Mayank022 commited on
Commit
f5b3371
·
verified ·
1 Parent(s): 2ca914e

Update model.py

Browse files
Files changed (1) hide show
  1. model.py +116 -0
model.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torch.nn as nn
4
+ import transformers
5
+ from typing import Optional, Tuple, Union, List
6
+ from config import ModelConfig
7
+
8
+ class ModelProjector(nn.Module):
9
+ def __init__(self, config: ModelConfig, audio_hidden_size: int):
10
+ super().__init__()
11
+ self.stack_factor = config.stack_factor
12
+ input_dim = audio_hidden_size * self.stack_factor
13
+
14
+ self.linear1 = nn.Linear(input_dim, config.hidden_size)
15
+ self.act = nn.GELU() if config.projector_act == 'gelu' else nn.ReLU()
16
+ self.linear2 = nn.Linear(config.hidden_size, config.hidden_size)
17
+ self.norm = nn.LayerNorm(config.hidden_size)
18
+
19
+ def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
20
+ if audio_features.dim() == 3 and audio_features.shape[1] < audio_features.shape[2]:
21
+ audio_features = audio_features.transpose(1, 2)
22
+
23
+ B, T, C = audio_features.shape
24
+
25
+ if T % self.stack_factor != 0:
26
+ pad_len = self.stack_factor - (T % self.stack_factor)
27
+ audio_features = torch.nn.functional.pad(audio_features, (0, 0, 0, pad_len))
28
+ T = T + pad_len
29
+
30
+ audio_features = audio_features.view(B, T // self.stack_factor, C * self.stack_factor)
31
+
32
+ x = self.linear1(audio_features)
33
+ x = self.act(x)
34
+ x = self.linear2(x)
35
+ x = self.norm(x)
36
+ return x
37
+
38
+ class MultiModalModel(nn.Module):
39
+ def __init__(self, config: ModelConfig):
40
+ super().__init__()
41
+ self.config = config
42
+
43
+ self.audio_encoder = transformers.AutoModel.from_pretrained(config.audio_model_id).encoder
44
+ for param in self.audio_encoder.parameters():
45
+ param.requires_grad = False
46
+
47
+ audio_hidden_size = self.audio_encoder.config.hidden_size
48
+
49
+ self.llm = transformers.AutoModelForCausalLM.from_pretrained(config.text_model_id, trust_remote_code=True)
50
+ self.llm_hidden_size = self.llm.config.hidden_size
51
+
52
+ self.projector = ModelProjector(config, audio_hidden_size)
53
+ if config.hidden_size != self.llm_hidden_size:
54
+ self.projector.linear2 = nn.Linear(config.hidden_size, self.llm_hidden_size)
55
+ self.projector.norm = nn.LayerNorm(self.llm_hidden_size)
56
+
57
+
58
+ def forward(
59
+ self,
60
+ input_ids: torch.Tensor,
61
+ audio_values: Optional[torch.Tensor] = None,
62
+ labels: Optional[torch.Tensor] = None,
63
+ **kwargs
64
+ ):
65
+ inputs_embeds = self.llm.get_input_embeddings()(input_ids)
66
+
67
+ if audio_values is not None:
68
+ audio_outputs = self.audio_encoder(audio_values)
69
+ audio_features = audio_outputs.last_hidden_state
70
+
71
+ audio_projected = self.projector(audio_features)
72
+
73
+ inputs_embeds = torch.cat([audio_projected, inputs_embeds], dim=1)
74
+
75
+ if labels is not None:
76
+ audio_labels = torch.full((audio_projected.shape[0], audio_projected.shape[1]), -100, device=labels.device, dtype=labels.dtype)
77
+ labels = torch.cat([audio_labels, labels], dim=1)
78
+
79
+ if "attention_mask" in kwargs:
80
+ audio_mask = torch.ones((audio_projected.shape[0], audio_projected.shape[1]), device=inputs_embeds.device, dtype=kwargs["attention_mask"].dtype)
81
+ kwargs["attention_mask"] = torch.cat([audio_mask, kwargs["attention_mask"]], dim=1)
82
+
83
+ # Match LLM dtype (e.g. bfloat16) to avoid "float != bfloat16" in linear layers
84
+ llm_dtype = next(self.llm.parameters()).dtype
85
+ inputs_embeds = inputs_embeds.to(llm_dtype)
86
+ if labels is not None:
87
+ labels = labels.to(llm_dtype) if labels.dtype.is_floating_point else labels
88
+
89
+ # Drop non-tensor keys (e.g. continuation) so LLM forward doesn't receive them
90
+ kwargs = {k: v for k, v in kwargs.items() if isinstance(v, torch.Tensor)}
91
+ outputs = self.llm(
92
+ inputs_embeds=inputs_embeds,
93
+ labels=labels,
94
+ **kwargs
95
+ )
96
+
97
+ return outputs
98
+
99
+ def generate(self, input_ids, audio_values=None, **kwargs):
100
+ inputs_embeds = self.llm.get_input_embeddings()(input_ids)
101
+
102
+ if audio_values is not None:
103
+ audio_outputs = self.audio_encoder(audio_values)
104
+ audio_features = audio_outputs.last_hidden_state
105
+ audio_projected = self.projector(audio_features)
106
+ inputs_embeds = torch.cat([audio_projected, inputs_embeds], dim=1)
107
+
108
+ if "attention_mask" in kwargs:
109
+ audio_mask = torch.ones((audio_projected.shape[0], audio_projected.shape[1]), device=inputs_embeds.device, dtype=kwargs["attention_mask"].dtype)
110
+ kwargs["attention_mask"] = torch.cat([audio_mask, kwargs["attention_mask"]], dim=1)
111
+ inputs_embeds = inputs_embeds.to(next(self.llm.parameters()).dtype)
112
+
113
+ return self.llm.generate(inputs_embeds=inputs_embeds, **kwargs)
114
+
115
+ def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
116
+ self.llm.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)