Upload 10 files
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +9 -0
- README.md +86 -0
- config.json +1 -1
- config_sentence_transformers.json +7 -0
- eval/similarity_evaluation_sts-dev_results.csv +12 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +6 -0
- tokenizer.json +3 -0
- tokenizer_config.json +12 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": true,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
+
}
|
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
---
|
8 |
+
|
9 |
+
# {MODEL_NAME}
|
10 |
+
|
11 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
12 |
+
|
13 |
+
<!--- Describe your model here -->
|
14 |
+
|
15 |
+
## Usage (Sentence-Transformers)
|
16 |
+
|
17 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
18 |
+
|
19 |
+
```
|
20 |
+
pip install -U sentence-transformers
|
21 |
+
```
|
22 |
+
|
23 |
+
Then you can use the model like this:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from sentence_transformers import SentenceTransformer
|
27 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
28 |
+
|
29 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
30 |
+
embeddings = model.encode(sentences)
|
31 |
+
print(embeddings)
|
32 |
+
```
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
## Evaluation Results
|
37 |
+
|
38 |
+
<!--- Describe how your model was evaluated -->
|
39 |
+
|
40 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
41 |
+
|
42 |
+
|
43 |
+
## Training
|
44 |
+
The model was trained with the parameters:
|
45 |
+
|
46 |
+
**DataLoader**:
|
47 |
+
|
48 |
+
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 8807 with parameters:
|
49 |
+
```
|
50 |
+
{'batch_size': 64}
|
51 |
+
```
|
52 |
+
|
53 |
+
**Loss**:
|
54 |
+
|
55 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MNRLGradCache`
|
56 |
+
|
57 |
+
Parameters of the fit()-Method:
|
58 |
+
```
|
59 |
+
{
|
60 |
+
"epochs": 1,
|
61 |
+
"evaluation_steps": 880,
|
62 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
63 |
+
"max_grad_norm": 1,
|
64 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
65 |
+
"optimizer_params": {
|
66 |
+
"lr": 0.00032
|
67 |
+
},
|
68 |
+
"scheduler": "WarmupLinear",
|
69 |
+
"steps_per_epoch": null,
|
70 |
+
"warmup_steps": 881,
|
71 |
+
"weight_decay": 0.01
|
72 |
+
}
|
73 |
+
```
|
74 |
+
|
75 |
+
|
76 |
+
## Full Model Architecture
|
77 |
+
```
|
78 |
+
SentenceTransformer(
|
79 |
+
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BloomModel
|
80 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False})
|
81 |
+
)
|
82 |
+
```
|
83 |
+
|
84 |
+
## Citing & Authors
|
85 |
+
|
86 |
+
<!--- Describe where people can find more information -->
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "/
|
3 |
"apply_residual_connection_post_layernorm": false,
|
4 |
"architectures": [
|
5 |
"BloomModel"
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "bigscience/bloom-560m",
|
3 |
"apply_residual_connection_post_layernorm": false,
|
4 |
"architectures": [
|
5 |
"BloomModel"
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.1.0",
|
4 |
+
"transformers": "4.26.0",
|
5 |
+
"pytorch": "1.13.1+cu116"
|
6 |
+
}
|
7 |
+
}
|
eval/similarity_evaluation_sts-dev_results.csv
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,880,0.7730739295350652,0.7715551652245848,0.7624365605656847,0.7651878832560441,0.7738056780000323,0.774765962811202,0.5945028356336506,0.6492590809354595
|
3 |
+
0,1760,0.8097610198466907,0.8095535472857835,0.7779407251297351,0.7821391678764665,0.7852814025292081,0.7886208940685075,0.6599095249806181,0.7049593008199263
|
4 |
+
0,2640,0.8164356057125646,0.8177035938282402,0.7881232506320947,0.7931402875681008,0.7909464094977913,0.7962929294234878,0.6667516754297772,0.6945011601599906
|
5 |
+
0,3520,0.8205566117832566,0.8225628071417286,0.7885632899300942,0.7940019760690814,0.7922869076151767,0.7973139071773592,0.68123805521984,0.7126297224766549
|
6 |
+
0,4400,0.8246633613832021,0.8264392528739577,0.7948662818700284,0.8014143726369413,0.7973234805681629,0.8036905183338244,0.6811352124044009,0.7124567152399768
|
7 |
+
0,5280,0.8278716311461626,0.8303647324478112,0.7944490876909815,0.8006687190981095,0.7971389647391712,0.8036715165413686,0.6934613903591799,0.7132242068721515
|
8 |
+
0,6160,0.8276340537967477,0.8316613080745355,0.7977532663102133,0.8050608484597804,0.7990159334028079,0.8066362694744206,0.6932521481661752,0.7126691904753873
|
9 |
+
0,7040,0.8263521795828297,0.8311953006359153,0.7964605233737377,0.8049510761421301,0.7966868931245471,0.8057105054911681,0.6920102887738941,0.7127765108340522
|
10 |
+
0,7920,0.8295055078059729,0.8335673218437176,0.7996090528343557,0.8082567154311249,0.7996295598380291,0.8086261196003169,0.6913420227276409,0.7132463385600031
|
11 |
+
0,8800,0.829875943370156,0.8334915869160747,0.7966128866622307,0.8056167830066436,0.7964793849514137,0.8059608544181625,0.6961949575851428,0.7154576176641358
|
12 |
+
0,-1,0.8298786185501829,0.8334962541790778,0.7966138355982828,0.8056186760728082,0.7964805974373733,0.80596287933059,0.6962014252435245,0.7154768650083625
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 75,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"pad_token": "<pad>",
|
5 |
+
"unk_token": "<unk>"
|
6 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:796518d81847a3370a556a1c4bc940286069aec6dbbc8cb61deb5f696dac82f7
|
3 |
+
size 14500694
|
tokenizer_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"model_max_length": 1000000000000000019884624838656,
|
6 |
+
"name_or_path": "bigscience/bloom-560m",
|
7 |
+
"pad_token": "<pad>",
|
8 |
+
"padding_side": "left",
|
9 |
+
"special_tokens_map_file": null,
|
10 |
+
"tokenizer_class": "BloomTokenizer",
|
11 |
+
"unk_token": "<unk>"
|
12 |
+
}
|