Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 284.87 +/- 14.82
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b13bf097d90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b13bf097e20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b13bf097eb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b13bf097f40>", "_build": "<function ActorCriticPolicy._build at 0x7b13bf0a0040>", "forward": "<function ActorCriticPolicy.forward at 0x7b13bf0a00d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b13bf0a0160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b13bf0a01f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b13bf0a0280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b13bf0a0310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b13bf0a03a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b13bf0a0430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b13bf23b4c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692604252923966268, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABoKGr6lGIk+oQSWPnWXZ76f3B89U+NTPQAAAAAAAAAAZgb+O/aYarr+TTw6r2a+Nein+jp1pVi5AACAPwAAgD8mj/E9jQLkPs2Ubj21x7m+7JC6PY/2lT0AAAAAAAAAAGBOHT7Xk2O7MuJnu6XrjjhO+sG8NnJ/OgAAgD8AAIA/M644PXs6n7pw3t265xUftkt82rrOY/85AACAPwAAgD/6FFA+SI2YPnwflL6JRHO+gLutvWIKzb0AAAAAAAAAAL6Ulr5LOpY/BdHnvj77BL+lwta+4KlcvQAAAAAAAAAApha8PeFSmLreNo65phOjs66c5LoaqqI4AACAPwAAgD+b8oS+FmE5P9behT2u2uG+bH9ovgVTbD4AAAAAAAAAAGYaljx7ooW6of2bNX2vvzAkj4A6QGyttAAAgD8AAIA/DR7rPQoHK7kwWW86DsdjNpKqFbz+aZW5AACAPwAAgD96SxU+0mrUu+a2O7W/JKQyq7kgvaoMbDQAAIA/AACAP2ZM473lXtU+2pUIPoK8q770aas6CSoQPQAAAAAAAAAAkHlOvq5U3bzAbH+7Vu8NupplRj4Fb9o6AACAPwAAgD+NZdE9SHesusz8FzbrfPQwMLMouSYaP7UAAIA/AACAP81TZr2PZnO6yQCcu7szFTiQqUM7LkkrNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJYMVk+X7eMAWyUTegDjAF0lEdAkQXBikO7QXV9lChoBkdAcVt/oJRfnmgHTdkCaAhHQJEKVSWJJoV1fZQoaAZHQGVRPcJtzjpoB03oA2gIR0CRCsx0MgEEdX2UKGgGR0BkLxR2r4nGaAdN6ANoCEdAkQuwEZBLPHV9lChoBkdAYszymQ8wH2gHTegDaAhHQJEMwpazNUx1fZQoaAZHQHHuC4FzMidoB01UAmgIR0CRH7IwudwvdX2UKGgGR0ByMC3/giu/aAdL8GgIR0CRIU0/4ZdfdX2UKGgGR0BhHlbs4T9LaAdN6ANoCEdAkSL/ZqVQh3V9lChoBkdAYEcLMs6JZWgHTegDaAhHQJEje29cry11fZQoaAZHQHKuOsHSncdoB01rAmgIR0CRI+850bLmdX2UKGgGR0BkIAx+KCQLaAdN6ANoCEdAkSYcchkiEHV9lChoBkdAY/5RUm2LHmgHTegDaAhHQJEmX5aePJd1fZQoaAZHQG/kdKNAC4loB02LAWgIR0CRKs5yU9pzdX2UKGgGR0Bt/xPykKu0aAdNPQNoCEdAkSvzCHh0hnV9lChoBkdAaQaRdyDIzWgHTegDaAhHQJEwvSMLncN1fZQoaAZHQHDXSq6vq1RoB01HAWgIR0CRMpY+jdpJdX2UKGgGR0Bxxl1/2Cd0aAdNVQFoCEdAkTQzHjp9qnV9lChoBkdAY4f10T101mgHTegDaAhHQJE1hhuwX691fZQoaAZHQHLhQwTM7ltoB01IAmgIR0CRNhVVxS5zdX2UKGgGR0BzU2sPrfLtaAdNwAFoCEdAkTaOCbtqpXV9lChoBkdAYEHPrv9cbGgHTegDaAhHQJE3L/dZaFF1fZQoaAZHQHEpY4ZMtbtoB00pAmgIR0CROhSwGGEgdX2UKGgGR0Bwnu/0ulGgaAdNiAFoCEdAkTp/WxyGSXV9lChoBkdAZ+3Mcp9ZzWgHTegDaAhHQJE99jtoi9t1fZQoaAZHQHMD5tvXK8toB03uAWgIR0CRR55ULlV+dX2UKGgGR0Bypw25xzaLaAdNLwFoCEdAkUqEiMYMv3V9lChoBkdAcQk7CBPKuGgHTecBaAhHQJFL32bobGZ1fZQoaAZHQHIgAhOgxrVoB02/A2gIR0CRTPawD/2kdX2UKGgGR0Bgvln27FsIaAdN6ANoCEdAkU3EYbbUPXV9lChoBkdAcSdnzQNTcmgHTSkCaAhHQJFQiwaBI4F1fZQoaAZHQHLPj1PFefJoB01iA2gIR0CRZBkRjBl+dX2UKGgGR0ByQA4MnZ00aAdNxQNoCEdAkWR3s1KoRHV9lChoBkdAbtipZwGW2WgHTQMDaAhHQJFkszguRLd1fZQoaAZHQGzgPWhAWzpoB00jAWgIR0CRZkF+d9UkdX2UKGgGR0Bwz9dIGyHEaAdNgQJoCEdAkWe3NHH3lHV9lChoBkdAckdyi22G7GgHTWUCaAhHQJFpb5hz/6x1fZQoaAZHQHI9p0Syt3hoB0vmaAhHQJFv9MlC1JF1fZQoaAZHQHCXR3Roh6loB00YAWgIR0CRcu3cpLEldX2UKGgGR0BuztugpSaWaAdN5AJoCEdAkXVtrXUYsXV9lChoBkdAcRGDMeOn22gHTY4DaAhHQJF2kphF3IN1fZQoaAZHQHCCMvIwM6RoB01ZAWgIR0CRdt2x6fJ4dX2UKGgGR0BwHDdl/YrbaAdNFgFoCEdAkXgz+ee4C3V9lChoBkdAXy9XcQAdXGgHTegDaAhHQJF6peAuqWF1fZQoaAZHQGW1f2kBS1poB03oA2gIR0CRfInOSntOdX2UKGgGR0BhsjJ8v24/aAdN6ANoCEdAkX214xDb8HV9lChoBkdAcjDZuQ6p52gHTSIBaAhHQJGA+Qq7ROV1fZQoaAZHQHJQi2Yv38JoB0viaAhHQJGDdxn3+Mt1fZQoaAZHQHBxq6vq1PZoB002AWgIR0CRhfIxQBPsdX2UKGgGR0Buke3pfQa8aAdNHAFoCEdAkYe+EqUeMnV9lChoBkdAcQobUgB91GgHTaABaAhHQJGIQQWepXJ1fZQoaAZHQHJd8riEQGxoB004AWgIR0CRijlYU34sdX2UKGgGR0Bs0jJSzgMuaAdNwQNoCEdAkYsxdld1MnV9lChoBkdAb45nYg7o0WgHTV4BaAhHQJGMlYQrc0t1fZQoaAZHQEjWMDOkcjtoB0vjaAhHQJGNB8eCCjF1fZQoaAZHQGD3EW69TP1oB03oA2gIR0CRjdOARTS9dX2UKGgGR0BwpKGRFI/aaAdN0gJoCEdAkY5qrvLHMnV9lChoBkdAZX2IEbHZK2gHTegDaAhHQJGOn6dlNDd1fZQoaAZHQGUPJtrKvFFoB03oA2gIR0CRjzHk92X+dX2UKGgGR0BhegMx46fbaAdN6ANoCEdAkZFh1DBuXXV9lChoBkdARQ5xLkCFK2gHS79oCEdAkZKV54W1t3V9lChoBkdAb2szjWCmM2gHTZQCaAhHQJGTRdjXnQp1fZQoaAZHQHDosTN+so5oB0v/aAhHQJGknPeHi3p1fZQoaAZHQHAJt03fhuRoB00xAWgIR0CRpLKneiztdX2UKGgGR0BxTGnn+yZ8aAdN3QFoCEdAkaS4QjD8+HV9lChoBkdAbwY9vCMxXWgHTYEBaAhHQJGlgLkS26V1fZQoaAZHQGSbF5OafBhoB03oA2gIR0CRpgfL9uP4dX2UKGgGR0ByYr6tT1kEaAdL9GgIR0CRpmLCN0eVdX2UKGgGR0Bwjs4jrzGxaAdNmgFoCEdAkaehbjcVQHV9lChoBkdAblVr8BMi8mgHTQoBaAhHQJGoZGax5cF1fZQoaAZHQHJisWO6unxoB009A2gIR0CRqsNu+AVgdX2UKGgGR0Bw/J1oxpL3aAdNOwFoCEdAkarKGQCCBnV9lChoBkdAcXCMF2V3U2gHTW0BaAhHQJGsE12q1gJ1fZQoaAZHQHIU4P07KaJoB00eAWgIR0CRrMhpxm03dX2UKGgGR0Bv+3bfxc3VaAdNlwFoCEdAka+ztb9qDnV9lChoBkdAc36TbWVeKWgHTR0BaAhHQJGwK7GvOhV1fZQoaAZHQHIAR/y5I6NoB00JAWgIR0CRsWzNUwSKdX2UKGgGR0BvvxP2wmmcaAdNQAFoCEdAkbIZR0lqrXV9lChoBkdAcYxSt/4Ir2gHTS0BaAhHQJGyZ7kXDWN1fZQoaAZHQHFge7HyVfNoB02XAWgIR0CRtA92ovSMdX2UKGgGR0Bx8lq7AckuaAdNFgFoCEdAkbRhp5/smnV9lChoBkdAcXcHKfWc0GgHTQYBaAhHQJG0eK3uuzR1fZQoaAZHQHHx13t8eCFoB027AWgIR0CRt4z2exwAdX2UKGgGR0BwhQfgaWHDaAdNKwFoCEdAkbiD3dsSCnV9lChoBkdAch79+gDifmgHTZ0CaAhHQJG4wZtNzsB1fZQoaAZHQHDYS48U21loB0vsaAhHQJG8bPVurIZ1fZQoaAZHQHC5Ek0Jng5oB01XAWgIR0CRvMyQgcLjdX2UKGgGR0BwNAIAwPAgaAdNYAFoCEdAkb/DV+Zw43V9lChoBkdAcphnBLwnY2gHTbECaAhHQJHA5pL26Cl1fZQoaAZHQHHHzwUg0TFoB00tAWgIR0CRwPHpr1ujdX2UKGgGR0BygwvQF9roaAdNQAFoCEdAkcHZLAYYSHV9lChoBkdAb/lhUBGQS2gHTUUBaAhHQJHCG7wrlNl1fZQoaAZHQHKQWy5Zr59oB0vraAhHQJHCHkwN9Yx1fZQoaAZHQG8OEPtlZoxoB00qAmgIR0CRwsKekHlfdX2UKGgGR0BxcxBrvb48aAdNlwFoCEdAkcMHI2fkFXV9lChoBkdAcm+v60pmVmgHTZoCaAhHQJHHZJjDsMR1fZQoaAZHQHDX0d/8VHpoB01BA2gIR0CRyGhXbM5fdX2UKGgGR0BxPT2WY4Q0aAdNXAFoCEdAkciSBwuM/HV9lChoBkdAcXBxDLKV6mgHTT4CaAhHQJHI4iW3Sa51fZQoaAZHQHD0qaTfR/poB015AWgIR0CRyfaCL/CJdX2UKGgGR0BxK5DKHO8kaAdNJAFoCEdAkcrPSUkfLnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4811d3e2711231dfaa66a68b5855f5789c863561ceb2702a6b8297e83b9d7dd
|
3 |
+
size 146746
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b13bf097d90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b13bf097e20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b13bf097eb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b13bf097f40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b13bf0a0040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b13bf0a00d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b13bf0a0160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b13bf0a01f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b13bf0a0280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b13bf0a0310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b13bf0a03a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b13bf0a0430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b13bf23b4c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1692604252923966268,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABoKGr6lGIk+oQSWPnWXZ76f3B89U+NTPQAAAAAAAAAAZgb+O/aYarr+TTw6r2a+Nein+jp1pVi5AACAPwAAgD8mj/E9jQLkPs2Ubj21x7m+7JC6PY/2lT0AAAAAAAAAAGBOHT7Xk2O7MuJnu6XrjjhO+sG8NnJ/OgAAgD8AAIA/M644PXs6n7pw3t265xUftkt82rrOY/85AACAPwAAgD/6FFA+SI2YPnwflL6JRHO+gLutvWIKzb0AAAAAAAAAAL6Ulr5LOpY/BdHnvj77BL+lwta+4KlcvQAAAAAAAAAApha8PeFSmLreNo65phOjs66c5LoaqqI4AACAPwAAgD+b8oS+FmE5P9behT2u2uG+bH9ovgVTbD4AAAAAAAAAAGYaljx7ooW6of2bNX2vvzAkj4A6QGyttAAAgD8AAIA/DR7rPQoHK7kwWW86DsdjNpKqFbz+aZW5AACAPwAAgD96SxU+0mrUu+a2O7W/JKQyq7kgvaoMbDQAAIA/AACAP2ZM473lXtU+2pUIPoK8q770aas6CSoQPQAAAAAAAAAAkHlOvq5U3bzAbH+7Vu8NupplRj4Fb9o6AACAPwAAgD+NZdE9SHesusz8FzbrfPQwMLMouSYaP7UAAIA/AACAP81TZr2PZnO6yQCcu7szFTiQqUM7LkkrNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJYMVk+X7eMAWyUTegDjAF0lEdAkQXBikO7QXV9lChoBkdAcVt/oJRfnmgHTdkCaAhHQJEKVSWJJoV1fZQoaAZHQGVRPcJtzjpoB03oA2gIR0CRCsx0MgEEdX2UKGgGR0BkLxR2r4nGaAdN6ANoCEdAkQuwEZBLPHV9lChoBkdAYszymQ8wH2gHTegDaAhHQJEMwpazNUx1fZQoaAZHQHHuC4FzMidoB01UAmgIR0CRH7IwudwvdX2UKGgGR0ByMC3/giu/aAdL8GgIR0CRIU0/4ZdfdX2UKGgGR0BhHlbs4T9LaAdN6ANoCEdAkSL/ZqVQh3V9lChoBkdAYEcLMs6JZWgHTegDaAhHQJEje29cry11fZQoaAZHQHKuOsHSncdoB01rAmgIR0CRI+850bLmdX2UKGgGR0BkIAx+KCQLaAdN6ANoCEdAkSYcchkiEHV9lChoBkdAY/5RUm2LHmgHTegDaAhHQJEmX5aePJd1fZQoaAZHQG/kdKNAC4loB02LAWgIR0CRKs5yU9pzdX2UKGgGR0Bt/xPykKu0aAdNPQNoCEdAkSvzCHh0hnV9lChoBkdAaQaRdyDIzWgHTegDaAhHQJEwvSMLncN1fZQoaAZHQHDXSq6vq1RoB01HAWgIR0CRMpY+jdpJdX2UKGgGR0Bxxl1/2Cd0aAdNVQFoCEdAkTQzHjp9qnV9lChoBkdAY4f10T101mgHTegDaAhHQJE1hhuwX691fZQoaAZHQHLhQwTM7ltoB01IAmgIR0CRNhVVxS5zdX2UKGgGR0BzU2sPrfLtaAdNwAFoCEdAkTaOCbtqpXV9lChoBkdAYEHPrv9cbGgHTegDaAhHQJE3L/dZaFF1fZQoaAZHQHEpY4ZMtbtoB00pAmgIR0CROhSwGGEgdX2UKGgGR0Bwnu/0ulGgaAdNiAFoCEdAkTp/WxyGSXV9lChoBkdAZ+3Mcp9ZzWgHTegDaAhHQJE99jtoi9t1fZQoaAZHQHMD5tvXK8toB03uAWgIR0CRR55ULlV+dX2UKGgGR0Bypw25xzaLaAdNLwFoCEdAkUqEiMYMv3V9lChoBkdAcQk7CBPKuGgHTecBaAhHQJFL32bobGZ1fZQoaAZHQHIgAhOgxrVoB02/A2gIR0CRTPawD/2kdX2UKGgGR0Bgvln27FsIaAdN6ANoCEdAkU3EYbbUPXV9lChoBkdAcSdnzQNTcmgHTSkCaAhHQJFQiwaBI4F1fZQoaAZHQHLPj1PFefJoB01iA2gIR0CRZBkRjBl+dX2UKGgGR0ByQA4MnZ00aAdNxQNoCEdAkWR3s1KoRHV9lChoBkdAbtipZwGW2WgHTQMDaAhHQJFkszguRLd1fZQoaAZHQGzgPWhAWzpoB00jAWgIR0CRZkF+d9UkdX2UKGgGR0Bwz9dIGyHEaAdNgQJoCEdAkWe3NHH3lHV9lChoBkdAckdyi22G7GgHTWUCaAhHQJFpb5hz/6x1fZQoaAZHQHI9p0Syt3hoB0vmaAhHQJFv9MlC1JF1fZQoaAZHQHCXR3Roh6loB00YAWgIR0CRcu3cpLEldX2UKGgGR0BuztugpSaWaAdN5AJoCEdAkXVtrXUYsXV9lChoBkdAcRGDMeOn22gHTY4DaAhHQJF2kphF3IN1fZQoaAZHQHCCMvIwM6RoB01ZAWgIR0CRdt2x6fJ4dX2UKGgGR0BwHDdl/YrbaAdNFgFoCEdAkXgz+ee4C3V9lChoBkdAXy9XcQAdXGgHTegDaAhHQJF6peAuqWF1fZQoaAZHQGW1f2kBS1poB03oA2gIR0CRfInOSntOdX2UKGgGR0BhsjJ8v24/aAdN6ANoCEdAkX214xDb8HV9lChoBkdAcjDZuQ6p52gHTSIBaAhHQJGA+Qq7ROV1fZQoaAZHQHJQi2Yv38JoB0viaAhHQJGDdxn3+Mt1fZQoaAZHQHBxq6vq1PZoB002AWgIR0CRhfIxQBPsdX2UKGgGR0Buke3pfQa8aAdNHAFoCEdAkYe+EqUeMnV9lChoBkdAcQobUgB91GgHTaABaAhHQJGIQQWepXJ1fZQoaAZHQHJd8riEQGxoB004AWgIR0CRijlYU34sdX2UKGgGR0Bs0jJSzgMuaAdNwQNoCEdAkYsxdld1MnV9lChoBkdAb45nYg7o0WgHTV4BaAhHQJGMlYQrc0t1fZQoaAZHQEjWMDOkcjtoB0vjaAhHQJGNB8eCCjF1fZQoaAZHQGD3EW69TP1oB03oA2gIR0CRjdOARTS9dX2UKGgGR0BwpKGRFI/aaAdN0gJoCEdAkY5qrvLHMnV9lChoBkdAZX2IEbHZK2gHTegDaAhHQJGOn6dlNDd1fZQoaAZHQGUPJtrKvFFoB03oA2gIR0CRjzHk92X+dX2UKGgGR0BhegMx46fbaAdN6ANoCEdAkZFh1DBuXXV9lChoBkdARQ5xLkCFK2gHS79oCEdAkZKV54W1t3V9lChoBkdAb2szjWCmM2gHTZQCaAhHQJGTRdjXnQp1fZQoaAZHQHDosTN+so5oB0v/aAhHQJGknPeHi3p1fZQoaAZHQHAJt03fhuRoB00xAWgIR0CRpLKneiztdX2UKGgGR0BxTGnn+yZ8aAdN3QFoCEdAkaS4QjD8+HV9lChoBkdAbwY9vCMxXWgHTYEBaAhHQJGlgLkS26V1fZQoaAZHQGSbF5OafBhoB03oA2gIR0CRpgfL9uP4dX2UKGgGR0ByYr6tT1kEaAdL9GgIR0CRpmLCN0eVdX2UKGgGR0Bwjs4jrzGxaAdNmgFoCEdAkaehbjcVQHV9lChoBkdAblVr8BMi8mgHTQoBaAhHQJGoZGax5cF1fZQoaAZHQHJisWO6unxoB009A2gIR0CRqsNu+AVgdX2UKGgGR0Bw/J1oxpL3aAdNOwFoCEdAkarKGQCCBnV9lChoBkdAcXCMF2V3U2gHTW0BaAhHQJGsE12q1gJ1fZQoaAZHQHIU4P07KaJoB00eAWgIR0CRrMhpxm03dX2UKGgGR0Bv+3bfxc3VaAdNlwFoCEdAka+ztb9qDnV9lChoBkdAc36TbWVeKWgHTR0BaAhHQJGwK7GvOhV1fZQoaAZHQHIAR/y5I6NoB00JAWgIR0CRsWzNUwSKdX2UKGgGR0BvvxP2wmmcaAdNQAFoCEdAkbIZR0lqrXV9lChoBkdAcYxSt/4Ir2gHTS0BaAhHQJGyZ7kXDWN1fZQoaAZHQHFge7HyVfNoB02XAWgIR0CRtA92ovSMdX2UKGgGR0Bx8lq7AckuaAdNFgFoCEdAkbRhp5/smnV9lChoBkdAcXcHKfWc0GgHTQYBaAhHQJG0eK3uuzR1fZQoaAZHQHHx13t8eCFoB027AWgIR0CRt4z2exwAdX2UKGgGR0BwhQfgaWHDaAdNKwFoCEdAkbiD3dsSCnV9lChoBkdAch79+gDifmgHTZ0CaAhHQJG4wZtNzsB1fZQoaAZHQHDYS48U21loB0vsaAhHQJG8bPVurIZ1fZQoaAZHQHC5Ek0Jng5oB01XAWgIR0CRvMyQgcLjdX2UKGgGR0BwNAIAwPAgaAdNYAFoCEdAkb/DV+Zw43V9lChoBkdAcphnBLwnY2gHTbECaAhHQJHA5pL26Cl1fZQoaAZHQHHHzwUg0TFoB00tAWgIR0CRwPHpr1ujdX2UKGgGR0BygwvQF9roaAdNQAFoCEdAkcHZLAYYSHV9lChoBkdAb/lhUBGQS2gHTUUBaAhHQJHCG7wrlNl1fZQoaAZHQHKQWy5Zr59oB0vraAhHQJHCHkwN9Yx1fZQoaAZHQG8OEPtlZoxoB00qAmgIR0CRwsKekHlfdX2UKGgGR0BxcxBrvb48aAdNlwFoCEdAkcMHI2fkFXV9lChoBkdAcm+v60pmVmgHTZoCaAhHQJHHZJjDsMR1fZQoaAZHQHDX0d/8VHpoB01BA2gIR0CRyGhXbM5fdX2UKGgGR0BxPT2WY4Q0aAdNXAFoCEdAkciSBwuM/HV9lChoBkdAcXBxDLKV6mgHTT4CaAhHQJHI4iW3Sa51fZQoaAZHQHD0qaTfR/poB015AWgIR0CRyfaCL/CJdX2UKGgGR0BxK5DKHO8kaAdNJAFoCEdAkcrPSUkfLnVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a76db1889274200309d2bf7aa4f7e38ca8f127fd6761267ff0dea3980376748d
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea98270132cecd529719bd816646b88c4676554d79df83bd73a1e1e9bf27c0de
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (159 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 284.86902404953446, "std_reward": 14.82330121084937, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-21T08:18:27.173046"}
|