MayBashendy commited on
Commit
551896f
·
verified ·
1 Parent(s): dcea0bf

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +317 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_FineTuningAraBERT_run3_AugV5_k15_task5_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_FineTuningAraBERT_run3_AugV5_k15_task5_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.7223
19
+ - Qwk: 0.4730
20
+ - Mse: 0.7223
21
+ - Rmse: 0.8499
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:|
52
+ | No log | 0.0513 | 2 | 4.6165 | -0.0179 | 4.6165 | 2.1486 |
53
+ | No log | 0.1026 | 4 | 2.8710 | -0.0231 | 2.8710 | 1.6944 |
54
+ | No log | 0.1538 | 6 | 2.1203 | -0.0647 | 2.1203 | 1.4561 |
55
+ | No log | 0.2051 | 8 | 1.4524 | 0.0279 | 1.4524 | 1.2051 |
56
+ | No log | 0.2564 | 10 | 1.6575 | 0.0300 | 1.6575 | 1.2874 |
57
+ | No log | 0.3077 | 12 | 1.5431 | 0.0371 | 1.5431 | 1.2422 |
58
+ | No log | 0.3590 | 14 | 1.3230 | -0.0511 | 1.3230 | 1.1502 |
59
+ | No log | 0.4103 | 16 | 1.1595 | 0.0882 | 1.1595 | 1.0768 |
60
+ | No log | 0.4615 | 18 | 1.2108 | 0.0909 | 1.2108 | 1.1004 |
61
+ | No log | 0.5128 | 20 | 1.1741 | 0.1154 | 1.1741 | 1.0836 |
62
+ | No log | 0.5641 | 22 | 1.1535 | 0.0792 | 1.1535 | 1.0740 |
63
+ | No log | 0.6154 | 24 | 1.1449 | 0.1408 | 1.1449 | 1.0700 |
64
+ | No log | 0.6667 | 26 | 1.1799 | 0.0970 | 1.1799 | 1.0862 |
65
+ | No log | 0.7179 | 28 | 1.2804 | 0.0232 | 1.2804 | 1.1315 |
66
+ | No log | 0.7692 | 30 | 1.3531 | 0.0 | 1.3531 | 1.1632 |
67
+ | No log | 0.8205 | 32 | 1.2932 | 0.0380 | 1.2932 | 1.1372 |
68
+ | No log | 0.8718 | 34 | 1.1336 | 0.2074 | 1.1336 | 1.0647 |
69
+ | No log | 0.9231 | 36 | 1.0738 | 0.1218 | 1.0738 | 1.0363 |
70
+ | No log | 0.9744 | 38 | 1.0661 | 0.1370 | 1.0661 | 1.0325 |
71
+ | No log | 1.0256 | 40 | 1.0737 | 0.1848 | 1.0737 | 1.0362 |
72
+ | No log | 1.0769 | 42 | 1.0947 | 0.2074 | 1.0947 | 1.0463 |
73
+ | No log | 1.1282 | 44 | 1.1012 | 0.2125 | 1.1012 | 1.0494 |
74
+ | No log | 1.1795 | 46 | 1.0272 | 0.1725 | 1.0272 | 1.0135 |
75
+ | No log | 1.2308 | 48 | 0.9670 | 0.2944 | 0.9670 | 0.9833 |
76
+ | No log | 1.2821 | 50 | 0.9679 | 0.3288 | 0.9679 | 0.9838 |
77
+ | No log | 1.3333 | 52 | 0.9473 | 0.2944 | 0.9473 | 0.9733 |
78
+ | No log | 1.3846 | 54 | 0.9451 | 0.2842 | 0.9451 | 0.9722 |
79
+ | No log | 1.4359 | 56 | 0.9414 | 0.2865 | 0.9414 | 0.9703 |
80
+ | No log | 1.4872 | 58 | 0.9470 | 0.3979 | 0.9470 | 0.9731 |
81
+ | No log | 1.5385 | 60 | 1.0563 | 0.2441 | 1.0563 | 1.0277 |
82
+ | No log | 1.5897 | 62 | 1.0513 | 0.2834 | 1.0513 | 1.0253 |
83
+ | No log | 1.6410 | 64 | 1.0556 | 0.3108 | 1.0556 | 1.0274 |
84
+ | No log | 1.6923 | 66 | 1.0785 | 0.3547 | 1.0785 | 1.0385 |
85
+ | No log | 1.7436 | 68 | 1.1076 | 0.2835 | 1.1076 | 1.0524 |
86
+ | No log | 1.7949 | 70 | 1.1437 | 0.2669 | 1.1437 | 1.0694 |
87
+ | No log | 1.8462 | 72 | 1.0474 | 0.2551 | 1.0474 | 1.0234 |
88
+ | No log | 1.8974 | 74 | 1.0008 | 0.3414 | 1.0008 | 1.0004 |
89
+ | No log | 1.9487 | 76 | 0.9496 | 0.3819 | 0.9496 | 0.9745 |
90
+ | No log | 2.0 | 78 | 0.9969 | 0.3063 | 0.9969 | 0.9984 |
91
+ | No log | 2.0513 | 80 | 1.0100 | 0.2474 | 1.0100 | 1.0050 |
92
+ | No log | 2.1026 | 82 | 0.9360 | 0.3153 | 0.9360 | 0.9675 |
93
+ | No log | 2.1538 | 84 | 0.9226 | 0.3304 | 0.9226 | 0.9605 |
94
+ | No log | 2.2051 | 86 | 0.8861 | 0.3214 | 0.8861 | 0.9413 |
95
+ | No log | 2.2564 | 88 | 0.8880 | 0.3175 | 0.8880 | 0.9423 |
96
+ | No log | 2.3077 | 90 | 0.8734 | 0.3744 | 0.8734 | 0.9346 |
97
+ | No log | 2.3590 | 92 | 0.8972 | 0.3976 | 0.8972 | 0.9472 |
98
+ | No log | 2.4103 | 94 | 0.9447 | 0.4466 | 0.9447 | 0.9719 |
99
+ | No log | 2.4615 | 96 | 0.9655 | 0.4231 | 0.9655 | 0.9826 |
100
+ | No log | 2.5128 | 98 | 0.9783 | 0.4231 | 0.9783 | 0.9891 |
101
+ | No log | 2.5641 | 100 | 0.9767 | 0.4404 | 0.9767 | 0.9883 |
102
+ | No log | 2.6154 | 102 | 1.0070 | 0.4711 | 1.0070 | 1.0035 |
103
+ | No log | 2.6667 | 104 | 0.9996 | 0.4662 | 0.9996 | 0.9998 |
104
+ | No log | 2.7179 | 106 | 1.1366 | 0.3437 | 1.1366 | 1.0661 |
105
+ | No log | 2.7692 | 108 | 1.0177 | 0.4211 | 1.0177 | 1.0088 |
106
+ | No log | 2.8205 | 110 | 0.9996 | 0.4211 | 0.9996 | 0.9998 |
107
+ | No log | 2.8718 | 112 | 1.0296 | 0.3787 | 1.0296 | 1.0147 |
108
+ | No log | 2.9231 | 114 | 1.0205 | 0.3787 | 1.0205 | 1.0102 |
109
+ | No log | 2.9744 | 116 | 0.9348 | 0.3335 | 0.9348 | 0.9668 |
110
+ | No log | 3.0256 | 118 | 0.9349 | 0.4606 | 0.9349 | 0.9669 |
111
+ | No log | 3.0769 | 120 | 1.0028 | 0.4278 | 1.0028 | 1.0014 |
112
+ | No log | 3.1282 | 122 | 0.8721 | 0.4879 | 0.8721 | 0.9339 |
113
+ | No log | 3.1795 | 124 | 1.0965 | 0.4515 | 1.0965 | 1.0471 |
114
+ | No log | 3.2308 | 126 | 1.1555 | 0.4471 | 1.1555 | 1.0749 |
115
+ | No log | 3.2821 | 128 | 0.9590 | 0.5106 | 0.9590 | 0.9793 |
116
+ | No log | 3.3333 | 130 | 0.8268 | 0.5618 | 0.8268 | 0.9093 |
117
+ | No log | 3.3846 | 132 | 1.0196 | 0.3878 | 1.0196 | 1.0098 |
118
+ | No log | 3.4359 | 134 | 1.1365 | 0.3666 | 1.1365 | 1.0661 |
119
+ | No log | 3.4872 | 136 | 0.9193 | 0.4276 | 0.9193 | 0.9588 |
120
+ | No log | 3.5385 | 138 | 0.8046 | 0.4792 | 0.8046 | 0.8970 |
121
+ | No log | 3.5897 | 140 | 0.9482 | 0.2543 | 0.9482 | 0.9738 |
122
+ | No log | 3.6410 | 142 | 0.8980 | 0.3622 | 0.8980 | 0.9477 |
123
+ | No log | 3.6923 | 144 | 0.7537 | 0.5510 | 0.7537 | 0.8682 |
124
+ | No log | 3.7436 | 146 | 0.8040 | 0.4943 | 0.8040 | 0.8966 |
125
+ | No log | 3.7949 | 148 | 0.9974 | 0.4898 | 0.9974 | 0.9987 |
126
+ | No log | 3.8462 | 150 | 0.9976 | 0.4579 | 0.9976 | 0.9988 |
127
+ | No log | 3.8974 | 152 | 0.8081 | 0.5291 | 0.8081 | 0.8989 |
128
+ | No log | 3.9487 | 154 | 0.7971 | 0.5920 | 0.7971 | 0.8928 |
129
+ | No log | 4.0 | 156 | 0.7982 | 0.6082 | 0.7982 | 0.8934 |
130
+ | No log | 4.0513 | 158 | 0.7567 | 0.5260 | 0.7567 | 0.8699 |
131
+ | No log | 4.1026 | 160 | 0.8769 | 0.3001 | 0.8769 | 0.9364 |
132
+ | No log | 4.1538 | 162 | 1.0148 | 0.1487 | 1.0148 | 1.0074 |
133
+ | No log | 4.2051 | 164 | 0.9408 | 0.3743 | 0.9408 | 0.9700 |
134
+ | No log | 4.2564 | 166 | 0.7950 | 0.4988 | 0.7950 | 0.8916 |
135
+ | No log | 4.3077 | 168 | 0.8618 | 0.3522 | 0.8618 | 0.9283 |
136
+ | No log | 4.3590 | 170 | 0.8524 | 0.3933 | 0.8524 | 0.9233 |
137
+ | No log | 4.4103 | 172 | 0.8795 | 0.5192 | 0.8795 | 0.9378 |
138
+ | No log | 4.4615 | 174 | 0.9586 | 0.4568 | 0.9586 | 0.9791 |
139
+ | No log | 4.5128 | 176 | 0.8707 | 0.4824 | 0.8707 | 0.9331 |
140
+ | No log | 4.5641 | 178 | 0.7911 | 0.4119 | 0.7911 | 0.8894 |
141
+ | No log | 4.6154 | 180 | 0.8552 | 0.4853 | 0.8552 | 0.9248 |
142
+ | No log | 4.6667 | 182 | 0.8152 | 0.5202 | 0.8152 | 0.9029 |
143
+ | No log | 4.7179 | 184 | 0.7678 | 0.5913 | 0.7678 | 0.8762 |
144
+ | No log | 4.7692 | 186 | 0.8384 | 0.5291 | 0.8384 | 0.9157 |
145
+ | No log | 4.8205 | 188 | 0.8671 | 0.4840 | 0.8671 | 0.9312 |
146
+ | No log | 4.8718 | 190 | 0.8515 | 0.5654 | 0.8515 | 0.9228 |
147
+ | No log | 4.9231 | 192 | 0.8743 | 0.4922 | 0.8743 | 0.9350 |
148
+ | No log | 4.9744 | 194 | 0.8473 | 0.4799 | 0.8473 | 0.9205 |
149
+ | No log | 5.0256 | 196 | 0.8131 | 0.4515 | 0.8131 | 0.9017 |
150
+ | No log | 5.0769 | 198 | 0.7989 | 0.4401 | 0.7989 | 0.8938 |
151
+ | No log | 5.1282 | 200 | 0.7949 | 0.4411 | 0.7949 | 0.8916 |
152
+ | No log | 5.1795 | 202 | 0.8063 | 0.4082 | 0.8063 | 0.8979 |
153
+ | No log | 5.2308 | 204 | 0.9014 | 0.5292 | 0.9014 | 0.9494 |
154
+ | No log | 5.2821 | 206 | 0.8914 | 0.4840 | 0.8914 | 0.9441 |
155
+ | No log | 5.3333 | 208 | 0.8651 | 0.5098 | 0.8651 | 0.9301 |
156
+ | No log | 5.3846 | 210 | 0.8794 | 0.4988 | 0.8794 | 0.9377 |
157
+ | No log | 5.4359 | 212 | 0.8853 | 0.4875 | 0.8853 | 0.9409 |
158
+ | No log | 5.4872 | 214 | 0.8696 | 0.5129 | 0.8696 | 0.9325 |
159
+ | No log | 5.5385 | 216 | 0.8602 | 0.5419 | 0.8602 | 0.9275 |
160
+ | No log | 5.5897 | 218 | 0.8296 | 0.4907 | 0.8296 | 0.9108 |
161
+ | No log | 5.6410 | 220 | 0.8888 | 0.5157 | 0.8888 | 0.9427 |
162
+ | No log | 5.6923 | 222 | 0.8830 | 0.4937 | 0.8830 | 0.9397 |
163
+ | No log | 5.7436 | 224 | 0.8093 | 0.4353 | 0.8093 | 0.8996 |
164
+ | No log | 5.7949 | 226 | 0.8073 | 0.4353 | 0.8073 | 0.8985 |
165
+ | No log | 5.8462 | 228 | 0.8456 | 0.4843 | 0.8456 | 0.9196 |
166
+ | No log | 5.8974 | 230 | 0.8643 | 0.4455 | 0.8643 | 0.9297 |
167
+ | No log | 5.9487 | 232 | 0.7892 | 0.5135 | 0.7892 | 0.8883 |
168
+ | No log | 6.0 | 234 | 0.8007 | 0.4614 | 0.8007 | 0.8948 |
169
+ | No log | 6.0513 | 236 | 0.8094 | 0.5475 | 0.8094 | 0.8996 |
170
+ | No log | 6.1026 | 238 | 0.8254 | 0.5959 | 0.8254 | 0.9085 |
171
+ | No log | 6.1538 | 240 | 0.8550 | 0.5057 | 0.8550 | 0.9247 |
172
+ | No log | 6.2051 | 242 | 0.8335 | 0.5528 | 0.8335 | 0.9129 |
173
+ | No log | 6.2564 | 244 | 0.8146 | 0.5248 | 0.8146 | 0.9025 |
174
+ | No log | 6.3077 | 246 | 0.8492 | 0.4593 | 0.8492 | 0.9215 |
175
+ | No log | 6.3590 | 248 | 0.8557 | 0.3922 | 0.8557 | 0.9251 |
176
+ | No log | 6.4103 | 250 | 0.8053 | 0.4608 | 0.8053 | 0.8974 |
177
+ | No log | 6.4615 | 252 | 0.7920 | 0.5199 | 0.7920 | 0.8900 |
178
+ | No log | 6.5128 | 254 | 0.9542 | 0.3687 | 0.9542 | 0.9768 |
179
+ | No log | 6.5641 | 256 | 0.9879 | 0.3928 | 0.9879 | 0.9939 |
180
+ | No log | 6.6154 | 258 | 0.8233 | 0.5209 | 0.8233 | 0.9074 |
181
+ | No log | 6.6667 | 260 | 0.7628 | 0.5234 | 0.7628 | 0.8734 |
182
+ | No log | 6.7179 | 262 | 0.7690 | 0.5688 | 0.7690 | 0.8770 |
183
+ | No log | 6.7692 | 264 | 0.7704 | 0.5939 | 0.7704 | 0.8777 |
184
+ | No log | 6.8205 | 266 | 0.8782 | 0.3833 | 0.8782 | 0.9371 |
185
+ | No log | 6.8718 | 268 | 1.0884 | 0.3614 | 1.0884 | 1.0433 |
186
+ | No log | 6.9231 | 270 | 0.9639 | 0.3743 | 0.9639 | 0.9818 |
187
+ | No log | 6.9744 | 272 | 0.7412 | 0.5771 | 0.7412 | 0.8609 |
188
+ | No log | 7.0256 | 274 | 0.7538 | 0.5459 | 0.7538 | 0.8682 |
189
+ | No log | 7.0769 | 276 | 0.7848 | 0.5933 | 0.7848 | 0.8859 |
190
+ | No log | 7.1282 | 278 | 0.7671 | 0.5975 | 0.7671 | 0.8759 |
191
+ | No log | 7.1795 | 280 | 0.7870 | 0.5577 | 0.7870 | 0.8871 |
192
+ | No log | 7.2308 | 282 | 0.8266 | 0.4888 | 0.8266 | 0.9092 |
193
+ | No log | 7.2821 | 284 | 0.8414 | 0.4729 | 0.8414 | 0.9173 |
194
+ | No log | 7.3333 | 286 | 0.8470 | 0.4060 | 0.8470 | 0.9203 |
195
+ | No log | 7.3846 | 288 | 0.8907 | 0.3687 | 0.8907 | 0.9438 |
196
+ | No log | 7.4359 | 290 | 0.8694 | 0.3804 | 0.8694 | 0.9324 |
197
+ | No log | 7.4872 | 292 | 0.8005 | 0.3941 | 0.8005 | 0.8947 |
198
+ | No log | 7.5385 | 294 | 0.7981 | 0.4537 | 0.7981 | 0.8934 |
199
+ | No log | 7.5897 | 296 | 0.7951 | 0.4537 | 0.7951 | 0.8917 |
200
+ | No log | 7.6410 | 298 | 0.8159 | 0.4227 | 0.8159 | 0.9032 |
201
+ | No log | 7.6923 | 300 | 0.8849 | 0.4921 | 0.8849 | 0.9407 |
202
+ | No log | 7.7436 | 302 | 0.9372 | 0.4790 | 0.9372 | 0.9681 |
203
+ | No log | 7.7949 | 304 | 0.9430 | 0.4886 | 0.9430 | 0.9711 |
204
+ | No log | 7.8462 | 306 | 0.9114 | 0.5 | 0.9114 | 0.9547 |
205
+ | No log | 7.8974 | 308 | 0.8126 | 0.5175 | 0.8126 | 0.9015 |
206
+ | No log | 7.9487 | 310 | 0.7986 | 0.5221 | 0.7986 | 0.8936 |
207
+ | No log | 8.0 | 312 | 0.7876 | 0.5236 | 0.7876 | 0.8875 |
208
+ | No log | 8.0513 | 314 | 0.7740 | 0.5261 | 0.7740 | 0.8798 |
209
+ | No log | 8.1026 | 316 | 0.7636 | 0.4494 | 0.7636 | 0.8738 |
210
+ | No log | 8.1538 | 318 | 0.7944 | 0.4227 | 0.7944 | 0.8913 |
211
+ | No log | 8.2051 | 320 | 0.8610 | 0.4057 | 0.8610 | 0.9279 |
212
+ | No log | 8.2564 | 322 | 0.8193 | 0.4093 | 0.8193 | 0.9051 |
213
+ | No log | 8.3077 | 324 | 0.7744 | 0.4371 | 0.7744 | 0.8800 |
214
+ | No log | 8.3590 | 326 | 0.7967 | 0.5054 | 0.7967 | 0.8926 |
215
+ | No log | 8.4103 | 328 | 0.7986 | 0.5046 | 0.7986 | 0.8937 |
216
+ | No log | 8.4615 | 330 | 0.8285 | 0.4847 | 0.8285 | 0.9102 |
217
+ | No log | 8.5128 | 332 | 0.9943 | 0.4432 | 0.9943 | 0.9971 |
218
+ | No log | 8.5641 | 334 | 1.0165 | 0.4619 | 1.0165 | 1.0082 |
219
+ | No log | 8.6154 | 336 | 0.9047 | 0.5024 | 0.9047 | 0.9512 |
220
+ | No log | 8.6667 | 338 | 0.8396 | 0.4974 | 0.8396 | 0.9163 |
221
+ | No log | 8.7179 | 340 | 0.8150 | 0.5402 | 0.8150 | 0.9028 |
222
+ | No log | 8.7692 | 342 | 0.8078 | 0.5156 | 0.8078 | 0.8988 |
223
+ | No log | 8.8205 | 344 | 0.8161 | 0.3821 | 0.8161 | 0.9034 |
224
+ | No log | 8.8718 | 346 | 0.8019 | 0.4353 | 0.8019 | 0.8955 |
225
+ | No log | 8.9231 | 348 | 0.7953 | 0.4511 | 0.7953 | 0.8918 |
226
+ | No log | 8.9744 | 350 | 0.8008 | 0.5176 | 0.8008 | 0.8949 |
227
+ | No log | 9.0256 | 352 | 0.8107 | 0.5057 | 0.8107 | 0.9004 |
228
+ | No log | 9.0769 | 354 | 0.8198 | 0.5287 | 0.8198 | 0.9054 |
229
+ | No log | 9.1282 | 356 | 0.8063 | 0.5474 | 0.8063 | 0.8980 |
230
+ | No log | 9.1795 | 358 | 0.8078 | 0.5522 | 0.8078 | 0.8988 |
231
+ | No log | 9.2308 | 360 | 0.8145 | 0.5510 | 0.8145 | 0.9025 |
232
+ | No log | 9.2821 | 362 | 0.7771 | 0.4988 | 0.7771 | 0.8815 |
233
+ | No log | 9.3333 | 364 | 0.8091 | 0.5074 | 0.8091 | 0.8995 |
234
+ | No log | 9.3846 | 366 | 0.8520 | 0.4838 | 0.8520 | 0.9230 |
235
+ | No log | 9.4359 | 368 | 0.8129 | 0.4573 | 0.8129 | 0.9016 |
236
+ | No log | 9.4872 | 370 | 0.7785 | 0.4643 | 0.7785 | 0.8823 |
237
+ | No log | 9.5385 | 372 | 0.7926 | 0.4097 | 0.7926 | 0.8903 |
238
+ | No log | 9.5897 | 374 | 0.8102 | 0.4237 | 0.8102 | 0.9001 |
239
+ | No log | 9.6410 | 376 | 0.7852 | 0.4995 | 0.7852 | 0.8861 |
240
+ | No log | 9.6923 | 378 | 0.7624 | 0.4822 | 0.7624 | 0.8731 |
241
+ | No log | 9.7436 | 380 | 0.7639 | 0.5913 | 0.7639 | 0.8740 |
242
+ | No log | 9.7949 | 382 | 0.7725 | 0.5287 | 0.7725 | 0.8789 |
243
+ | No log | 9.8462 | 384 | 0.7689 | 0.5898 | 0.7689 | 0.8769 |
244
+ | No log | 9.8974 | 386 | 0.7867 | 0.5059 | 0.7867 | 0.8870 |
245
+ | No log | 9.9487 | 388 | 0.8272 | 0.4938 | 0.8272 | 0.9095 |
246
+ | No log | 10.0 | 390 | 0.7951 | 0.4726 | 0.7951 | 0.8917 |
247
+ | No log | 10.0513 | 392 | 0.7405 | 0.4746 | 0.7405 | 0.8605 |
248
+ | No log | 10.1026 | 394 | 0.7168 | 0.4659 | 0.7168 | 0.8467 |
249
+ | No log | 10.1538 | 396 | 0.7037 | 0.5188 | 0.7037 | 0.8388 |
250
+ | No log | 10.2051 | 398 | 0.6965 | 0.5542 | 0.6965 | 0.8346 |
251
+ | No log | 10.2564 | 400 | 0.7082 | 0.5399 | 0.7082 | 0.8415 |
252
+ | No log | 10.3077 | 402 | 0.7448 | 0.5528 | 0.7448 | 0.8630 |
253
+ | No log | 10.3590 | 404 | 0.7564 | 0.5186 | 0.7564 | 0.8697 |
254
+ | No log | 10.4103 | 406 | 0.7207 | 0.5121 | 0.7207 | 0.8489 |
255
+ | No log | 10.4615 | 408 | 0.6984 | 0.5025 | 0.6984 | 0.8357 |
256
+ | No log | 10.5128 | 410 | 0.6947 | 0.5048 | 0.6947 | 0.8335 |
257
+ | No log | 10.5641 | 412 | 0.7078 | 0.4929 | 0.7078 | 0.8413 |
258
+ | No log | 10.6154 | 414 | 0.7063 | 0.5288 | 0.7063 | 0.8404 |
259
+ | No log | 10.6667 | 416 | 0.7237 | 0.4888 | 0.7237 | 0.8507 |
260
+ | No log | 10.7179 | 418 | 0.7489 | 0.5516 | 0.7489 | 0.8654 |
261
+ | No log | 10.7692 | 420 | 0.7630 | 0.4948 | 0.7630 | 0.8735 |
262
+ | No log | 10.8205 | 422 | 0.7359 | 0.4473 | 0.7359 | 0.8578 |
263
+ | No log | 10.8718 | 424 | 0.7579 | 0.4593 | 0.7579 | 0.8706 |
264
+ | No log | 10.9231 | 426 | 0.7524 | 0.4593 | 0.7524 | 0.8674 |
265
+ | No log | 10.9744 | 428 | 0.7385 | 0.4503 | 0.7385 | 0.8594 |
266
+ | No log | 11.0256 | 430 | 0.7351 | 0.4626 | 0.7351 | 0.8574 |
267
+ | No log | 11.0769 | 432 | 0.7450 | 0.4626 | 0.7450 | 0.8631 |
268
+ | No log | 11.1282 | 434 | 0.7871 | 0.4940 | 0.7871 | 0.8872 |
269
+ | No log | 11.1795 | 436 | 0.7786 | 0.4227 | 0.7786 | 0.8824 |
270
+ | No log | 11.2308 | 438 | 0.7613 | 0.4511 | 0.7613 | 0.8725 |
271
+ | No log | 11.2821 | 440 | 0.7550 | 0.5025 | 0.7550 | 0.8689 |
272
+ | No log | 11.3333 | 442 | 0.7528 | 0.5882 | 0.7528 | 0.8676 |
273
+ | No log | 11.3846 | 444 | 0.7459 | 0.5669 | 0.7459 | 0.8637 |
274
+ | No log | 11.4359 | 446 | 0.7515 | 0.4353 | 0.7515 | 0.8669 |
275
+ | No log | 11.4872 | 448 | 0.7608 | 0.4227 | 0.7608 | 0.8723 |
276
+ | No log | 11.5385 | 450 | 0.7763 | 0.4832 | 0.7763 | 0.8811 |
277
+ | No log | 11.5897 | 452 | 0.7410 | 0.5199 | 0.7410 | 0.8608 |
278
+ | No log | 11.6410 | 454 | 0.7189 | 0.6249 | 0.7189 | 0.8479 |
279
+ | No log | 11.6923 | 456 | 0.7306 | 0.5704 | 0.7306 | 0.8548 |
280
+ | No log | 11.7436 | 458 | 0.7258 | 0.5898 | 0.7258 | 0.8519 |
281
+ | No log | 11.7949 | 460 | 0.7897 | 0.5140 | 0.7897 | 0.8886 |
282
+ | No log | 11.8462 | 462 | 0.8447 | 0.4356 | 0.8447 | 0.9191 |
283
+ | No log | 11.8974 | 464 | 0.8010 | 0.4075 | 0.8010 | 0.8950 |
284
+ | No log | 11.9487 | 466 | 0.7473 | 0.5160 | 0.7473 | 0.8645 |
285
+ | No log | 12.0 | 468 | 0.7580 | 0.5204 | 0.7580 | 0.8706 |
286
+ | No log | 12.0513 | 470 | 0.7460 | 0.5647 | 0.7460 | 0.8637 |
287
+ | No log | 12.1026 | 472 | 0.7456 | 0.4883 | 0.7456 | 0.8635 |
288
+ | No log | 12.1538 | 474 | 0.8295 | 0.5439 | 0.8295 | 0.9108 |
289
+ | No log | 12.2051 | 476 | 0.8892 | 0.5521 | 0.8892 | 0.9429 |
290
+ | No log | 12.2564 | 478 | 0.8346 | 0.5330 | 0.8346 | 0.9136 |
291
+ | No log | 12.3077 | 480 | 0.7688 | 0.4843 | 0.7688 | 0.8768 |
292
+ | No log | 12.3590 | 482 | 0.7666 | 0.4593 | 0.7666 | 0.8755 |
293
+ | No log | 12.4103 | 484 | 0.7676 | 0.4610 | 0.7676 | 0.8761 |
294
+ | No log | 12.4615 | 486 | 0.7745 | 0.4746 | 0.7745 | 0.8801 |
295
+ | No log | 12.5128 | 488 | 0.7725 | 0.4903 | 0.7725 | 0.8789 |
296
+ | No log | 12.5641 | 490 | 0.7819 | 0.5434 | 0.7819 | 0.8842 |
297
+ | No log | 12.6154 | 492 | 0.7827 | 0.5534 | 0.7827 | 0.8847 |
298
+ | No log | 12.6667 | 494 | 0.7884 | 0.5751 | 0.7884 | 0.8879 |
299
+ | No log | 12.7179 | 496 | 0.7853 | 0.4612 | 0.7853 | 0.8862 |
300
+ | No log | 12.7692 | 498 | 0.7621 | 0.5288 | 0.7621 | 0.8730 |
301
+ | 0.315 | 12.8205 | 500 | 0.7646 | 0.5194 | 0.7646 | 0.8744 |
302
+ | 0.315 | 12.8718 | 502 | 0.7768 | 0.4985 | 0.7768 | 0.8814 |
303
+ | 0.315 | 12.9231 | 504 | 0.7741 | 0.4985 | 0.7741 | 0.8798 |
304
+ | 0.315 | 12.9744 | 506 | 0.7384 | 0.5641 | 0.7384 | 0.8593 |
305
+ | 0.315 | 13.0256 | 508 | 0.7484 | 0.5084 | 0.7484 | 0.8651 |
306
+ | 0.315 | 13.0769 | 510 | 0.8277 | 0.5150 | 0.8277 | 0.9098 |
307
+ | 0.315 | 13.1282 | 512 | 0.8692 | 0.5020 | 0.8692 | 0.9323 |
308
+ | 0.315 | 13.1795 | 514 | 0.8024 | 0.4711 | 0.8024 | 0.8958 |
309
+ | 0.315 | 13.2308 | 516 | 0.7223 | 0.4730 | 0.7223 | 0.8499 |
310
+
311
+
312
+ ### Framework versions
313
+
314
+ - Transformers 4.44.2
315
+ - Pytorch 2.4.0+cu118
316
+ - Datasets 2.21.0
317
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3a420596789fe7acc99479780a56e24a1a7c5f0c89d045b65c0239ee362d109
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19e7ddc95b3f51c2b87a93c59ed787fc3d7e909b9e37d53d68900d354e22c813
3
+ size 5240