Mayhem50 commited on
Commit
91a3b7c
·
1 Parent(s): 2c04724

Upload 11 files

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": true,
8
+ "pooling_mode_lasttoken": false
9
+ }
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ ---
8
+
9
+ # {MODEL_NAME}
10
+
11
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
+
13
+ <!--- Describe your model here -->
14
+
15
+ ## Usage (Sentence-Transformers)
16
+
17
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
18
+
19
+ ```
20
+ pip install -U sentence-transformers
21
+ ```
22
+
23
+ Then you can use the model like this:
24
+
25
+ ```python
26
+ from sentence_transformers import SentenceTransformer
27
+ sentences = ["This is an example sentence", "Each sentence is converted"]
28
+
29
+ model = SentenceTransformer('{MODEL_NAME}')
30
+ embeddings = model.encode(sentences)
31
+ print(embeddings)
32
+ ```
33
+
34
+
35
+
36
+ ## Evaluation Results
37
+
38
+ <!--- Describe how your model was evaluated -->
39
+
40
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
41
+
42
+
43
+ ## Training
44
+ The model was trained with the parameters:
45
+
46
+ **DataLoader**:
47
+
48
+ `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 1100 with parameters:
49
+ ```
50
+ {'batch_size': 512}
51
+ ```
52
+
53
+ **Loss**:
54
+
55
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MNRLGradCache`
56
+
57
+ Parameters of the fit()-Method:
58
+ ```
59
+ {
60
+ "epochs": 1,
61
+ "evaluation_steps": 110,
62
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
63
+ "max_grad_norm": 1,
64
+ "optimizer_class": "<class 'transformers.optimization.AdamW'>",
65
+ "optimizer_params": {
66
+ "lr": 0.00032
67
+ },
68
+ "scheduler": "WarmupLinear",
69
+ "steps_per_epoch": null,
70
+ "warmup_steps": 110,
71
+ "weight_decay": 0.01
72
+ }
73
+ ```
74
+
75
+
76
+ ## Full Model Architecture
77
+ ```
78
+ SentenceTransformer(
79
+ (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BloomModel
80
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
81
+ )
82
+ ```
83
+
84
+ ## Citing & Authors
85
+
86
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bigscience/bloom-560m",
3
+ "apply_residual_connection_post_layernorm": false,
4
+ "architectures": [
5
+ "BloomModel"
6
+ ],
7
+ "attention_dropout": 0.0,
8
+ "attention_softmax_in_fp32": true,
9
+ "bias_dropout_fusion": true,
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "hidden_dropout": 0.0,
13
+ "hidden_size": 1024,
14
+ "initializer_range": 0.02,
15
+ "layer_norm_epsilon": 1e-05,
16
+ "masked_softmax_fusion": true,
17
+ "model_type": "bloom",
18
+ "n_head": 16,
19
+ "n_inner": null,
20
+ "n_layer": 24,
21
+ "offset_alibi": 100,
22
+ "pad_token_id": 3,
23
+ "pretraining_tp": 1,
24
+ "skip_bias_add": true,
25
+ "skip_bias_add_qkv": false,
26
+ "slow_but_exact": false,
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.26.0",
29
+ "unk_token_id": 0,
30
+ "use_cache": true,
31
+ "vocab_size": 250880
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.1.0",
4
+ "transformers": "4.26.0",
5
+ "pytorch": "1.13.1+cu117"
6
+ }
7
+ }
eval/similarity_evaluation_sts-dev_results.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ 0,110,0.7972177594462238,0.8043629358823652,0.7646133789132851,0.7730870263981702,0.7694301604798529,0.7776129298774165,0.5946354494767032,0.624867251512257
3
+ 0,220,0.7862974114504585,0.7878697963863946,0.7129839533906921,0.7223748205826306,0.7153623777670303,0.7241468645101633,0.5726864247452823,0.602314513528443
4
+ 0,330,0.7956762779869324,0.8010584852033521,0.7440806704189473,0.751907696614152,0.7503300223234904,0.7579716191697135,0.6381452127141825,0.6653761495746414
5
+ 0,440,0.8035486243930863,0.8063900885268763,0.7568497932752061,0.7631305230858,0.7576930287460167,0.7639910717223785,0.6285002425801265,0.659378597392962
6
+ 0,550,0.801695918988488,0.8037215244076917,0.7394913972936679,0.7477328238475838,0.7415045825494428,0.7495727414874374,0.6045201668534926,0.6412268642256879
7
+ 0,660,0.8092047622444131,0.8115538305245936,0.7341722822868079,0.7380690573920385,0.7372953677459273,0.7398478789043197,0.6026684263749247,0.6409992484102447
8
+ 0,770,0.8103645569901933,0.8137859672963318,0.7399568991545388,0.7468888428380972,0.7418010441444423,0.7476156209197257,0.6243819636149678,0.6507352853782982
9
+ 0,880,0.8138019500529512,0.8167473430054892,0.7456197764295599,0.751722823042406,0.7475218434328829,0.7530546371287647,0.6364056292643948,0.6641099547506488
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:315daacf1871ff28875d33e477925ed63831ef9a6db45fd01d44ae3feed61e33
3
+ size 2236953889
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 75,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "eos_token": "</s>",
4
+ "pad_token": "<pad>",
5
+ "unk_token": "<unk>"
6
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:796518d81847a3370a556a1c4bc940286069aec6dbbc8cb61deb5f696dac82f7
3
+ size 14500694
tokenizer_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "model_max_length": 1000000000000000019884624838656,
6
+ "name_or_path": "bigscience/bloom-560m",
7
+ "pad_token": "<pad>",
8
+ "padding_side": "left",
9
+ "special_tokens_map_file": null,
10
+ "tokenizer_class": "BloomTokenizer",
11
+ "unk_token": "<unk>"
12
+ }