Update README.md
Browse files
README.md
CHANGED
@@ -8,7 +8,21 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
@@ -28,7 +42,7 @@ Then you can use the model like this:
|
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
@@ -54,8 +68,8 @@ def mean_pooling(model_output, attention_mask):
|
|
54 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
58 |
-
model = AutoModel.from_pretrained('
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -77,7 +91,7 @@ print(sentence_embeddings)
|
|
77 |
|
78 |
<!--- Describe how your model was evaluated -->
|
79 |
|
80 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=
|
81 |
|
82 |
|
83 |
## Training
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
+
<div align="center">
|
12 |
+
<h1 style="margin-bottom: 0.5em;">WebLINX: Real-World Website Navigation with Multi-Turn Dialogue</h1>
|
13 |
+
<em>Xing Han Lù*, Zdeněk Kasner*, Siva Reddy</em>
|
14 |
+
</div>
|
15 |
+
|
16 |
+
<div style="margin-bottom: 2em"></div>
|
17 |
+
|
18 |
+
<div style="display: flex; justify-content: space-around; align-items: center; font-size: 120%;">
|
19 |
+
<div><a href="https://arxiv.org/abs/2402.05930">📄Paper</a></div>
|
20 |
+
<div><a href="https://mcgill-nlp.github.io/weblinx">🌐Website</a></div>
|
21 |
+
<div><a href="https://huggingface.co/spaces/McGill-NLP/weblinx-explorer">💻Explorer</a></div>
|
22 |
+
<div><a href="https://github.com/McGill-NLP/WebLINX">💾Code</a></div>
|
23 |
+
</div>
|
24 |
+
|
25 |
+
# Sentence Transformers Details
|
26 |
|
27 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
28 |
|
|
|
42 |
from sentence_transformers import SentenceTransformer
|
43 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
44 |
|
45 |
+
model = SentenceTransformer('McGill-NLP/MiniLM-L6-dmr')
|
46 |
embeddings = model.encode(sentences)
|
47 |
print(embeddings)
|
48 |
```
|
|
|
68 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
69 |
|
70 |
# Load model from HuggingFace Hub
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained('MiniLM-L6-dmr')
|
72 |
+
model = AutoModel.from_pretrained('MiniLM-L6-dmr')
|
73 |
|
74 |
# Tokenize sentences
|
75 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
91 |
|
92 |
<!--- Describe how your model was evaluated -->
|
93 |
|
94 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=MiniLM-L6-dmr)
|
95 |
|
96 |
|
97 |
## Training
|