ppo-LunarLander-v2 / config.json
McCheng's picture
Upload PPO LunarLander-v2 trained agent
623a3b0
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4d71c000e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4d71c00170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4d71c00200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4d71c00290>", "_build": "<function ActorCriticPolicy._build at 0x7f4d71c00320>", "forward": "<function ActorCriticPolicy.forward at 0x7f4d71c003b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4d71c00440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4d71c004d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4d71c00560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4d71c005f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4d71c00680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4d71c00710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4d71c497e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 64, "num_timesteps": 5046272, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678541778993210748, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQgAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBS0BLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIACAAAE2JIPgXVED9SbzS+a5PPvvZxXz6TeV2+AAAAAAAAAAAARGo8ZRgNPnvEiz72CNG+baQ4PpJAvz0AAAAAAAAAADOruzufHMG7ldGrOhykdjx9RS+9TUxSPQAAgD8AAIA/zZ3uvKaJuj9jxPO+0uCNPtFsKjwUXii8AAAAAAAAAACz2gc9lq2jP98QDT4l+wu/W7iOPRaUCD4AAAAAAAAAAEbmWz5QyZs/NVCzPqDmB7/5krg+MrbKPAAAAAAAAAAAZjCyPBT4mbqgnCyzXOL4KWFtobr2otAzAACAPwAAgD+zZeE9JA5iP8MB4z01q/C+RKZHPtvlXr0AAAAAAAAAAFPPET4wuQk/Peu/vRND3b7XZJc9zQnavQAAAAAAAAAAZjiXPH7Lpj3L11O+HA25villP77OLr09AAAAAAAAAAAz13q8sKetPqV5rrw/gNa+DRsevX69OD0AAAAAAAAAAKb/Ar5UyoE/Bd1OvQV+1r6Qw56+BLYZPQAAAAAAAAAA5keFvWj8az+tttS8CWv0vl9HI75r5VO9AAAAAAAAAACKA50+mJKLPxOiuj7yhxK/bhgAPwqG2rwAAAAAAAAAAM3rkTyuEc+67g6lO4SiiTyNsNu6wmtvPQAAgD8AAIA/AAQyvZICuT/ytya+UueUvnR8ST3Z2RQ9AAAAAAAAAABmjhw8KRMcvMbeG72+Qxq+IVU7PRg4hL0AAIA/AACAPwA4M7zSAYO7GIj2vLa81DsqdsI80j/CvAAAgD8AAIA/GuBLPY9af7ovaI81ETvkL8R2crtTo7i0AACAPwAAgD9aISm+juQNP+6DxT6Fv/i+FJEfveKPQD4AAAAAAAAAAJppqbrpEVG8xhivPb2VrbxlfLm9qBpavQAAgD8AAIA/zUz0uSToPj6fvUk9MlDLvhAouD0DhvM7AAAAAAAAAACAkhm9g1oPvGxBgrx/fRY9QCiDvVqh8j0AAIA/AACAP/P3s7029FO81oFoPuzmrL1fg7e9GA8hvwAAgD8AAIA/ZrAsPSlIOLyVx609dq6JO2MXETyG2ZA9AACAPwAAgD9mGBY9gzwtvB6xuL1DZ1q+OwNuPEVBlj4AAIA/AACAPwD4NTsPpLk/KV9EO1wDF75vIU26uhs8PQAAAAAAAAAAMx0mvPYkRbpuUHK9VfzMPJmMjzsjYLC9AACAPwAAgD9t4kO+gftqP2fMkb1E+gi/AKSxvuzMOD4AAAAAAAAAAMgKmL62W5s/en+XvpUZ0L6OkSO/mPNFvgAAAAAAAAAAM25EPY92dbpkUie9wmZKtoXTaboOirs1AACAPwAAgD+aGOS8+u5OP6W64byuXQ+/W2eZva1ZzT0AAAAAAAAAAAb0Jb7uJpU/ptjQvhCax75EzMG+QV2hvgAAAAAAAAAAM3JRvQ2lBT4CG5Q+B/Oxvog6Bz70E5g9AAAAAAAAAAANFpY9z60QvHNuczyZNKM8hSApvfekGboAAIA/AACAP80Yxrtu2oA9t2wxvvowqr6DohS+l2WLvAAAAAAAAAAATRwBvQq9cbv06Ik7MRWVPPNXsTxO/369AACAPwAAgD8mBNC9xlMDP6jfMz5XAfy+85+ZvY0EAT4AAAAAAAAAAADQ1zwfIZe7ArUpPJTRpzzzIOC81rqNPQAAgD8AAIA/MxOmvYtZ7T5YTak96f73vu0W4ryGuh09AAAAAAAAAACaWbQ59rhEut7Ob7YCQFGxekkqOyXjkzUAAIA/AACAPwC33zzSJ/O75klyu3CroTzLBUs9Zu+GvQAAgD8AAIA/jt6BvvLA6T64zhI+H1PsvlFogL7qWRg+AAAAAAAAAACa8+68T1IbPQ5pjjwmuZq+9jnZOpKdUr0AAAAAAAAAAEBvmr1m90k/lPgCPUDW776jMeu9KDQDPgAAAAAAAAAAMwy1vEbUrD7CxoO8cJXZvkXKAL1uHS29AAAAAAAAAABm3Be9eEepPHfyjL39dJe+YQw0vhfdoz0AAAAAAAAAALPYNL2p6Fa8BRrRPdvG+zz3AIy9Bm9nPQAAgD8AAIA/YKYjvoQz8z7wTSM+rHj7vin+xb3i1kg+AAAAAAAAAABAvxA+GL+mPjsZML7jj8y++gmsPSbg8r0AAAAAAAAAAA0lhr2iQ6M/2pXnvvCrFL/j3zq99oOQvgAAAAAAAAAAzfipPGkXGrzrRQ8+kAxwPA1Jg73bNUk9AACAPwAAgD9z9Eq+v2M2P3EWpD2Nzwm/I7qpvhBn1T4AAAAAAAAAAM0cyDxYTIM9TpHbvQCWs740hpO9EzkYPQAAAAAAAAAAjWLrPYj1qD52Mp2+JNeUvuKjiL1acjW+AAAAAAAAAABmt6I8SB+DujBx5z1dlw27R7sfOqIEnLsAAIA/AACAP83MPbrkgEY+3iTEPoMGxL4p0os+atdGvQAAAAAAAAAAGrJFPWc/VD5VoqC9HuPFvr2Ss7xYhAs9AAAAAAAAAACalxu8z8ZkP/aT+jx9rgC/NZ7SvCpWqLwAAAAAAAAAAK0kGr7kuc0+os1sPoUW4b7dc088D38WPgAAAAAAAAAAZsCKvNc6CLvCbEm8g2e7vn1nI70kHoO7AACAPwAAAAA6ZAs+QI2mP64HkD7iVxK/pst3PhUZdD0AAAAAAAAAAPN8oD2CVLo/2FApP+WrSD0pl6M8ehRvPgAAAAAAAAAAAJFIvbdZNj8li7w9fYEAv1Gjgr3Y5Tc9AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVyAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBS0CFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.009254400000000107, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRn79EJvabkCUhpRSlIwBbJRLvowBdJRHQLBirdoWYWt1fZQoaAZoCWgPQwi46GSpNV9zQJSGlFKUaBVL2WgWR0CwYrLnDBM0dX2UKGgGaAloD0MIUG9GzVckc0CUhpRSlGgVS8loFkdAsGKyiwjdHnV9lChoBmgJaA9DCGbZk8DmKXNAlIaUUpRoFUvbaBZHQLBisj0+TvB1fZQoaAZoCWgPQwh0CYfeIqBzQJSGlFKUaBVL2mgWR0CwYsxuO0b+dX2UKGgGaAloD0MIW+1hL9TacUCUhpRSlGgVS8toFkdAsGLWwgTyrnV9lChoBmgJaA9DCAghIF8Cq3JAlIaUUpRoFUvKaBZHQLBi5BhhH9Z1fZQoaAZoCWgPQwh00ZDxqBFwQJSGlFKUaBVL0mgWR0CwYu0E1VHXdX2UKGgGaAloD0MIu7ThsDQkckCUhpRSlGgVS7doFkdAsGL+armyPnV9lChoBmgJaA9DCNe9FYmJtnNAlIaUUpRoFUvoaBZHQLBi/bUPQOZ1fZQoaAZoCWgPQwgYYB+dOvFwQJSGlFKUaBVLw2gWR0CwYyUbkwN9dX2UKGgGaAloD0MI9phIaTZCc0CUhpRSlGgVS8hoFkdAsGMti5NGmXV9lChoBmgJaA9DCNvgRPRrvXJAlIaUUpRoFUvsaBZHQLBjL3qAz551fZQoaAZoCWgPQwgwhJz3v3pxQJSGlFKUaBVL32gWR0CwYzZLEk0KdX2UKGgGaAloD0MIRUYHJGEGcECUhpRSlGgVS9xoFkdAsGNGBNEgGXV9lChoBmgJaA9DCIDVkSPdLnBAlIaUUpRoFUvSaBZHQLBjcixVyWB1fZQoaAZoCWgPQwjCTUaV4cNwQJSGlFKUaBVL0GgWR0CwY3Iod+5OdX2UKGgGaAloD0MIM8UcBF2+cUCUhpRSlGgVS85oFkdAsGN3ibUgCHV9lChoBmgJaA9DCHkGDf3TDnNAlIaUUpRoFUvgaBZHQLBjfIeYD1Z1fZQoaAZoCWgPQwgWURN9PkRxQJSGlFKUaBVLx2gWR0CwY5jkMkQgdX2UKGgGaAloD0MItHHEWryJcUCUhpRSlGgVS+RoFkdAsGObVJ+UhXV9lChoBmgJaA9DCM/abRfaJnFAlIaUUpRoFUvKaBZHQLBjoP7N0Nl1fZQoaAZoCWgPQwj4wfnUcftxQJSGlFKUaBVL1WgWR0CwY8LT2FnJdX2UKGgGaAloD0MIG/Z7Yl0tc0CUhpRSlGgVS81oFkdAsGPC8PFvRHV9lChoBmgJaA9DCCKMn8b9VXBAlIaUUpRoFUvdaBZHQLBjxkbPyCp1fZQoaAZoCWgPQwhivVErDJtxQJSGlFKUaBVL5GgWR0CwY9VcIJJHdX2UKGgGaAloD0MI9UvEW+cfb0CUhpRSlGgVS9VoFkdAsGPVaIN3GHV9lChoBmgJaA9DCEoMAivHp3NAlIaUUpRoFUvNaBZHQLBj2j3VTaV1fZQoaAZoCWgPQwh1q+ek95lvQJSGlFKUaBVL1mgWR0CwY9+SntOVdX2UKGgGaAloD0MIK2ub4vHdc0CUhpRSlGgVS8toFkdAsGQD7BO58XV9lChoBmgJaA9DCJW1TfG4Wm5AlIaUUpRoFUvLaBZHQLBkEx0uDjB1fZQoaAZoCWgPQwh5knTN5PhxQJSGlFKUaBVL9mgWR0CwZBuVTrE+dX2UKGgGaAloD0MIINPaNPYqcUCUhpRSlGgVS/ZoFkdAsGRHbM5fdHV9lChoBmgJaA9DCFd2weDayHBAlIaUUpRoFUvgaBZHQLBkRb48EFJ1fZQoaAZoCWgPQwhcVmEzQBl0QJSGlFKUaBVL0mgWR0CwZFVHOKO1dX2UKGgGaAloD0MIPWNfsrHzcECUhpRSlGgVS+RoFkdAsGR2MIeHSHV9lChoBmgJaA9DCIKq0asBH3NAlIaUUpRoFUvdaBZHQLBkj0cfeUJ1fZQoaAZoCWgPQwgMkj6tovpwQJSGlFKUaBVL5GgWR0CwZJi2phnbdX2UKGgGaAloD0MIAmN9A1NccUCUhpRSlGgVS9NoFkdAsGSvoePq93V9lChoBmgJaA9DCAiQoWMHa29AlIaUUpRoFUvOaBZHQLBku6Uqx1R1fZQoaAZoCWgPQwidR8X/3e5yQJSGlFKUaBVLwmgWR0CwZMJlWfbsdX2UKGgGaAloD0MIsDpypPNKcUCUhpRSlGgVS9loFkdAsGTMDs+mnHV9lChoBmgJaA9DCJnTZTFxTnFAlIaUUpRoFUvEaBZHQLBk6QNCqp91fZQoaAZoCWgPQwj/BYIAWe5yQJSGlFKUaBVL0GgWR0CwZPGBreqJdX2UKGgGaAloD0MIzTtO0VGickCUhpRSlGgVS8poFkdAsGT5r8BMjHV9lChoBmgJaA9DCLzrbMg/M3NAlIaUUpRoFUvkaBZHQLBk/lEZzgd1fZQoaAZoCWgPQwgDlIYaRZ5zQJSGlFKUaBVL2GgWR0CwZQJwGW2PdX2UKGgGaAloD0MIyZHOwIj7ckCUhpRSlGgVS8VoFkdAsGUQiD/VAnV9lChoBmgJaA9DCI9VSs90hXFAlIaUUpRoFUvJaBZHQLBlE2WY4Q11fZQoaAZoCWgPQwjjUpW2eGVxQJSGlFKUaBVL7mgWR0CwZRrWVeKLdX2UKGgGaAloD0MI+1qXGiE7cUCUhpRSlGgVS9xoFkdAsGUgIBzV+nV9lChoBmgJaA9DCHztmSUBkXJAlIaUUpRoFUvDaBZHQLBlKTn7pFF1fZQoaAZoCWgPQwj60XDKXH1vQJSGlFKUaBVL1WgWR0CwZSkORT0hdX2UKGgGaAloD0MIa2CrBAs9cUCUhpRSlGgVS9poFkdAsGU222G7BnV9lChoBmgJaA9DCAn84ec/jHFAlIaUUpRoFUvVaBZHQLBlOYTj/+91fZQoaAZoCWgPQwhhTzv8tThxQJSGlFKUaBVL3mgWR0CwZUCbQTmGdX2UKGgGaAloD0MIrmNccXHMbUCUhpRSlGgVS8loFkdAsGVQOwxFiXV9lChoBmgJaA9DCJqxaDr7z3JAlIaUUpRoFUvEaBZHQLBlaLiuMdd1fZQoaAZoCWgPQwjVrglpzSNzQJSGlFKUaBVL62gWR0CwZWhgZ0jkdX2UKGgGaAloD0MI7Z48LFRJcECUhpRSlGgVS7NoFkdAsGVnukUKzHV9lChoBmgJaA9DCI3ROqraL3JAlIaUUpRoFUvLaBZHQLBlf/Ue+251fZQoaAZoCWgPQwgW+8vuCYxwQJSGlFKUaBVL3GgWR0CwZYHwPRRedX2UKGgGaAloD0MI/dgkP2IicUCUhpRSlGgVS8ZoFkdAsGWDsdDIBHV9lChoBmgJaA9DCM5UiEdi1nFAlIaUUpRoFUvraBZHQLBliEdNnGt1fZQoaAZoCWgPQwgJiEm4ECByQJSGlFKUaBVL42gWR0CwZYdhmXgMdX2UKGgGaAloD0MI/Z/DfHnCckCUhpRSlGgVS9xoFkdAsGWSzgMtsnV9lChoBmgJaA9DCI/9LJYiXnFAlIaUUpRoFUvfaBZHQLBluUvwmVt1fZQoaAZoCWgPQwh/+PnvQRdyQJSGlFKUaBVLwWgWR0CwZc4V6/qPdX2UKGgGaAloD0MIjCyZY/nGckCUhpRSlGgVS71oFkdAsGXTqlgtvnV9lChoBmgJaA9DCH/d6c7T03FAlIaUUpRoFUv2aBZHQLBl3JemelN1fZQoaAZoCWgPQwgdd0oH62RzQJSGlFKUaBVL6GgWR0CwZdwLVnVYdX2UKGgGaAloD0MIRZxOshVycECUhpRSlGgVS95oFkdAsGXud6LOzXV9lChoBmgJaA9DCFA25QovZXJAlIaUUpRoFUvmaBZHQLBl+99MK1J1fZQoaAZoCWgPQwj5hVeSvJ5zQJSGlFKUaBVLzmgWR0CwZgPexfOVdX2UKGgGaAloD0MIz9vY7MjYckCUhpRSlGgVS/RoFkdAsGYJtALRbHV9lChoBmgJaA9DCEtWRbhJFnJAlIaUUpRoFUvhaBZHQLBmFQJokAx1fZQoaAZoCWgPQwi78lmex5NxQJSGlFKUaBVL0mgWR0CwZhRl+VkddX2UKGgGaAloD0MIWKg1zbvQb0CUhpRSlGgVS9BoFkdAsGZQYqG1yHV9lChoBmgJaA9DCG04LA08jXFAlIaUUpRoFUvyaBZHQLBmT1n/T9d1fZQoaAZoCWgPQwiZK4NqwxJyQJSGlFKUaBVL0mgWR0CwZl5EQXhwdX2UKGgGaAloD0MIVTAqqdNDcECUhpRSlGgVS8ZoFkdAsGZbdZaFEnV9lChoBmgJaA9DCJur5jniMXFAlIaUUpRoFUvKaBZHQLBmb8aXKKZ1fZQoaAZoCWgPQwizz2OU5w1vQJSGlFKUaBVL52gWR0CwZnlQ66redX2UKGgGaAloD0MIg4b+Ce7qckCUhpRSlGgVS8hoFkdAsGacwBYFJXV9lChoBmgJaA9DCO7PRUNGEnFAlIaUUpRoFUvlaBZHQLBmpxiG34N1fZQoaAZoCWgPQwiBXrhzYctwQJSGlFKUaBVLz2gWR0CwZqc7dSEUdX2UKGgGaAloD0MI3QcgtYk0c0CUhpRSlGgVS9RoFkdAsGa2NjslcHV9lChoBmgJaA9DCCoeF9VibXNAlIaUUpRoFUvwaBZHQLBmw1nuiN91fZQoaAZoCWgPQwiN74tLFURzQJSGlFKUaBVL2GgWR0CwZsNuLrHEdX2UKGgGaAloD0MIDFwea8aucUCUhpRSlGgVS8FoFkdAsGbFzo2XLXV9lChoBmgJaA9DCKSJd4AnunJAlIaUUpRoFUvmaBZHQLBmzAfdRBN1fZQoaAZoCWgPQwjbpKKxdpFzQJSGlFKUaBVLwGgWR0CwZsncHnlodX2UKGgGaAloD0MIehubHSnIbkCUhpRSlGgVS8hoFkdAsGbPzYmLL3V9lChoBmgJaA9DCN9qnbicnXJAlIaUUpRoFUvfaBZHQLBm9zoEB8x1fZQoaAZoCWgPQwi28/3U+F1yQJSGlFKUaBVL5mgWR0CwZwRA4XGfdX2UKGgGaAloD0MIh2wgXaywcECUhpRSlGgVS8xoFkdAsGcZckdFOXV9lChoBmgJaA9DCP0RhgELTHFAlIaUUpRoFUvKaBZHQLBnIFZPl+51fZQoaAZoCWgPQwjdek0PSsVyQJSGlFKUaBVL1GgWR0CwZzR24d6tdX2UKGgGaAloD0MIRMAhVOl4cUCUhpRSlGgVS/RoFkdAsGc8e/5+IHV9lChoBmgJaA9DCFXBqKSOcnJAlIaUUpRoFUvGaBZHQLBnUZYgaFV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 308, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-debian-bullseye-sid # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}