if num_patches_list is None:
210
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
211
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
212
+
213
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
214
+ self.img_context_token_id = img_context_token_id
215
+
216
+ eos_token_id = tokenizer.convert_tokens_to_ids(self.mr_prompt.eos_token)
217
+
218
+ conversations = [
219
+ {
220
+ "role": "user",
221
+ "content": [
222
+ {
223
+ "type": "text",
224
+ "text": question
225
+ }
226
+ ]
227
+ },
228
+ ]
229
+ query = self.mr_prompt.get_prompt(conversations)
230
+
231
+ if verbose and pixel_values is not None:
232
+ image_bs = pixel_values.shape[0]
233
+ print(f'dynamic ViT batch size: {image_bs}')
234
+
235
+ for num_patches in num_patches_list:
236
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
237
+ query = query.replace('<image>', image_tokens, 1)
238
+
239
+ model_inputs = tokenizer(query, return_tensors='pt')
240
+ input_ids = model_inputs['input_ids'].to(self.device)
241
+ attention_mask = model_inputs['attention_mask'].to(self.device)
242
+ generation_config['eos_token_id'] = 128009
243
+ generation_output = self.generate(
244
+ pixel_values=pixel_values,
245
+ input_ids=input_ids,
246
+ attention_mask=attention_mask,
247
+ **generation_config
248
+ )
249
+
250
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
251
+ return response
252
+
253
+ def predict_choice_distribution(
254
+ self,
255
+ tokenizer,
256
+ pixel_values,
257
+ question,
258
+ generation_config,
259
+ num_patches_list=None,
260
+ IMG_START_TOKEN='<|start_img|>',
261
+ IMG_END_TOKEN='<|end_img|>',
262
+ IMG_CONTEXT_TOKEN='<|img|>',
263
+ verbose=False,
264
+ ):
265
+
266
+ if num_patches_list is None:
267
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
268
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
269
+
270
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
271
+ self.img_context_token_id = img_context_token_id
272
+
273
+
274
+ if verbose and pixel_values is not None:
275
+ image_bs = pixel_values.shape[0]
276
+ print(f'dynamic ViT batch size: {image_bs}')
277
+
278
+ for num_patches in num_patches_list:
279
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
280
+ question = question.replace('<image>', image_tokens, 1)
281
+ model_inputs = tokenizer(question, return_tensors='pt', add_special_tokens=True)
282
+ input_ids = model_inputs['input_ids'].to(self.device)
283
+ attention_mask = model_inputs['attention_mask'].to(self.device)
284
+
285
+ if pixel_values is not None:
286
+ # Extract visual features
287
+ vit_embeds = self.extract_feature(pixel_values)
288
+ # Get input embeddings
289
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
290
+ B, N, C = input_embeds.shape
291
+ input_embeds = input_embeds.reshape(B * N, C)
292
+
293
+ input_ids_flat = input_ids.reshape(B * N)
294
+ selected = (input_ids_flat == self.img_context_token_id)
295
+ assert selected.sum() != 0, "No image context tokens found in input_ids."
296
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
297
+
298
+ input_embeds = input_embeds.reshape(B, N, C)
299
+ else:
300
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
301
+
302
+ outputs = self.language_model(
303
+ inputs_embeds=input_embeds,
304
+ attention_mask=attention_mask,
305
+ return_dict=True,
306
+ )
307
+ outputs_id = self.language_model.generate(
308
+ inputs_embeds=input_embeds,
309
+ attention_mask=attention_mask,
310
+ generation_config=generation_config,
311
+ output_hidden_states=output_hidden_states,
312
+ # return_dict=return_dict,
313
+ use_cache=True,
314
+ **generate_kwargs,
315
+ )
316
+ response = tokenizer.batch_decode(outputs_id, skip_special_tokens=True)[0]
317
+
318
+ logits = outputs.logits # Shape: (batch_size, seq_length, vocab_size)
319
+
320
+ # Get the logits for the next token (after 'The answer is:')
321
+ next_token_logits = logits[:, -1, :] # Shape: (batch_size, vocab_size)
322
+
323
+ # Get token IDs for 'A', 'B', 'C', 'D'
324
+ choice_tokens = ['A', 'B', 'C', 'D']
325
+ choice_token_ids = tokenizer.convert_tokens_to_ids(choice_tokens)
326
+
327
+ # Extract the logits corresponding to these tokens
328
+ choice_logits = next_token_logits[:, choice_token_ids] # Shape: (batch_size, 4)
329
+
330
+ # Apply softmax to get probabilities
331
+ choice_probs = torch.softmax(choice_logits, dim=-1)
332
+
333
+ max_prob_indices = torch.argmax(choice_probs, dim=-1)
334
+ max_prob_tokens = [choice_tokens[idx] for idx in max_prob_indices]
335
+
336
+ return max_prob_tokens, response
337
+
338
+ @torch.no_grad()
339
+ def generate(
340
+ self,
341
+ pixel_values: Optional[torch.FloatTensor] = None,
342
+ input_ids: Optional[torch.FloatTensor] = None,
343
+ attention_mask: Optional[torch.LongTensor] = None,
344
+ visual_features: Optional[torch.FloatTensor] = None,
345
+ generation_config: Optional[GenerationConfig] = None,
346
+ output_hidden_states: Optional[bool] = None,
347
+ return_dict: Optional[bool] = None,
348
+ **generate_kwargs,
349
+ ) -> torch.LongTensor:
350
+
351
+ assert self.img_context_token_id is not None
352
+ if pixel_values is not None:
353
+ if visual_features is not None:
354
+ vit_embeds = visual_features
355
+ else:
356
+ vit_embeds = self.extract_feature(pixel_values)
357
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
358
+ B, N, C = input_embeds.shape
359
+ input_embeds = input_embeds.reshape(B * N, C)
360
+
361
+ input_ids = input_ids.reshape(B * N)
362
+ selected = (input_ids == self.img_context_token_id)
363
+ assert selected.sum() != 0
364
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
365
+
366
+ input_embeds = input_embeds.reshape(B, N, C)
367
+ else:
368
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
369
+
370
+ outputs = self.language_model.generate(
371
+ inputs_embeds=input_embeds,
372
+ attention_mask=attention_mask,
373
+ generation_config=generation_config,
374
+ output_hidden_states=output_hidden_states,
375
+ # return_dict=return_dict,
376
+ use_cache=True,
377
+ **generate_kwargs,
378
+ )
379
+
380
+ return outputs
special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2062 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|use_tool|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|answer|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|start_img|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|end_img|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|img|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|start_bbox|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|end_bbox|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|start_categ|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|end_categ|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 131072,
2061
+ "tokenizer_class": "PreTrainedTokenizerFast"
2062
+ }