GG
Colab-trained lunar lander
831c1c1
raw
history blame
14 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2692e3be20>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2692e3beb0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2692e3bf40>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2692e48040>",
"_build": "<function ActorCriticPolicy._build at 0x7f2692e480d0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f2692e48160>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2692e481f0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2692e48280>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f2692e48310>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2692e483a0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2692e48430>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2692e484c0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f2692e36a00>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1688763230767855238,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqavT3SMou7M8x8vQP7jTy7ksk8w7ByvQAAgD8AAIA/oBQ3PtSxj7xi45u6fmLjOGA5/L0ANMo5AACAPwAAgD/N0Eo+Q95zvHLL/zpdORS523Dmvd3fH7oAAIA/AACAP67Wmb4gBHk/3q3AvuZTIb8LCfu+1jwyPQAAAAAAAAAA5utivW5m7j0Teh0+F5GzvssyJD0V51I9AAAAAAAAAAA6dUw+ZrkMP4b9wjwQstK+01e1PZLP4L0AAAAAAAAAADOAAL7se408+mO5PRQmg77UQbg75M3KuwAAAAAAAAAAAPH2PXEwELsKWIu9DEIMPGN6GT0KYqm9AACAPwAAgD+NNio+NG2VvFLTsbgdVBA3TUABvtZ58zcAAIA/AACAPzO4Dz6JhSo/O5TtPT6O/r59Brk9Bdg+vQAAAAAAAAAA5l9gPszAlT5kjIa+ddTIvpINub0Ko/68AAAAAAAAAABzYFE+qdBTvA6oozqEkKG4kIG7vRh1xrkAAIA/AACAP2bfw72YBbo9PtUfPjC4Tb7gAZE9TbbvvAAAAAAAAAAA+mooPgpmKzxdl16+36FDPUYruz14eQy9AACAPwAAgD+aeR+616MxOH4wrLr1tEi2Y1LaO1LSzzkAAIA/AACAP+2APj6h55e8vj3OuaW30jfh/Aa+PFYIOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFu6ClJpWWMAWyUS72MAXSUR0CgezjTjNpudX2UKGgGR0Bxs0mWt2cKaAdLuWgIR0Cge1ApSaVldX2UKGgGR0BxyHQmeDnOaAdLvWgIR0Cge2Xz+WGAdX2UKGgGR0BzVBY4hllLaAdLw2gIR0Cge9PoNd7fdX2UKGgGR0BwMiSTyJ9BaAdL3WgIR0Cge9uYhMakdX2UKGgGR0Bw2ejBVMmGaAdLxmgIR0CgfFNZvDP4dX2UKGgGR0BxEBmpVCHAaAdLtmgIR0CgfHChvitJdX2UKGgGR0BwZI/oq0+laAdL+2gIR0CgfJHEVFhHdX2UKGgGR0ByZN7IDHOsaAdLv2gIR0CgfJmTC+DfdX2UKGgGR0BxfSOS4e90aAdNIgFoCEdAoHyuDOC5E3V9lChoBkdAbzDsVLzwt2gHS/loCEdAoHz4GQjlgnV9lChoBkdActoCqIacZ2gHS9toCEdAoH0luzhP03V9lChoBkdAWaOvV3EAHWgHTegDaAhHQKB9RTMqz7d1fZQoaAZHQHDJspLEk0JoB0vwaAhHQKB9ozfrKNh1fZQoaAZHQHFiIESuhbpoB0vkaAhHQKB9oO938oB1fZQoaAZHQHEQhw++ueVoB0veaAhHQKB+lIEKVpt1fZQoaAZHQHDYIe5nUUhoB0vraAhHQKB+mPVd5Y51fZQoaAZHQHFh225QP7NoB0vhaAhHQKB/CiY9gWt1fZQoaAZHQHO2ZCBwuNBoB0vCaAhHQKB/RkupS751fZQoaAZHQHMjBb4agmJoB00VAWgIR0Cgf0YQ8OkMdX2UKGgGR0ByVlTQ3PzGaAdLzWgIR0Cgf0+XZ5AydX2UKGgGR0BvFTfaYeDGaAdL1GgIR0Cgf07jtG/fdX2UKGgGR0BzX1mEoOQRaAdL92gIR0Cgf13yiEg4dX2UKGgGR0BvuMHD7655aAdL1GgIR0Cgf4gxBVuKdX2UKGgGR0BzH9orWiDeaAdL02gIR0Cgf5cPnSv1dX2UKGgGR0BzHY8wHqu9aAdL7WgIR0CggDqjBVMmdX2UKGgGR0Bj/Hai9IwuaAdN6ANoCEdAoIBi79Q40nV9lChoBkdAcD28ZDRc/2gHS+1oCEdAoIBpKODJ2nV9lChoBkdAc8Ujin5zo2gHS9BoCEdAoICA62fCh3V9lChoBkdAcTYe4kNWl2gHTQsBaAhHQKCA6PS2H+J1fZQoaAZHQHKspAhStNloB0v1aAhHQKCA/jghr311fZQoaAZHQHEsWjoIOYpoB0uoaAhHQKCBSM1CPZJ1fZQoaAZHQHAm3XAdn01oB0vHaAhHQKCBRGe+VTt1fZQoaAZHQHC3NUKiPABoB0vNaAhHQKCBXK2a2F51fZQoaAZHQHGWRiG34KxoB0u8aAhHQKCBvEpAlfJ1fZQoaAZHQHDiWd3B55ZoB0vEaAhHQKCB2yAxzq91fZQoaAZHQHDWLO7g88toB0vbaAhHQKCCO6IWP911fZQoaAZHQHKeUlZ5iVloB0vWaAhHQKCCWDg62fF1fZQoaAZHQHEkKNVBD5VoB0vcaAhHQKCCezkZJkJ1fZQoaAZHQHI0vpMYdhloB0vAaAhHQKCC+OMl1KZ1fZQoaAZHQG7Tn8sMAm1oB0vNaAhHQKCDCioKlYV1fZQoaAZHQHBdgPI4lyBoB0vYaAhHQKCDC7wrlNl1fZQoaAZHQG+/ZksjFAFoB0vlaAhHQKCDZJRO1v51fZQoaAZHQHB/lQl8gIRoB0vPaAhHQKCDuyeI2wV1fZQoaAZHQHBLDltCRfZoB0vEaAhHQKCD64gA6uJ1fZQoaAZHQG2Lm1pj+aVoB0vIaAhHQKCD957gKnh1fZQoaAZHQHRoI2XLNfRoB0v4aAhHQKCEPXGOuJV1fZQoaAZHQHMRoLPUrkNoB0vFaAhHQKCEeS8rZrZ1fZQoaAZHQHIK4l2NedFoB0vOaAhHQKCEvahYeT51fZQoaAZHQHDv0ZrHlwNoB0vWaAhHQKCFqUQkHD91fZQoaAZHQHFP8MuvlltoB0u3aAhHQKCGBXOnl4l1fZQoaAZHQHN4gHqu8sdoB00DAWgIR0CghoCqZML4dX2UKGgGR0BuQXkRzzVdaAdL8GgIR0CghoRv3rUtdX2UKGgGR0Bw1rhqCYkWaAdLymgIR0CghpWTxG2DdX2UKGgGR0ByYe2qkuYhaAdLyWgIR0CghxaEzwc6dX2UKGgGR0Bvfgqbz9S/aAdLu2gIR0Cgh0VrAP/adX2UKGgGR0BwPLBuXNTtaAdLv2gIR0Cgh7Zf+jubdX2UKGgGR0By1Jgy/KyOaAdLzWgIR0Cgh/JQLux9dX2UKGgGR0Bx/oRmK64EaAdLwWgIR0CgiCebmU4adX2UKGgGR0Bzu7gP3BYWaAdLv2gIR0CgiHtKRMewdX2UKGgGR0BwPb3L3bmEaAdLx2gIR0CgiRGN70FsdX2UKGgGR0BwZZgjQiRoaAdLuGgIR0CgicC+De0pdX2UKGgGR0ByQ7YQJ5VwaAdNXQFoCEdAoInOgzxgA3V9lChoBkdAcvaV1fVqe2gHS8loCEdAoIqOce8wpXV9lChoBkdAcMjmWdEsrmgHS8VoCEdAoIr4sNDtxHV9lChoBkdAcmmews5GSmgHS7hoCEdAoIuP+uNgjXV9lChoBkdAcO3e/Yao/GgHS9FoCEdAoIv8bvPTonV9lChoBkdAcKgQTEit72gHS7loCEdAoIxgGpuMuXV9lChoBkdAckkcMmWt2mgHS9BoCEdAoIy6jtXxOXV9lChoBkdAcj9hPTG5tmgHS71oCEdAoIzCIP9UCXV9lChoBkdAcR222G7Bf2gHTQoBaAhHQKCM3Fqi48V1fZQoaAZHQG60IHcDbJxoB0vNaAhHQKCNflI3BHl1fZQoaAZHQHFfARXfZVZoB0u7aAhHQKCNvSiudPN1fZQoaAZHQG6a+yJKraNoB0vGaAhHQKCO05RTCLx1fZQoaAZHQG8o1Z1V5rxoB0vSaAhHQKCPFbL2YfJ1fZQoaAZHQHKFwLJCBwxoB0vBaAhHQKCPgJjUd7x1fZQoaAZHQHHy01uR9w5oB0u3aAhHQKCPopo9LYh1fZQoaAZHQG5CU5lvqC9oB0vNaAhHQKCQZHy3CsR1fZQoaAZHQHFBJO8CgbpoB0vAaAhHQKCQ9gpBomJ1fZQoaAZHQHBi20qpcX5oB0u8aAhHQKCRq/pt78h1fZQoaAZHQHB9XjIaLn9oB0vhaAhHQKCRsKlYU351fZQoaAZHQHACLrLQokRoB0vtaAhHQKCR1qRlpXZ1fZQoaAZHQG4Do+wC8vpoB0vRaAhHQKCR418b70p1fZQoaAZHQGWhE4WDYiBoB03oA2gIR0CgkhcSf16FdX2UKGgGR0BdEJSrHU+caAdN6ANoCEdAoJIjaAWi13V9lChoBkdAcDAUyYXwb2gHS+NoCEdAoJMRradtmHV9lChoBkdAcaryLAHmimgHS9poCEdAoJMUm+j/MnV9lChoBkdAcEJi5d4VymgHS9toCEdAoJNX/io86nV9lChoBkdAcCvmvnr6cmgHS8VoCEdAoJPVAZ88cXV9lChoBkdAZSUnsLORkmgHTegDaAhHQKCUq2P1ct51fZQoaAZHQHI1gfyPMjhoB0vtaAhHQKCVBfO2RaJ1fZQoaAZHQHE9b1h9b5doB0vBaAhHQKCVECr92ox1fZQoaAZHQHDq7tE5QxhoB0vBaAhHQKCVG3DvVmV1fZQoaAZHQHDs9g0CRwJoB0vgaAhHQKCVYs3AEdN1fZQoaAZHQHBd9jCpFThoB0vqaAhHQKCViqioKlZ1fZQoaAZHQHG9aV+qioNoB0vgaAhHQKCVsunuRcN1fZQoaAZHQHICwmAskIJoB0vhaAhHQKCVwAksz2x1fZQoaAZHQHJx9gF5fMRoB0vdaAhHQKCWgcvM8ox1fZQoaAZHQHJ182NvOyFoB0vUaAhHQKCWo/UvwmV1fZQoaAZHQG8UriuMdcVoB0vMaAhHQKCW+flp48l1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 380,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
}
}