Update model architecture: d_ff=1024, new weights from merged7.pt
Browse files- config.json +9 -6
- model.safetensors +2 -2
- modeling_chessbot.py +423 -461
config.json
CHANGED
@@ -1,15 +1,18 @@
|
|
1 |
{
|
2 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
"d_model": 512,
|
4 |
"max_position_embeddings": 64,
|
5 |
"model_type": "chessbot",
|
6 |
-
"architectures": ["ChessBotModel"],
|
7 |
-
"auto_map": {
|
8 |
-
"AutoModel": "modeling_chessbot.ChessBotModel",
|
9 |
-
"AutoConfig": "modeling_chessbot.ChessBotConfig"
|
10 |
-
},
|
11 |
"num_heads": 8,
|
12 |
"num_layers": 10,
|
|
|
13 |
"transformers_version": "4.53.1",
|
14 |
"vocab_size": 1929
|
15 |
}
|
|
|
1 |
{
|
2 |
+
"architectures": [
|
3 |
+
"ChessBotModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "modeling_chessbot.ChessBotConfig",
|
7 |
+
"AutoModel": "modeling_chessbot.ChessBotModel"
|
8 |
+
},
|
9 |
+
"d_ff": 1024,
|
10 |
"d_model": 512,
|
11 |
"max_position_embeddings": 64,
|
12 |
"model_type": "chessbot",
|
|
|
|
|
|
|
|
|
|
|
13 |
"num_heads": 8,
|
14 |
"num_layers": 10,
|
15 |
+
"torch_dtype": "float32",
|
16 |
"transformers_version": "4.53.1",
|
17 |
"vocab_size": 1929
|
18 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:824ed0a0d945ebf519eee41755d7a7d29487bbdc92e49b94aaf97de6105f7b17
|
3 |
+
size 138793144
|
modeling_chessbot.py
CHANGED
@@ -1,14 +1,7 @@
|
|
1 |
"""
|
2 |
-
|
3 |
|
4 |
-
This file contains
|
5 |
-
without requiring the HFChessRL package installation.
|
6 |
-
|
7 |
-
Requirements:
|
8 |
-
- torch>=2.0.0
|
9 |
-
- transformers>=4.30.0
|
10 |
-
- python-chess>=1.10.0
|
11 |
-
- numpy>=1.21.0
|
12 |
"""
|
13 |
|
14 |
import torch
|
@@ -20,6 +13,350 @@ from transformers import PreTrainedModel, PretrainedConfig, AutoConfig, AutoMode
|
|
20 |
from transformers.modeling_outputs import BaseModelOutput
|
21 |
from typing import Optional, Tuple
|
22 |
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
# Configuration class
|
@@ -34,7 +371,7 @@ class ChessBotConfig(PretrainedConfig):
|
|
34 |
self,
|
35 |
num_layers: int = 10,
|
36 |
d_model: int = 512,
|
37 |
-
d_ff: int =
|
38 |
num_heads: int = 8,
|
39 |
vocab_size: int = 1929,
|
40 |
max_position_embeddings: int = 64,
|
@@ -49,339 +386,6 @@ class ChessBotConfig(PretrainedConfig):
|
|
49 |
self.max_position_embeddings = max_position_embeddings
|
50 |
|
51 |
|
52 |
-
# FEN encoding function
|
53 |
-
def fen_to_tensor(fen: str):
|
54 |
-
"""
|
55 |
-
Convert FEN string to tensor representation for the model.
|
56 |
-
"""
|
57 |
-
board = chess.Board(fen)
|
58 |
-
tensor = np.zeros((8, 8, 19), dtype=np.float32)
|
59 |
-
|
60 |
-
# Piece mapping
|
61 |
-
piece_map = {
|
62 |
-
'P': 0, 'N': 1, 'B': 2, 'R': 3, 'Q': 4, 'K': 5, # White pieces
|
63 |
-
'p': 6, 'n': 7, 'b': 8, 'r': 9, 'q': 10, 'k': 11 # Black pieces
|
64 |
-
}
|
65 |
-
|
66 |
-
# Fill piece positions
|
67 |
-
for square in chess.SQUARES:
|
68 |
-
piece = board.piece_at(square)
|
69 |
-
if piece:
|
70 |
-
row = 7 - (square // 8) # Flip vertically for proper orientation
|
71 |
-
col = square % 8
|
72 |
-
tensor[row, col, piece_map[piece.symbol()]] = 1.0
|
73 |
-
|
74 |
-
# Add metadata channels
|
75 |
-
# Channel 12: White to move
|
76 |
-
if board.turn == chess.WHITE:
|
77 |
-
tensor[:, :, 12] = 1.0
|
78 |
-
|
79 |
-
# Channel 13: Black to move
|
80 |
-
if board.turn == chess.BLACK:
|
81 |
-
tensor[:, :, 13] = 1.0
|
82 |
-
|
83 |
-
# Castling rights
|
84 |
-
if board.has_kingside_castling_rights(chess.WHITE):
|
85 |
-
tensor[:, :, 14] = 1.0
|
86 |
-
if board.has_queenside_castling_rights(chess.WHITE):
|
87 |
-
tensor[:, :, 15] = 1.0
|
88 |
-
if board.has_kingside_castling_rights(chess.BLACK):
|
89 |
-
tensor[:, :, 16] = 1.0
|
90 |
-
if board.has_queenside_castling_rights(chess.BLACK):
|
91 |
-
tensor[:, :, 17] = 1.0
|
92 |
-
|
93 |
-
# En passant
|
94 |
-
if board.ep_square is not None:
|
95 |
-
ep_row = 7 - (board.ep_square // 8)
|
96 |
-
ep_col = board.ep_square % 8
|
97 |
-
tensor[ep_row, ep_col, 18] = 1.0
|
98 |
-
|
99 |
-
return tensor
|
100 |
-
|
101 |
-
|
102 |
-
# Complete policy index with all 1929 moves
|
103 |
-
policy_index = [
|
104 |
-
"a1b1", "a1c1", "a1d1", "a1e1", "a1f1", "a1g1", "a1h1", "a1a2", "a1b2",
|
105 |
-
"a1c2", "a1a3", "a1b3", "a1c3", "a1a4", "a1d4", "a1a5", "a1e5", "a1a6",
|
106 |
-
"a1f6", "a1a7", "a1g7", "a1a8", "a1h8", "b1a1", "b1c1", "b1d1", "b1e1",
|
107 |
-
"b1f1", "b1g1", "b1h1", "b1a2", "b1b2", "b1c2", "b1d2", "b1a3", "b1b3",
|
108 |
-
"b1c3", "b1d3", "b1b4", "b1e4", "b1b5", "b1f5", "b1b6", "b1g6", "b1b7",
|
109 |
-
"b1h7", "b1b8", "c1a1", "c1b1", "c1d1", "c1e1", "c1f1", "c1g1", "c1h1",
|
110 |
-
"c1a2", "c1b2", "c1c2", "c1d2", "c1e2", "c1a3", "c1b3", "c1c3", "c1d3",
|
111 |
-
"c1e3", "c1c4", "c1f4", "c1c5", "c1g5", "c1c6", "c1h6", "c1c7", "c1c8",
|
112 |
-
"d1a1", "d1b1", "d1c1", "d1e1", "d1f1", "d1g1", "d1h1", "d1b2", "d1c2",
|
113 |
-
"d1d2", "d1e2", "d1f2", "d1b3", "d1c3", "d1d3", "d1e3", "d1f3", "d1a4",
|
114 |
-
"d1d4", "d1g4", "d1d5", "d1h5", "d1d6", "d1d7", "d1d8", "e1a1", "e1b1",
|
115 |
-
"e1c1", "e1d1", "e1f1", "e1g1", "e1h1", "e1c2", "e1d2", "e1e2", "e1f2",
|
116 |
-
"e1g2", "e1c3", "e1d3", "e1e3", "e1f3", "e1g3", "e1b4", "e1e4", "e1h4",
|
117 |
-
"e1a5", "e1e5", "e1e6", "e1e7", "e1e8", "f1a1", "f1b1", "f1c1", "f1d1",
|
118 |
-
"f1e1", "f1g1", "f1h1", "f1d2", "f1e2", "f1f2", "f1g2", "f1h2", "f1d3",
|
119 |
-
"f1e3", "f1f3", "f1g3", "f1h3", "f1c4", "f1f4", "f1b5", "f1f5", "f1a6",
|
120 |
-
"f1f6", "f1f7", "f1f8", "g1a1", "g1b1", "g1c1", "g1d1", "g1e1", "g1f1",
|
121 |
-
"g1h1", "g1e2", "g1f2", "g1g2", "g1h2", "g1e3", "g1f3", "g1g3", "g1h3",
|
122 |
-
"g1d4", "g1g4", "g1c5", "g1g5", "g1b6", "g1g6", "g1a7", "g1g7", "g1g8",
|
123 |
-
"h1a1", "h1b1", "h1c1", "h1d1", "h1e1", "h1f1", "h1g1", "h1f2", "h1g2",
|
124 |
-
"h1h2", "h1f3", "h1g3", "h1h3", "h1e4", "h1h4", "h1d5", "h1h5", "h1c6",
|
125 |
-
"h1h6", "h1b7", "h1h7", "h1a8", "h1h8", "a2a1", "a2b1", "a2c1", "a2b2",
|
126 |
-
"a2c2", "a2d2", "a2e2", "a2f2", "a2g2", "a2h2", "a2a3", "a2b3", "a2c3",
|
127 |
-
"a2a4", "a2b4", "a2c4", "a2a5", "a2d5", "a2a6", "a2e6", "a2a7", "a2f7",
|
128 |
-
"a2a8", "a2g8", "b2a1", "b2b1", "b2c1", "b2d1", "b2a2", "b2c2", "b2d2",
|
129 |
-
"b2e2", "b2f2", "b2g2", "b2h2", "b2a3", "b2b3", "b2c3", "b2d3", "b2a4",
|
130 |
-
"b2b4", "b2c4", "b2d4", "b2b5", "b2e5", "b2b6", "b2f6", "b2b7", "b2g7",
|
131 |
-
"b2b8", "b2h8", "c2a1", "c2b1", "c2c1", "c2d1", "c2e1", "c2a2", "c2b2",
|
132 |
-
"c2d2", "c2e2", "c2f2", "c2g2", "c2h2", "c2a3", "c2b3", "c2c3", "c2d3",
|
133 |
-
"c2e3", "c2a4", "c2b4", "c2c4", "c2d4", "c2e4", "c2c5", "c2f5", "c2c6",
|
134 |
-
"c2g6", "c2c7", "c2h7", "c2c8", "d2b1", "d2c1", "d2d1", "d2e1", "d2f1",
|
135 |
-
"d2a2", "d2b2", "d2c2", "d2e2", "d2f2", "d2g2", "d2h2", "d2b3", "d2c3",
|
136 |
-
"d2d3", "d2e3", "d2f3", "d2b4", "d2c4", "d2d4", "d2e4", "d2f4", "d2a5",
|
137 |
-
"d2d5", "d2g5", "d2d6", "d2h6", "d2d7", "d2d8", "e2c1", "e2d1", "e2e1",
|
138 |
-
"e2f1", "e2g1", "e2a2", "e2b2", "e2c2", "e2d2", "e2f2", "e2g2", "e2h2",
|
139 |
-
"e2c3", "e2d3", "e2e3", "e2f3", "e2g3", "e2c4", "e2d4", "e2e4", "e2f4",
|
140 |
-
"e2g4", "e2b5", "e2e5", "e2h5", "e2a6", "e2e6", "e2e7", "e2e8", "f2d1",
|
141 |
-
"f2e1", "f2f1", "f2g1", "f2h1", "f2a2", "f2b2", "f2c2", "f2d2", "f2e2",
|
142 |
-
"f2g2", "f2h2", "f2d3", "f2e3", "f2f3", "f2g3", "f2h3", "f2d4", "f2e4",
|
143 |
-
"f2f4", "f2g4", "f2h4", "f2c5", "f2f5", "f2b6", "f2f6", "f2a7", "f2f7",
|
144 |
-
"f2f8", "g2e1", "g2f1", "g2g1", "g2h1", "g2a2", "g2b2", "g2c2", "g2d2",
|
145 |
-
"g2e2", "g2f2", "g2h2", "g2e3", "g2f3", "g2g3", "g2h3", "g2e4", "g2f4",
|
146 |
-
"g2g4", "g2h4", "g2d5", "g2g5", "g2c6", "g2g6", "g2b7", "g2g7", "g2a8",
|
147 |
-
"g2g8", "h2f1", "h2g1", "h2h1", "h2a2", "h2b2", "h2c2", "h2d2", "h2e2",
|
148 |
-
"h2f2", "h2g2", "h2f3", "h2g3", "h2h3", "h2f4", "h2g4", "h2h4", "h2e5",
|
149 |
-
"h2h5", "h2d6", "h2h6", "h2c7", "h2h7", "h2b8", "h2h8", "a3a1", "a3b1",
|
150 |
-
"a3c1", "a3a2", "a3b2", "a3c2", "a3b3", "a3c3", "a3d3", "a3e3", "a3f3",
|
151 |
-
"a3g3", "a3h3", "a3a4", "a3b4", "a3c4", "a3a5", "a3b5", "a3c5", "a3a6",
|
152 |
-
"a3d6", "a3a7", "a3e7", "a3a8", "a3f8", "b3a1", "b3b1", "b3c1", "b3d1",
|
153 |
-
"b3a2", "b3b2", "b3c2", "b3d2", "b3a3", "b3c3", "b3d3", "b3e3", "b3f3",
|
154 |
-
"b3g3", "b3h3", "b3a4", "b3b4", "b3c4", "b3d4", "b3a5", "b3b5", "b3c5",
|
155 |
-
"b3d5", "b3b6", "b3e6", "b3b7", "b3f7", "b3b8", "b3g8", "c3a1", "c3b1",
|
156 |
-
"c3c1", "c3d1", "c3e1", "c3a2", "c3b2", "c3c2", "c3d2", "c3e2", "c3a3",
|
157 |
-
"c3b3", "c3d3", "c3e3", "c3f3", "c3g3", "c3h3", "c3a4", "c3b4", "c3c4",
|
158 |
-
"c3d4", "c3e4", "c3a5", "c3b5", "c3c5", "c3d5", "c3e5", "c3c6", "c3f6",
|
159 |
-
"c3c7", "c3g7", "c3c8", "c3h8", "d3b1", "d3c1", "d3d1", "d3e1", "d3f1",
|
160 |
-
"d3b2", "d3c2", "d3d2", "d3e2", "d3f2", "d3a3", "d3b3", "d3c3", "d3e3",
|
161 |
-
"d3f3", "d3g3", "d3h3", "d3b4", "d3c4", "d3d4", "d3e4", "d3f4", "d3b5",
|
162 |
-
"d3c5", "d3d5", "d3e5", "d3f5", "d3a6", "d3d6", "d3g6", "d3d7", "d3h7",
|
163 |
-
"d3d8", "e3c1", "e3d1", "e3e1", "e3f1", "e3g1", "e3c2", "e3d2", "e3e2",
|
164 |
-
"e3f2", "e3g2", "e3a3", "e3b3", "e3c3", "e3d3", "e3f3", "e3g3", "e3h3",
|
165 |
-
"e3c4", "e3d4", "e3e4", "e3f4", "e3g4", "e3c5", "e3d5", "e3e5", "e3f5",
|
166 |
-
"e3g5", "e3b6", "e3e6", "e3h6", "e3a7", "e3e7", "e3e8", "f3d1", "f3e1",
|
167 |
-
"f3f1", "f3g1", "f3h1", "f3d2", "f3e2", "f3f2", "f3g2", "f3h2", "f3a3",
|
168 |
-
"f3b3", "f3c3", "f3d3", "f3e3", "f3g3", "f3h3", "f3d4", "f3e4", "f3f4",
|
169 |
-
"f3g4", "f3h4", "f3d5", "f3e5", "f3f5", "f3g5", "f3h5", "f3c6", "f3f6",
|
170 |
-
"f3b7", "f3f7", "f3a8", "f3f8", "g3e1", "g3f1", "g3g1", "g3h1", "g3e2",
|
171 |
-
"g3f2", "g3g2", "g3h2", "g3a3", "g3b3", "g3c3", "g3d3", "g3e3", "g3f3",
|
172 |
-
"g3h3", "g3e4", "g3f4", "g3g4", "g3h4", "g3e5", "g3f5", "g3g5", "g3h5",
|
173 |
-
"g3d6", "g3g6", "g3c7", "g3g7", "g3b8", "g3g8", "h3f1", "h3g1", "h3h1",
|
174 |
-
"h3f2", "h3g2", "h3h2", "h3a3", "h3b3", "h3c3", "h3d3", "h3e3", "h3f3",
|
175 |
-
"h3g3", "h3f4", "h3g4", "h3h4", "h3f5", "h3g5", "h3h5", "h3e6", "h3h6",
|
176 |
-
"h3d7", "h3h7", "h3c8", "h3h8", "a4a1", "a4d1", "a4a2", "a4b2", "a4c2",
|
177 |
-
"a4a3", "a4b3", "a4c3", "a4b4", "a4c4", "a4d4", "a4e4", "a4f4", "a4g4",
|
178 |
-
"a4h4", "a4a5", "a4b5", "a4c5", "a4a6", "a4b6", "a4c6", "a4a7", "a4d7",
|
179 |
-
"a4a8", "a4e8", "b4b1", "b4e1", "b4a2", "b4b2", "b4c2", "b4d2", "b4a3",
|
180 |
-
"b4b3", "b4c3", "b4d3", "b4a4", "b4c4", "b4d4", "b4e4", "b4f4", "b4g4",
|
181 |
-
"b4h4", "b4a5", "b4b5", "b4c5", "b4d5", "b4a6", "b4b6", "b4c6", "b4d6",
|
182 |
-
"b4b7", "b4e7", "b4b8", "b4f8", "c4c1", "c4f1", "c4a2", "c4b2", "c4c2",
|
183 |
-
"c4d2", "c4e2", "c4a3", "c4b3", "c4c3", "c4d3", "c4e3", "c4a4", "c4b4",
|
184 |
-
"c4d4", "c4e4", "c4f4", "c4g4", "c4h4", "c4a5", "c4b5", "c4c5", "c4d5",
|
185 |
-
"c4e5", "c4a6", "c4b6", "c4c6", "c4d6", "c4e6", "c4c7", "c4f7", "c4c8",
|
186 |
-
"c4g8", "d4a1", "d4d1", "d4g1", "d4b2", "d4c2", "d4d2", "d4e2", "d4f2",
|
187 |
-
"d4b3", "d4c3", "d4d3", "d4e3", "d4f3", "d4a4", "d4b4", "d4c4", "d4e4",
|
188 |
-
"d4f4", "d4g4", "d4h4", "d4b5", "d4c5", "d4d5", "d4e5", "d4f5", "d4b6",
|
189 |
-
"d4c6", "d4d6", "d4e6", "d4f6", "d4a7", "d4d7", "d4g7", "d4d8", "d4h8",
|
190 |
-
"e4b1", "e4e1", "e4h1", "e4c2", "e4d2", "e4e2", "e4f2", "e4g2", "e4c3",
|
191 |
-
"e4d3", "e4e3", "e4f3", "e4g3", "e4a4", "e4b4", "e4c4", "e4d4", "e4f4",
|
192 |
-
"e4g4", "e4h4", "e4c5", "e4d5", "e4e5", "e4f5", "e4g5", "e4c6", "e4d6",
|
193 |
-
"e4e6", "e4f6", "e4g6", "e4b7", "e4e7", "e4h7", "e4a8", "e4e8", "f4c1",
|
194 |
-
"f4f1", "f4d2", "f4e2", "f4f2", "f4g2", "f4h2", "f4d3", "f4e3", "f4f3",
|
195 |
-
"f4g3", "f4h3", "f4a4", "f4b4", "f4c4", "f4d4", "f4e4", "f4g4", "f4h4",
|
196 |
-
"f4d5", "f4e5", "f4f5", "f4g5", "f4h5", "f4d6", "f4e6", "f4f6", "f4g6",
|
197 |
-
"f4h6", "f4c7", "f4f7", "f4b8", "f4f8", "g4d1", "g4g1", "g4e2", "g4f2",
|
198 |
-
"g4g2", "g4h2", "g4e3", "g4f3", "g4g3", "g4h3", "g4a4", "g4b4", "g4c4",
|
199 |
-
"g4d4", "g4e4", "g4f4", "g4h4", "g4e5", "g4f5", "g4g5", "g4h5", "g4e6",
|
200 |
-
"g4f6", "g4g6", "g4h6", "g4d7", "g4g7", "g4c8", "g4g8", "h4e1", "h4h1",
|
201 |
-
"h4f2", "h4g2", "h4h2", "h4f3", "h4g3", "h4h3", "h4a4", "h4b4", "h4c4",
|
202 |
-
"h4d4", "h4e4", "h4f4", "h4g4", "h4f5", "h4g5", "h4h5", "h4f6", "h4g6",
|
203 |
-
"h4h6", "h4e7", "h4h7", "h4d8", "h4h8", "a5a1", "a5e1", "a5a2", "a5d2",
|
204 |
-
"a5a3", "a5b3", "a5c3", "a5a4", "a5b4", "a5c4", "a5b5", "a5c5", "a5d5",
|
205 |
-
"a5e5", "a5f5", "a5g5", "a5h5", "a5a6", "a5b6", "a5c6", "a5a7", "a5b7",
|
206 |
-
"a5c7", "a5a8", "a5d8", "b5b1", "b5f1", "b5b2", "b5e2", "b5a3", "b5b3",
|
207 |
-
"b5c3", "b5d3", "b5a4", "b5b4", "b5c4", "b5d4", "b5a5", "b5c5", "b5d5",
|
208 |
-
"b5e5", "b5f5", "b5g5", "b5h5", "b5a6", "b5b6", "b5c6", "b5d6", "b5a7",
|
209 |
-
"b5b7", "b5c7", "b5d7", "b5b8", "b5e8", "c5c1", "c5g1", "c5c2", "c5f2",
|
210 |
-
"c5a3", "c5b3", "c5c3", "c5d3", "c5e3", "c5a4", "c5b4", "c5c4", "c5d4",
|
211 |
-
"c5e4", "c5a5", "c5b5", "c5d5", "c5e5", "c5f5", "c5g5", "c5h5", "c5a6",
|
212 |
-
"c5b6", "c5c6", "c5d6", "c5e6", "c5a7", "c5b7", "c5c7", "c5d7", "c5e7",
|
213 |
-
"c5c8", "c5f8", "d5d1", "d5h1", "d5a2", "d5d2", "d5g2", "d5b3", "d5c3",
|
214 |
-
"d5d3", "d5e3", "d5f3", "d5b4", "d5c4", "d5d4", "d5e4", "d5f4", "d5a5",
|
215 |
-
"d5b5", "d5c5", "d5e5", "d5f5", "d5g5", "d5h5", "d5b6", "d5c6", "d5d6",
|
216 |
-
"d5e6", "d5f6", "d5b7", "d5c7", "d5d7", "d5e7", "d5f7", "d5a8", "d5d8",
|
217 |
-
"d5g8", "e5a1", "e5e1", "e5b2", "e5e2", "e5h2", "e5c3", "e5d3", "e5e3",
|
218 |
-
"e5f3", "e5g3", "e5c4", "e5d4", "e5e4", "e5f4", "e5g4", "e5a5", "e5b5",
|
219 |
-
"e5c5", "e5d5", "e5f5", "e5g5", "e5h5", "e5c6", "e5d6", "e5e6", "e5f6",
|
220 |
-
"e5g6", "e5c7", "e5d7", "e5e7", "e5f7", "e5g7", "e5b8", "e5e8", "e5h8",
|
221 |
-
"f5b1", "f5f1", "f5c2", "f5f2", "f5d3", "f5e3", "f5f3", "f5g3", "f5h3",
|
222 |
-
"f5d4", "f5e4", "f5f4", "f5g4", "f5h4", "f5a5", "f5b5", "f5c5", "f5d5",
|
223 |
-
"f5e5", "f5g5", "f5h5", "f5d6", "f5e6", "f5f6", "f5g6", "f5h6", "f5d7",
|
224 |
-
"f5e7", "f5f7", "f5g7", "f5h7", "f5c8", "f5f8", "g5c1", "g5g1", "g5d2",
|
225 |
-
"g5g2", "g5e3", "g5f3", "g5g3", "g5h3", "g5e4", "g5f4", "g5g4", "g5h4",
|
226 |
-
"g5a5", "g5b5", "g5c5", "g5d5", "g5e5", "g5f5", "g5h5", "g5e6", "g5f6",
|
227 |
-
"g5g6", "g5h6", "g5e7", "g5f7", "g5g7", "g5h7", "g5d8", "g5g8", "h5d1",
|
228 |
-
"h5h1", "h5e2", "h5h2", "h5f3", "h5g3", "h5h3", "h5f4", "h5g4", "h5h4",
|
229 |
-
"h5a5", "h5b5", "h5c5", "h5d5", "h5e5", "h5f5", "h5g5", "h5f6", "h5g6",
|
230 |
-
"h5h6", "h5f7", "h5g7", "h5h7", "h5e8", "h5h8", "a6a1", "a6f1", "a6a2",
|
231 |
-
"a6e2", "a6a3", "a6d3", "a6a4", "a6b4", "a6c4", "a6a5", "a6b5", "a6c5",
|
232 |
-
"a6b6", "a6c6", "a6d6", "a6e6", "a6f6", "a6g6", "a6h6", "a6a7", "a6b7",
|
233 |
-
"a6c7", "a6a8", "a6b8", "a6c8", "b6b1", "b6g1", "b6b2", "b6f2", "b6b3",
|
234 |
-
"b6e3", "b6a4", "b6b4", "b6c4", "b6d4", "b6a5", "b6b5", "b6c5", "b6d5",
|
235 |
-
"b6a6", "b6c6", "b6d6", "b6e6", "b6f6", "b6g6", "b6h6", "b6a7", "b6b7",
|
236 |
-
"b6c7", "b6d7", "b6a8", "b6b8", "b6c8", "b6d8", "c6c1", "c6h1", "c6c2",
|
237 |
-
"c6g2", "c6c3", "c6f3", "c6a4", "c6b4", "c6c4", "c6d4", "c6e4", "c6a5",
|
238 |
-
"c6b5", "c6c5", "c6d5", "c6e5", "c6a6", "c6b6", "c6d6", "c6e6", "c6f6",
|
239 |
-
"c6g6", "c6h6", "c6a7", "c6b7", "c6c7", "c6d7", "c6e7", "c6a8", "c6b8",
|
240 |
-
"c6c8", "c6d8", "c6e8", "d6d1", "d6d2", "d6h2", "d6a3", "d6d3", "d6g3",
|
241 |
-
"d6b4", "d6c4", "d6d4", "d6e4", "d6f4", "d6b5", "d6c5", "d6d5", "d6e5",
|
242 |
-
"d6f5", "d6a6", "d6b6", "d6c6", "d6e6", "d6f6", "d6g6", "d6h6", "d6b7",
|
243 |
-
"d6c7", "d6d7", "d6e7", "d6f7", "d6b8", "d6c8", "d6d8", "d6e8", "d6f8",
|
244 |
-
"e6e1", "e6a2", "e6e2", "e6b3", "e6e3", "e6h3", "e6c4", "e6d4", "e6e4",
|
245 |
-
"e6f4", "e6g4", "e6c5", "e6d5", "e6e5", "e6f5", "e6g5", "e6a6", "e6b6",
|
246 |
-
"e6c6", "e6d6", "e6f6", "e6g6", "e6h6", "e6c7", "e6d7", "e6e7", "e6f7",
|
247 |
-
"e6g7", "e6c8", "e6d8", "e6e8", "e6f8", "e6g8", "f6a1", "f6f1", "f6b2",
|
248 |
-
"f6f2", "f6c3", "f6f3", "f6d4", "f6e4", "f6f4", "f6g4", "f6h4", "f6d5",
|
249 |
-
"f6e5", "f6f5", "f6g5", "f6h5", "f6a6", "f6b6", "f6c6", "f6d6", "f6e6",
|
250 |
-
"f6g6", "f6h6", "f6d7", "f6e7", "f6f7", "f6g7", "f6h7", "f6d8", "f6e8",
|
251 |
-
"f6f8", "f6g8", "f6h8", "g6b1", "g6g1", "g6c2", "g6g2", "g6d3", "g6g3",
|
252 |
-
"g6e4", "g6f4", "g6g4", "g6h4", "g6e5", "g6f5", "g6g5", "g6h5", "g6a6",
|
253 |
-
"g6b6", "g6c6", "g6d6", "g6e6", "g6f6", "g6h6", "g6e7", "g6f7", "g6g7",
|
254 |
-
"g6h7", "g6e8", "g6f8", "g6g8", "g6h8", "h6c1", "h6h1", "h6d2", "h6h2",
|
255 |
-
"h6e3", "h6h3", "h6f4", "h6g4", "h6h4", "h6f5", "h6g5", "h6h5", "h6a6",
|
256 |
-
"h6b6", "h6c6", "h6d6", "h6e6", "h6f6", "h6g6", "h6f7", "h6g7", "h6h7",
|
257 |
-
"h6f8", "h6g8", "h6h8", "a7a1", "a7g1", "a7a2", "a7f2", "a7a3", "a7e3",
|
258 |
-
"a7a4", "a7d4", "a7a5", "a7b5", "a7c5", "a7a6", "a7b6", "a7c6", "a7b7",
|
259 |
-
"a7c7", "a7d7", "a7e7", "a7f7", "a7g7", "a7h7", "a7a8", "a7b8", "a7c8",
|
260 |
-
"b7b1", "b7h1", "b7b2", "b7g2", "b7b3", "b7f3", "b7b4", "b7e4", "b7a5",
|
261 |
-
"b7b5", "b7c5", "b7d5", "b7a6", "b7b6", "b7c6", "b7d6", "b7a7", "b7c7",
|
262 |
-
"b7d7", "b7e7", "b7f7", "b7g7", "b7h7", "b7a8", "b7b8", "b7c8", "b7d8",
|
263 |
-
"c7c1", "c7c2", "c7h2", "c7c3", "c7g3", "c7c4", "c7f4", "c7a5", "c7b5",
|
264 |
-
"c7c5", "c7d5", "c7e5", "c7a6", "c7b6", "c7c6", "c7d6", "c7e6", "c7a7",
|
265 |
-
"c7b7", "c7d7", "c7e7", "c7f7", "c7g7", "c7h7", "c7a8", "c7b8", "c7c8",
|
266 |
-
"c7d8", "c7e8", "d7d1", "d7d2", "d7d3", "d7h3", "d7a4", "d7d4", "d7g4",
|
267 |
-
"d7b5", "d7c5", "d7d5", "d7e5", "d7f5", "d7b6", "d7c6", "d7d6", "d7e6",
|
268 |
-
"d7f6", "d7a7", "d7b7", "d7c7", "d7e7", "d7f7", "d7g7", "d7h7", "d7b8",
|
269 |
-
"d7c8", "d7d8", "d7e8", "d7f8", "e7e1", "e7e2", "e7a3", "e7e3", "e7b4",
|
270 |
-
"e7e4", "e7h4", "e7c5", "e7d5", "e7e5", "e7f5", "e7g5", "e7c6", "e7d6",
|
271 |
-
"e7e6", "e7f6", "e7g6", "e7a7", "e7b7", "e7c7", "e7d7", "e7f7", "e7g7",
|
272 |
-
"e7h7", "e7c8", "e7d8", "e7e8", "e7f8", "e7g8", "f7f1", "f7a2", "f7f2",
|
273 |
-
"f7b3", "f7f3", "f7c4", "f7f4", "f7d5", "f7e5", "f7f5", "f7g5", "f7h5",
|
274 |
-
"f7d6", "f7e6", "f7f6", "f7g6", "f7h6", "f7a7", "f7b7", "f7c7", "f7d7",
|
275 |
-
"f7e7", "f7g7", "f7h7", "f7d8", "f7e8", "f7f8", "f7g8", "f7h8", "g7a1",
|
276 |
-
"g7g1", "g7b2", "g7g2", "g7c3", "g7g3", "g7d4", "g7g4", "g7e5", "g7f5",
|
277 |
-
"g7g5", "g7h5", "g7e6", "g7f6", "g7g6", "g7h6", "g7a7", "g7b7", "g7c7",
|
278 |
-
"g7d7", "g7e7", "g7f7", "g7h7", "g7e8", "g7f8", "g7g8", "g7h8", "h7b1",
|
279 |
-
"h7h1", "h7c2", "h7h2", "h7d3", "h7h3", "h7e4", "h7h4", "h7f5", "h7g5",
|
280 |
-
"h7h5", "h7f6", "h7g6", "h7h6", "h7a7", "h7b7", "h7c7", "h7d7", "h7e7",
|
281 |
-
"h7f7", "h7g7", "h7f8", "h7g8", "h7h8", "a8a1", "a8h1", "a8a2", "a8g2",
|
282 |
-
"a8a3", "a8f3", "a8a4", "a8e4", "a8a5", "a8d5", "a8a6", "a8b6", "a8c6",
|
283 |
-
"a8a7", "a8b7", "a8c7", "a8b8", "a8c8", "a8d8", "a8e8", "a8f8", "a8g8",
|
284 |
-
"a8h8", "b8b1", "b8b2", "b8h2", "b8b3", "b8g3", "b8b4", "b8f4", "b8b5",
|
285 |
-
"b8e5", "b8a6", "b8b6", "b8c6", "b8d6", "b8a7", "b8b7", "b8c7", "b8d7",
|
286 |
-
"b8a8", "b8c8", "b8d8", "b8e8", "b8f8", "b8g8", "b8h8", "c8c1", "c8c2",
|
287 |
-
"c8c3", "c8h3", "c8c4", "c8g4", "c8c5", "c8f5", "c8a6", "c8b6", "c8c6",
|
288 |
-
"c8d6", "c8e6", "c8a7", "c8b7", "c8c7", "c8d7", "c8e7", "c8a8", "c8b8",
|
289 |
-
"c8d8", "c8e8", "c8f8", "c8g8", "c8h8", "d8d1", "d8d2", "d8d3", "d8d4",
|
290 |
-
"d8h4", "d8a5", "d8d5", "d8g5", "d8b6", "d8c6", "d8d6", "d8e6", "d8f6",
|
291 |
-
"d8b7", "d8c7", "d8d7", "d8e7", "d8f7", "d8a8", "d8b8", "d8c8", "d8e8",
|
292 |
-
"d8f8", "d8g8", "d8h8", "e8e1", "e8e2", "e8e3", "e8a4", "e8e4", "e8b5",
|
293 |
-
"e8e5", "e8h5", "e8c6", "e8d6", "e8e6", "e8f6", "e8g6", "e8c7", "e8d7",
|
294 |
-
"e8e7", "e8f7", "e8g7", "e8a8", "e8b8", "e8c8", "e8d8", "e8f8", "e8g8",
|
295 |
-
"e8h8", "f8f1", "f8f2", "f8a3", "f8f3", "f8b4", "f8f4", "f8c5", "f8f5",
|
296 |
-
"f8d6", "f8e6", "f8f6", "f8g6", "f8h6", "f8d7", "f8e7", "f8f7", "f8g7",
|
297 |
-
"f8h7", "f8a8", "f8b8", "f8c8", "f8d8", "f8e8", "f8g8", "f8h8", "g8g1",
|
298 |
-
"g8a2", "g8g2", "g8b3", "g8g3", "g8c4", "g8g4", "g8d5", "g8g5", "g8e6",
|
299 |
-
"g8f6", "g8g6", "g8h6", "g8e7", "g8f7", "g8g7", "g8h7", "g8a8", "g8b8",
|
300 |
-
"g8c8", "g8d8", "g8e8", "g8f8", "g8h8", "h8a1", "h8h1", "h8b2", "h8h2",
|
301 |
-
"h8c3", "h8h3", "h8d4", "h8h4", "h8e5", "h8h5", "h8f6", "h8g6", "h8h6",
|
302 |
-
"h8f7", "h8g7", "h8h7", "h8a8", "h8b8", "h8c8", "h8d8", "h8e8", "h8f8",
|
303 |
-
"h8g8", "a7a8q", "a7a8r", "a7a8b", "a7b8q", "a7b8r", "a7b8b", "b7a8q",
|
304 |
-
"b7a8r", "b7a8b", "b7b8q", "b7b8r", "b7b8b", "b7c8q", "b7c8r", "b7c8b",
|
305 |
-
"c7b8q", "c7b8r", "c7b8b", "c7c8q", "c7c8r", "c7c8b", "c7d8q", "c7d8r",
|
306 |
-
"c7d8b", "d7c8q", "d7c8r", "d7c8b", "d7d8q", "d7d8r", "d7d8b", "d7e8q",
|
307 |
-
"d7e8r", "d7e8b", "e7d8q", "e7d8r", "e7d8b", "e7e8q", "e7e8r", "e7e8b",
|
308 |
-
"e7f8q", "e7f8r", "e7f8b", "f7e8q", "f7e8r", "f7e8b", "f7f8q", "f7f8r",
|
309 |
-
"f7f8b", "f7g8q", "f7g8r", "f7g8b", "g7f8q", "g7f8r", "g7f8b", "g7g8q",
|
310 |
-
"g7g8r", "g7g8b", "g7h8q", "g7h8r", "g7h8b", "h7g8q", "h7g8r", "h7g8b",
|
311 |
-
"h7h8q", "h7h8r", "h7h8b", #add the promotions for black
|
312 |
-
"a2a1q","a2a1r","a2a1b","a2b1q","a2b1r","a2b1b",
|
313 |
-
"b2a1q","b2a1r","b2a1b","b2b1q","b2b1r","b2b1b","b2c1q","b2c1r","b2c1b",
|
314 |
-
"c2b1q","c2b1r","c2b1b","c2c1q","c2c1r","c2c1b","c2d1q","c2d1r","c2d1b",
|
315 |
-
"d2c1q","d2c1r","d2c1b","d2d1q","d2d1r","d2d1b","d2e1q","d2e1r","d2e1b",
|
316 |
-
"e2d1q","e2d1r","e2d1b","e2e1q","e2e1r","e2e1b","e2f1q","e2f1r","e2f1b",
|
317 |
-
"f2e1q","f2e1r","f2e1b","f2f1q","f2f1r","f2f1b","f2g1q","f2g1r","f2g1b",
|
318 |
-
"g2f1q","g2f1r","g2f1b","g2g1q","g2g1r","g2g1b","g2h1q","g2h1r","g2h1b",
|
319 |
-
"h2g1q","h2g1r","h2g1b","h2h1q","h2h1r","h2h1b",#add special tokens
|
320 |
-
"<thinking>","</thinking>","end_variation","end","padding_token"
|
321 |
-
]
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
# Attention mechanism
|
326 |
-
class RelativeMultiHeadAttention2(nn.Module):
|
327 |
-
def __init__(self, d_model: int = 512, num_heads: int = 16, dropout_p: float = 0.1):
|
328 |
-
super().__init__()
|
329 |
-
assert d_model % num_heads == 0
|
330 |
-
self.d_model = d_model
|
331 |
-
self.num_heads = num_heads
|
332 |
-
self.d_head = d_model // num_heads
|
333 |
-
self.sqrt_dim = math.sqrt(d_model)
|
334 |
-
|
335 |
-
self.query_proj = nn.Linear(d_model, d_model)
|
336 |
-
self.key_proj = nn.Linear(d_model, d_model)
|
337 |
-
self.value_proj = nn.Linear(d_model, d_model)
|
338 |
-
self.pos_proj = nn.Linear(d_model, d_model)
|
339 |
-
self.out_proj = nn.Linear(d_model, d_model)
|
340 |
-
|
341 |
-
self.u_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
|
342 |
-
self.v_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
|
343 |
-
torch.nn.init.xavier_uniform_(self.u_bias)
|
344 |
-
torch.nn.init.xavier_uniform_(self.v_bias)
|
345 |
-
self.dropout = nn.Dropout(dropout_p)
|
346 |
-
|
347 |
-
def forward(self, query, key, value, pos_embedding, mask=None):
|
348 |
-
batch_size = value.size(0)
|
349 |
-
|
350 |
-
query = self.query_proj(query).view(batch_size, -1, self.num_heads, self.d_head)
|
351 |
-
key = self.key_proj(key).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3)
|
352 |
-
value = self.value_proj(value).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3)
|
353 |
-
|
354 |
-
pos_embedding = self.pos_proj(pos_embedding).view(batch_size, -1, self.num_heads, self.d_head)
|
355 |
-
|
356 |
-
content_score = torch.matmul((query + self.u_bias).transpose(1, 2), key.transpose(2, 3))
|
357 |
-
pos_score = torch.matmul((query + self.v_bias).transpose(1, 2), pos_embedding.permute(0, 2, 3, 1))
|
358 |
-
pos_score = self._compute_relative_positional_encoding(pos_score)
|
359 |
-
|
360 |
-
score = (content_score + pos_score) / self.sqrt_dim
|
361 |
-
|
362 |
-
if mask is not None:
|
363 |
-
mask = mask.unsqueeze(1)
|
364 |
-
score.masked_fill_(mask, -1e9)
|
365 |
-
|
366 |
-
attn = F.softmax(score, -1)
|
367 |
-
attn = self.dropout(attn)
|
368 |
-
|
369 |
-
context = torch.matmul(attn, value).transpose(1, 2)
|
370 |
-
context = context.contiguous().view(batch_size, -1, self.d_model)
|
371 |
-
|
372 |
-
return self.out_proj(context)
|
373 |
-
|
374 |
-
def _compute_relative_positional_encoding(self, pos_score):
|
375 |
-
batch_size, num_heads, seq_length1, seq_length2 = pos_score.size()
|
376 |
-
zeros = pos_score.new_zeros(batch_size, num_heads, seq_length1, 1)
|
377 |
-
padded_pos_score = torch.cat([zeros, pos_score], dim=-1)
|
378 |
-
|
379 |
-
padded_pos_score = padded_pos_score.view(batch_size, num_heads, seq_length2 + 1, seq_length1)
|
380 |
-
pos_score = padded_pos_score[:, :, 1:].view_as(pos_score)
|
381 |
-
|
382 |
-
return pos_score
|
383 |
-
|
384 |
-
|
385 |
# Model components
|
386 |
class MaGating(nn.Module):
|
387 |
def __init__(self, d_model):
|
@@ -409,8 +413,8 @@ class EncoderLayer(nn.Module):
|
|
409 |
x = self.norm1(x)
|
410 |
|
411 |
y = self.ff1(x)
|
412 |
-
y = self.ff2(y)
|
413 |
y = self.gelu(y)
|
|
|
414 |
y = y + x
|
415 |
y = self.norm2(y)
|
416 |
|
@@ -495,19 +499,19 @@ class ChessBotPreTrainedModel(PreTrainedModel):
|
|
495 |
|
496 |
class ChessBotModel(ChessBotPreTrainedModel):
|
497 |
"""
|
498 |
-
HuggingFace compatible ChessBot Chess model with
|
499 |
"""
|
500 |
|
501 |
def __init__(self, config):
|
502 |
super().__init__(config)
|
503 |
self.config = config
|
504 |
|
505 |
-
# Initialize exactly like the
|
506 |
self.is_thinking_model = False
|
507 |
self.d_model = config.d_model
|
508 |
self.num_layers = config.num_layers
|
509 |
|
510 |
-
# Model layers - same as
|
511 |
self.layers = nn.ModuleList([
|
512 |
EncoderLayer(config.d_model, config.d_ff, config.num_heads)
|
513 |
for _ in range(config.num_layers)
|
@@ -576,12 +580,34 @@ class ChessBotModel(ChessBotPreTrainedModel):
|
|
576 |
targets = inp[1]
|
577 |
true_values = inp[3]
|
578 |
q_values = inp[4]
|
579 |
-
|
|
|
580 |
z = torch.argmax(true_values, dim=-1)
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
585 |
|
586 |
return BaseModelOutput(
|
587 |
last_hidden_state=x,
|
@@ -590,80 +616,43 @@ class ChessBotModel(ChessBotPreTrainedModel):
|
|
590 |
), policy, value_h, value_h_q
|
591 |
|
592 |
def get_move_from_fen_no_thinking(self, fen, T=1, device="cuda", force_legal=True, return_probs=False):
|
593 |
-
"""
|
594 |
-
Get a move from FEN string without thinking
|
595 |
-
"""
|
596 |
board = chess.Board(fen)
|
597 |
-
|
598 |
-
|
599 |
-
return None
|
600 |
-
|
601 |
-
# Convert FEN to tensor
|
602 |
-
fen_tensor = fen_to_tensor(fen)
|
603 |
-
fen_tensor = torch.from_numpy(fen_tensor).float().to(device)
|
604 |
-
fen_tensor = fen_tensor.unsqueeze(0).unsqueeze(0) # Add batch and sequence dimensions
|
605 |
-
|
606 |
-
# Get model prediction
|
607 |
-
with torch.no_grad():
|
608 |
-
_, policy, _, _ = self.forward(fen_tensor)
|
609 |
-
policy = policy.squeeze(0).squeeze(0) # Remove batch and sequence dimensions
|
610 |
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
policy = legal_moves_mask + policy
|
618 |
-
return policy_index[torch.argmax(policy).item()]
|
619 |
else:
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
# Apply temperature
|
625 |
-
if T > 0:
|
626 |
-
policy = policy / T
|
627 |
-
|
628 |
-
# Convert to probabilities
|
629 |
-
probs = F.softmax(policy, dim=-1)
|
630 |
-
|
631 |
-
# Map to legal moves
|
632 |
-
legal_move_probs = {}
|
633 |
-
for move in legal_moves:
|
634 |
-
idx = policy_index.index(move)
|
635 |
-
legal_move_probs[move] = probs[idx].item()
|
636 |
-
|
637 |
-
# Select move based on probabilities
|
638 |
-
if return_probs:
|
639 |
-
return legal_move_probs
|
640 |
|
|
|
641 |
if force_legal:
|
642 |
-
|
643 |
-
moves = list(legal_move_probs.keys())
|
644 |
-
move_probs = list(legal_move_probs.values())
|
645 |
|
646 |
-
|
647 |
-
|
648 |
-
move_probs = [p / total_prob for p in move_probs]
|
649 |
-
selected_move = np.random.choice(moves, p=move_probs)
|
650 |
else:
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
|
|
|
|
|
|
|
656 |
def get_position_value(self, fen, device="cuda"):
|
657 |
-
"""
|
658 |
-
Get the value evaluation for a given FEN position.
|
659 |
-
Returns the value vector [black_win_prob, draw_prob, white_win_prob]
|
660 |
-
"""
|
661 |
x = torch.from_numpy(fen_to_tensor(fen)).to(device).to(torch.float32)
|
662 |
x = x.view(1, 1, 8, 8, 19)
|
663 |
|
664 |
-
# Forward pass through the model to get value
|
665 |
with torch.no_grad():
|
666 |
-
# We need to run through the model layers to get to value_head
|
667 |
b, seq_len, _, _, emb = x.size()
|
668 |
x_processed = x.view(b * seq_len, 64, emb)
|
669 |
x_processed = self.linear1(x_processed)
|
@@ -677,34 +666,22 @@ class ChessBotModel(ChessBotPreTrainedModel):
|
|
677 |
|
678 |
value_logits = self.value_head_q(x_processed)
|
679 |
value_logits = value_logits.view(b, seq_len, 3)
|
680 |
-
|
681 |
-
|
682 |
-
return value_logits.squeeze() # Remove batch and sequence dimensions
|
683 |
|
684 |
def get_batch_position_values(self, fens, device="cuda"):
|
685 |
-
"""
|
686 |
-
Get the value evaluation for a batch of FEN positions efficiently.
|
687 |
-
Args:
|
688 |
-
fens: List of FEN strings
|
689 |
-
device: Device to run computations on
|
690 |
-
Returns:
|
691 |
-
value_probs: Tensor of shape [batch_size, 3] with [black_win_prob, draw_prob, white_win_prob] for each position
|
692 |
-
"""
|
693 |
if len(fens) == 0:
|
694 |
return torch.empty(0, 3, device=device)
|
695 |
|
696 |
-
# Convert all FENs to tensors and stack them
|
697 |
position_tensors = []
|
698 |
for fen in fens:
|
699 |
x = torch.from_numpy(fen_to_tensor(fen)).to(device).to(torch.float32)
|
700 |
position_tensors.append(x)
|
701 |
|
702 |
-
# Stack to create batch: [batch_size, 8, 8, 19]
|
703 |
batch_x = torch.stack(position_tensors, dim=0)
|
704 |
-
# Reshape to [batch_size, 1, 8, 8, 19] for the model
|
705 |
batch_x = batch_x.unsqueeze(1)
|
706 |
|
707 |
-
# Forward pass through the model to get values
|
708 |
with torch.no_grad():
|
709 |
b, seq_len, _, _, emb = batch_x.size()
|
710 |
x_processed = batch_x.view(b * seq_len, 64, emb)
|
@@ -720,90 +697,75 @@ class ChessBotModel(ChessBotPreTrainedModel):
|
|
720 |
value_logits = self.value_head_q(x_processed)
|
721 |
value_logits = value_logits.view(b, seq_len, 3)
|
722 |
value_logits = torch.softmax(value_logits, dim=-1)
|
723 |
-
return value_logits.squeeze(1)
|
724 |
|
725 |
def calculate_move_values(self, fen, device="cuda"):
|
726 |
-
"""
|
727 |
-
Calculate the value for each legal move from the given position efficiently using batching.
|
728 |
-
For white to move, value = white_win_prob - black_win_prob
|
729 |
-
For black to move, value = black_win_prob - white_win_prob
|
730 |
-
"""
|
731 |
board = chess.Board()
|
732 |
board.set_fen(fen)
|
733 |
|
734 |
-
# Determine whose turn it is
|
735 |
is_white_turn = board.turn == chess.WHITE
|
736 |
|
737 |
legal_moves = list(board.legal_moves)
|
738 |
if len(legal_moves) == 0:
|
739 |
return [], torch.empty(0, device=device)
|
740 |
|
741 |
-
# Get all resulting FENs after each move
|
742 |
resulting_fens = []
|
743 |
for move in legal_moves:
|
744 |
board.push(move)
|
745 |
resulting_fens.append(board.fen())
|
746 |
board.pop()
|
747 |
|
748 |
-
# Batch process all positions in a single inference
|
749 |
batch_value_q = self.get_batch_position_values(resulting_fens, device)
|
750 |
|
751 |
# Calculate values from the current player's perspective
|
752 |
-
# batch_value_probs[:, 0] = black_win_prob, [:, 1] = draw_prob, [:, 2] = white_win_prob
|
753 |
batch_value_q = batch_value_q[:,2]-batch_value_q[:,0]
|
754 |
if is_white_turn:
|
755 |
-
# White's perspective: white_win_prob - black_win_prob
|
756 |
player_values = batch_value_q
|
757 |
else:
|
758 |
-
# Black's perspective: black_win_prob - white_win_prob
|
759 |
player_values = -batch_value_q
|
760 |
|
761 |
return legal_moves, player_values
|
762 |
|
763 |
-
def get_best_move_value(self, fen, T=1, device="cuda", return_probs=False):
|
764 |
-
"""
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
device: Device to run computations on
|
771 |
-
return_probs: Whether to return the probability distribution
|
772 |
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
|
|
|
|
|
|
|
|
|
|
777 |
legal_moves, move_values = self.calculate_move_values(fen, device)
|
778 |
|
779 |
if len(legal_moves) == 0:
|
780 |
raise ValueError("No legal moves available")
|
781 |
|
782 |
if T == 0:
|
783 |
-
# Greedy selection - choose move with highest value
|
784 |
best_idx = torch.argmax(move_values)
|
785 |
selected_move = legal_moves[best_idx]
|
786 |
else:
|
787 |
-
# Stochastic selection based on move values
|
788 |
-
# Convert values to probabilities using softmax with temperature
|
789 |
probs = F.softmax(move_values / T, dim=0)
|
790 |
-
|
791 |
-
# Sample according to probabilities
|
792 |
sampled_idx = torch.multinomial(probs, num_samples=1)
|
793 |
selected_move = legal_moves[sampled_idx.item()]
|
794 |
|
795 |
-
# Convert chess.Move to UCI string
|
796 |
move_uci = selected_move.uci()
|
797 |
|
798 |
if return_probs:
|
799 |
if T == 0:
|
800 |
-
# Create one-hot distribution for greedy case
|
801 |
probs = torch.zeros_like(move_values)
|
802 |
probs[best_idx] = 1.0
|
803 |
else:
|
804 |
probs = F.softmax(move_values / T, dim=0)
|
805 |
|
806 |
-
# Create dictionary with move strings as keys
|
807 |
move_dict = {}
|
808 |
for i, move in enumerate(legal_moves):
|
809 |
move_dict[move.uci()] = probs[i].item()
|
|
|
1 |
"""
|
2 |
+
Updated HuggingFace Compatible ChessBot Chess Model
|
3 |
|
4 |
+
This file contains the updated architecture with d_ff=1024 and new weights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"""
|
6 |
|
7 |
import torch
|
|
|
13 |
from transformers.modeling_outputs import BaseModelOutput
|
14 |
from typing import Optional, Tuple
|
15 |
import math
|
16 |
+
import sys
|
17 |
+
import os
|
18 |
+
|
19 |
+
# Add current directory to path for imports
|
20 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
21 |
+
|
22 |
+
# Import attention mechanism
|
23 |
+
try:
|
24 |
+
from .attn import RelativeMultiHeadAttention2
|
25 |
+
except:
|
26 |
+
try:
|
27 |
+
from attn import RelativeMultiHeadAttention2
|
28 |
+
except:
|
29 |
+
# Fallback attention implementation
|
30 |
+
class RelativeMultiHeadAttention2(nn.Module):
|
31 |
+
def __init__(self, d_model: int = 512, num_heads: int = 8, dropout_p: float = 0.1):
|
32 |
+
super().__init__()
|
33 |
+
assert d_model % num_heads == 0
|
34 |
+
self.d_model = d_model
|
35 |
+
self.num_heads = num_heads
|
36 |
+
self.d_head = d_model // num_heads
|
37 |
+
self.sqrt_dim = math.sqrt(d_model)
|
38 |
+
|
39 |
+
self.query_proj = nn.Linear(d_model, d_model)
|
40 |
+
self.key_proj = nn.Linear(d_model, d_model)
|
41 |
+
self.value_proj = nn.Linear(d_model, d_model)
|
42 |
+
self.pos_proj = nn.Linear(d_model, d_model)
|
43 |
+
self.out_proj = nn.Linear(d_model, d_model)
|
44 |
+
|
45 |
+
self.u_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
|
46 |
+
self.v_bias = nn.Parameter(torch.Tensor(self.num_heads, self.d_head))
|
47 |
+
torch.nn.init.xavier_uniform_(self.u_bias)
|
48 |
+
torch.nn.init.xavier_uniform_(self.v_bias)
|
49 |
+
self.dropout = nn.Dropout(dropout_p)
|
50 |
+
|
51 |
+
def forward(self, query, key, value, pos_embedding, mask=None):
|
52 |
+
batch_size = value.size(0)
|
53 |
+
|
54 |
+
query = self.query_proj(query).view(batch_size, -1, self.num_heads, self.d_head)
|
55 |
+
key = self.key_proj(key).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3)
|
56 |
+
value = self.value_proj(value).view(batch_size, -1, self.num_heads, self.d_head).permute(0, 2, 1, 3)
|
57 |
+
|
58 |
+
pos_embedding = self.pos_proj(pos_embedding).view(batch_size, -1, self.num_heads, self.d_head)
|
59 |
+
|
60 |
+
content_score = torch.matmul((query + self.u_bias).transpose(1, 2), key.transpose(2, 3))
|
61 |
+
pos_score = torch.matmul((query + self.v_bias).transpose(1, 2), pos_embedding.permute(0, 2, 3, 1))
|
62 |
+
pos_score = self._compute_relative_positional_encoding(pos_score)
|
63 |
+
|
64 |
+
score = (content_score + pos_score) / self.sqrt_dim
|
65 |
+
|
66 |
+
if mask is not None:
|
67 |
+
mask = mask.unsqueeze(1)
|
68 |
+
score.masked_fill_(mask, -1e9)
|
69 |
+
|
70 |
+
attn = F.softmax(score, -1)
|
71 |
+
attn = self.dropout(attn)
|
72 |
+
|
73 |
+
context = torch.matmul(attn, value).transpose(1, 2)
|
74 |
+
context = context.contiguous().view(batch_size, -1, self.d_model)
|
75 |
+
|
76 |
+
return self.out_proj(context)
|
77 |
+
|
78 |
+
def _compute_relative_positional_encoding(self, pos_score):
|
79 |
+
batch_size, num_heads, seq_length1, seq_length2 = pos_score.size()
|
80 |
+
zeros = pos_score.new_zeros(batch_size, num_heads, seq_length1, 1)
|
81 |
+
padded_pos_score = torch.cat([zeros, pos_score], dim=-1)
|
82 |
+
|
83 |
+
padded_pos_score = padded_pos_score.view(batch_size, num_heads, seq_length2 + 1, seq_length1)
|
84 |
+
pos_score = padded_pos_score[:, :, 1:].view_as(pos_score)
|
85 |
+
|
86 |
+
return pos_score
|
87 |
+
|
88 |
+
# Import utility functions
|
89 |
+
try:
|
90 |
+
from utils.vocab import policy_index
|
91 |
+
from utils.fen_encoder import fen_to_tensor
|
92 |
+
except:
|
93 |
+
# Fallback implementations
|
94 |
+
def fen_to_tensor(fen: str):
|
95 |
+
"""Convert FEN string to tensor representation for the model."""
|
96 |
+
board = chess.Board(fen)
|
97 |
+
tensor = np.zeros((8, 8, 19), dtype=np.float32)
|
98 |
+
|
99 |
+
# Piece mapping
|
100 |
+
piece_map = {
|
101 |
+
'P': 0, 'N': 1, 'B': 2, 'R': 3, 'Q': 4, 'K': 5, # White pieces
|
102 |
+
'p': 6, 'n': 7, 'b': 8, 'r': 9, 'q': 10, 'k': 11 # Black pieces
|
103 |
+
}
|
104 |
+
|
105 |
+
# Fill piece positions
|
106 |
+
for square in chess.SQUARES:
|
107 |
+
piece = board.piece_at(square)
|
108 |
+
if piece:
|
109 |
+
row = 7 - (square // 8) # Flip vertically for proper orientation
|
110 |
+
col = square % 8
|
111 |
+
tensor[row, col, piece_map[piece.symbol()]] = 1.0
|
112 |
+
|
113 |
+
# Add metadata channels
|
114 |
+
# Channel 12: White to move
|
115 |
+
if board.turn == chess.WHITE:
|
116 |
+
tensor[:, :, 12] = 1.0
|
117 |
+
|
118 |
+
# Channel 13: Black to move
|
119 |
+
if board.turn == chess.BLACK:
|
120 |
+
tensor[:, :, 13] = 1.0
|
121 |
+
|
122 |
+
# Castling rights
|
123 |
+
if board.has_kingside_castling_rights(chess.WHITE):
|
124 |
+
tensor[:, :, 14] = 1.0
|
125 |
+
if board.has_queenside_castling_rights(chess.WHITE):
|
126 |
+
tensor[:, :, 15] = 1.0
|
127 |
+
if board.has_kingside_castling_rights(chess.BLACK):
|
128 |
+
tensor[:, :, 16] = 1.0
|
129 |
+
if board.has_queenside_castling_rights(chess.BLACK):
|
130 |
+
tensor[:, :, 17] = 1.0
|
131 |
+
|
132 |
+
# En passant
|
133 |
+
if board.ep_square is not None:
|
134 |
+
ep_row = 7 - (board.ep_square // 8)
|
135 |
+
ep_col = board.ep_square % 8
|
136 |
+
tensor[ep_row, ep_col, 18] = 1.0
|
137 |
+
|
138 |
+
return tensor
|
139 |
+
|
140 |
+
# Complete policy index with all 1929 moves
|
141 |
+
policy_index = [
|
142 |
+
"a1b1", "a1c1", "a1d1", "a1e1", "a1f1", "a1g1", "a1h1", "a1a2", "a1b2",
|
143 |
+
"a1c2", "a1a3", "a1b3", "a1c3", "a1a4", "a1d4", "a1a5", "a1e5", "a1a6",
|
144 |
+
"a1f6", "a1a7", "a1g7", "a1a8", "a1h8", "b1a1", "b1c1", "b1d1", "b1e1",
|
145 |
+
"b1f1", "b1g1", "b1h1", "b1a2", "b1b2", "b1c2", "b1d2", "b1a3", "b1b3",
|
146 |
+
"b1c3", "b1d3", "b1b4", "b1e4", "b1b5", "b1f5", "b1b6", "b1g6", "b1b7",
|
147 |
+
"b1h7", "b1b8", "c1a1", "c1b1", "c1d1", "c1e1", "c1f1", "c1g1", "c1h1",
|
148 |
+
"c1a2", "c1b2", "c1c2", "c1d2", "c1e2", "c1a3", "c1b3", "c1c3", "c1d3",
|
149 |
+
"c1e3", "c1c4", "c1f4", "c1c5", "c1g5", "c1c6", "c1h6", "c1c7", "c1c8",
|
150 |
+
"d1a1", "d1b1", "d1c1", "d1e1", "d1f1", "d1g1", "d1h1", "d1b2", "d1c2",
|
151 |
+
"d1d2", "d1e2", "d1f2", "d1b3", "d1c3", "d1d3", "d1e3", "d1f3", "d1a4",
|
152 |
+
"d1d4", "d1g4", "d1d5", "d1h5", "d1d6", "d1d7", "d1d8", "e1a1", "e1b1",
|
153 |
+
"e1c1", "e1d1", "e1f1", "e1g1", "e1h1", "e1c2", "e1d2", "e1e2", "e1f2",
|
154 |
+
"e1g2", "e1c3", "e1d3", "e1e3", "e1f3", "e1g3", "e1b4", "e1e4", "e1h4",
|
155 |
+
"e1a5", "e1e5", "e1e6", "e1e7", "e1e8", "f1a1", "f1b1", "f1c1", "f1d1",
|
156 |
+
"f1e1", "f1g1", "f1h1", "f1d2", "f1e2", "f1f2", "f1g2", "f1h2", "f1d3",
|
157 |
+
"f1e3", "f1f3", "f1g3", "f1h3", "f1c4", "f1f4", "f1b5", "f1f5", "f1a6",
|
158 |
+
"f1f6", "f1f7", "f1f8", "g1a1", "g1b1", "g1c1", "g1d1", "g1e1", "g1f1",
|
159 |
+
"g1h1", "g1e2", "g1f2", "g1g2", "g1h2", "g1e3", "g1f3", "g1g3", "g1h3",
|
160 |
+
"g1d4", "g1g4", "g1c5", "g1g5", "g1b6", "g1g6", "g1a7", "g1g7", "g1g8",
|
161 |
+
"h1a1", "h1b1", "h1c1", "h1d1", "h1e1", "h1f1", "h1g1", "h1f2", "h1g2",
|
162 |
+
"h1h2", "h1f3", "h1g3", "h1h3", "h1e4", "h1h4", "h1d5", "h1h5", "h1c6",
|
163 |
+
"h1h6", "h1b7", "h1h7", "h1a8", "h1h8", "a2a1", "a2b1", "a2c1", "a2b2",
|
164 |
+
"a2c2", "a2d2", "a2e2", "a2f2", "a2g2", "a2h2", "a2a3", "a2b3", "a2c3",
|
165 |
+
"a2a4", "a2b4", "a2c4", "a2a5", "a2d5", "a2a6", "a2e6", "a2a7", "a2f7",
|
166 |
+
"a2a8", "a2g8", "b2a1", "b2b1", "b2c1", "b2d1", "b2a2", "b2c2", "b2d2",
|
167 |
+
"b2e2", "b2f2", "b2g2", "b2h2", "b2a3", "b2b3", "b2c3", "b2d3", "b2a4",
|
168 |
+
"b2b4", "b2c4", "b2d4", "b2b5", "b2e5", "b2b6", "b2f6", "b2b7", "b2g7",
|
169 |
+
"b2b8", "b2h8", "c2a1", "c2b1", "c2c1", "c2d1", "c2e1", "c2a2", "c2b2",
|
170 |
+
"c2d2", "c2e2", "c2f2", "c2g2", "c2h2", "c2a3", "c2b3", "c2c3", "c2d3",
|
171 |
+
"c2e3", "c2a4", "c2b4", "c2c4", "c2d4", "c2e4", "c2c5", "c2f5", "c2c6",
|
172 |
+
"c2g6", "c2c7", "c2h7", "c2c8", "d2b1", "d2c1", "d2d1", "d2e1", "d2f1",
|
173 |
+
"d2a2", "d2b2", "d2c2", "d2e2", "d2f2", "d2g2", "d2h2", "d2b3", "d2c3",
|
174 |
+
"d2d3", "d2e3", "d2f3", "d2b4", "d2c4", "d2d4", "d2e4", "d2f4", "d2a5",
|
175 |
+
"d2d5", "d2g5", "d2d6", "d2h6", "d2d7", "d2d8", "e2c1", "e2d1", "e2e1",
|
176 |
+
"e2f1", "e2g1", "e2a2", "e2b2", "e2c2", "e2d2", "e2f2", "e2g2", "e2h2",
|
177 |
+
"e2c3", "e2d3", "e2e3", "e2f3", "e2g3", "e2c4", "e2d4", "e2e4", "e2f4",
|
178 |
+
"e2g4", "e2b5", "e2e5", "e2h5", "e2a6", "e2e6", "e2e7", "e2e8", "f2d1",
|
179 |
+
"f2e1", "f2f1", "f2g1", "f2h1", "f2a2", "f2b2", "f2c2", "f2d2", "f2e2",
|
180 |
+
"f2g2", "f2h2", "f2d3", "f2e3", "f2f3", "f2g3", "f2h3", "f2d4", "f2e4",
|
181 |
+
"f2f4", "f2g4", "f2h4", "f2c5", "f2f5", "f2b6", "f2f6", "f2a7", "f2f7",
|
182 |
+
"f2f8", "g2e1", "g2f1", "g2g1", "g2h1", "g2a2", "g2b2", "g2c2", "g2d2",
|
183 |
+
"g2e2", "g2f2", "g2h2", "g2e3", "g2f3", "g2g3", "g2h3", "g2e4", "g2f4",
|
184 |
+
"g2g4", "g2h4", "g2d5", "g2g5", "g2c6", "g2g6", "g2b7", "g2g7", "g2a8",
|
185 |
+
"g2g8", "h2f1", "h2g1", "h2h1", "h2a2", "h2b2", "h2c2", "h2d2", "h2e2",
|
186 |
+
"h2f2", "h2g2", "h2f3", "h2g3", "h2h3", "h2f4", "h2g4", "h2h4", "h2e5",
|
187 |
+
"h2h5", "h2d6", "h2h6", "h2c7", "h2h7", "h2b8", "h2h8", "a3a1", "a3b1",
|
188 |
+
"a3c1", "a3a2", "a3b2", "a3c2", "a3b3", "a3c3", "a3d3", "a3e3", "a3f3",
|
189 |
+
"a3g3", "a3h3", "a3a4", "a3b4", "a3c4", "a3a5", "a3b5", "a3c5", "a3a6",
|
190 |
+
"a3d6", "a3a7", "a3e7", "a3a8", "a3f8", "b3a1", "b3b1", "b3c1", "b3d1",
|
191 |
+
"b3a2", "b3b2", "b3c2", "b3d2", "b3a3", "b3c3", "b3d3", "b3e3", "b3f3",
|
192 |
+
"b3g3", "b3h3", "b3a4", "b3b4", "b3c4", "b3d4", "b3a5", "b3b5", "b3c5",
|
193 |
+
"b3d5", "b3b6", "b3e6", "b3b7", "b3f7", "b3b8", "b3g8", "c3a1", "c3b1",
|
194 |
+
"c3c1", "c3d1", "c3e1", "c3a2", "c3b2", "c3c2", "c3d2", "c3e2", "c3a3",
|
195 |
+
"c3b3", "c3d3", "c3e3", "c3f3", "c3g3", "c3h3", "c3a4", "c3b4", "c3c4",
|
196 |
+
"c3d4", "c3e4", "c3a5", "c3b5", "c3c5", "c3d5", "c3e5", "c3c6", "c3f6",
|
197 |
+
"c3c7", "c3g7", "c3c8", "c3h8", "d3b1", "d3c1", "d3d1", "d3e1", "d3f1",
|
198 |
+
"d3b2", "d3c2", "d3d2", "d3e2", "d3f2", "d3a3", "d3b3", "d3c3", "d3e3",
|
199 |
+
"d3f3", "d3g3", "d3h3", "d3b4", "d3c4", "d3d4", "d3e4", "d3f4", "d3b5",
|
200 |
+
"d3c5", "d3d5", "d3e5", "d3f5", "d3a6", "d3d6", "d3g6", "d3d7", "d3h7",
|
201 |
+
"d3d8", "e3c1", "e3d1", "e3e1", "e3f1", "e3g1", "e3c2", "e3d2", "e3e2",
|
202 |
+
"e3f2", "e3g2", "e3a3", "e3b3", "e3c3", "e3d3", "e3f3", "e3g3", "e3h3",
|
203 |
+
"e3c4", "e3d4", "e3e4", "e3f4", "e3g4", "e3c5", "e3d5", "e3e5", "e3f5",
|
204 |
+
"e3g5", "e3b6", "e3e6", "e3h6", "e3a7", "e3e7", "e3e8", "f3d1", "f3e1",
|
205 |
+
"f3f1", "f3g1", "f3h1", "f3d2", "f3e2", "f3f2", "f3g2", "f3h2", "f3a3",
|
206 |
+
"f3b3", "f3c3", "f3d3", "f3e3", "f3g3", "f3h3", "f3d4", "f3e4", "f3f4",
|
207 |
+
"f3g4", "f3h4", "f3d5", "f3e5", "f3f5", "f3g5", "f3h5", "f3c6", "f3f6",
|
208 |
+
"f3b7", "f3f7", "f3a8", "f3f8", "g3e1", "g3f1", "g3g1", "g3h1", "g3e2",
|
209 |
+
"g3f2", "g3g2", "g3h2", "g3a3", "g3b3", "g3c3", "g3d3", "g3e3", "g3f3",
|
210 |
+
"g3h3", "g3e4", "g3f4", "g3g4", "g3h4", "g3e5", "g3f5", "g3g5", "g3h5",
|
211 |
+
"g3d6", "g3g6", "g3c7", "g3g7", "g3b8", "g3g8", "h3f1", "h3g1", "h3h1",
|
212 |
+
"h3f2", "h3g2", "h3h2", "h3a3", "h3b3", "h3c3", "h3d3", "h3e3", "h3f3",
|
213 |
+
"h3g3", "h3f4", "h3g4", "h3h4", "h3f5", "h3g5", "h3h5", "h3e6", "h3h6",
|
214 |
+
"h3d7", "h3h7", "h3c8", "h3h8", "a4a1", "a4d1", "a4a2", "a4b2", "a4c2",
|
215 |
+
"a4a3", "a4b3", "a4c3", "a4b4", "a4c4", "a4d4", "a4e4", "a4f4", "a4g4",
|
216 |
+
"a4h4", "a4a5", "a4b5", "a4c5", "a4a6", "a4b6", "a4c6", "a4a7", "a4d7",
|
217 |
+
"a4a8", "a4e8", "b4b1", "b4e1", "b4a2", "b4b2", "b4c2", "b4d2", "b4a3",
|
218 |
+
"b4b3", "b4c3", "b4d3", "b4a4", "b4c4", "b4d4", "b4e4", "b4f4", "b4g4",
|
219 |
+
"b4h4", "b4a5", "b4b5", "b4c5", "b4d5", "b4a6", "b4b6", "b4c6", "b4d6",
|
220 |
+
"b4b7", "b4e7", "b4b8", "b4f8", "c4c1", "c4f1", "c4a2", "c4b2", "c4c2",
|
221 |
+
"c4d2", "c4e2", "c4a3", "c4b3", "c4c3", "c4d3", "c4e3", "c4a4", "c4b4",
|
222 |
+
"c4d4", "c4e4", "c4f4", "c4g4", "c4h4", "c4a5", "c4b5", "c4c5", "c4d5",
|
223 |
+
"c4e5", "c4a6", "c4b6", "c4c6", "c4d6", "c4e6", "c4c7", "c4f7", "c4c8",
|
224 |
+
"c4g8", "d4a1", "d4d1", "d4g1", "d4b2", "d4c2", "d4d2", "d4e2", "d4f2",
|
225 |
+
"d4b3", "d4c3", "d4d3", "d4e3", "d4f3", "d4a4", "d4b4", "d4c4", "d4e4",
|
226 |
+
"d4f4", "d4g4", "d4h4", "d4b5", "d4c5", "d4d5", "d4e5", "d4f5", "d4b6",
|
227 |
+
"d4c6", "d4d6", "d4e6", "d4f6", "d4a7", "d4d7", "d4g7", "d4d8", "d4h8",
|
228 |
+
"e4b1", "e4e1", "e4h1", "e4c2", "e4d2", "e4e2", "e4f2", "e4g2", "e4c3",
|
229 |
+
"e4d3", "e4e3", "e4f3", "e4g3", "e4a4", "e4b4", "e4c4", "e4d4", "e4f4",
|
230 |
+
"e4g4", "e4h4", "e4c5", "e4d5", "e4e5", "e4f5", "e4g5", "e4c6", "e4d6",
|
231 |
+
"e4e6", "e4f6", "e4g6", "e4b7", "e4e7", "e4h7", "e4a8", "e4e8", "f4c1",
|
232 |
+
"f4f1", "f4d2", "f4e2", "f4f2", "f4g2", "f4h2", "f4d3", "f4e3", "f4f3",
|
233 |
+
"f4g3", "f4h3", "f4a4", "f4b4", "f4c4", "f4d4", "f4e4", "f4g4", "f4h4",
|
234 |
+
"f4d5", "f4e5", "f4f5", "f4g5", "f4h5", "f4d6", "f4e6", "f4f6", "f4g6",
|
235 |
+
"f4h6", "f4c7", "f4f7", "f4b8", "f4f8", "g4d1", "g4g1", "g4e2", "g4f2",
|
236 |
+
"g4g2", "g4h2", "g4e3", "g4f3", "g4g3", "g4h3", "g4a4", "g4b4", "g4c4",
|
237 |
+
"g4d4", "g4e4", "g4f4", "g4h4", "g4e5", "g4f5", "g4g5", "g4h5", "g4e6",
|
238 |
+
"g4f6", "g4g6", "g4h6", "g4d7", "g4g7", "g4c8", "g4g8", "h4e1", "h4h1",
|
239 |
+
"h4f2", "h4g2", "h4h2", "h4f3", "h4g3", "h4h3", "h4a4", "h4b4", "h4c4",
|
240 |
+
"h4d4", "h4e4", "h4f4", "h4g4", "h4f5", "h4g5", "h4h5", "h4f6", "h4g6",
|
241 |
+
"h4h6", "h4e7", "h4h7", "h4d8", "h4h8", "a5a1", "a5e1", "a5a2", "a5d2",
|
242 |
+
"a5a3", "a5b3", "a5c3", "a5a4", "a5b4", "a5c4", "a5b5", "a5c5", "a5d5",
|
243 |
+
"a5e5", "a5f5", "a5g5", "a5h5", "a5a6", "a5b6", "a5c6", "a5a7", "a5b7",
|
244 |
+
"a5c7", "a5a8", "a5d8", "b5b1", "b5f1", "b5b2", "b5e2", "b5a3", "b5b3",
|
245 |
+
"b5c3", "b5d3", "b5a4", "b5b4", "b5c4", "b5d4", "b5a5", "b5c5", "b5d5",
|
246 |
+
"b5e5", "b5f5", "b5g5", "b5h5", "b5a6", "b5b6", "b5c6", "b5d6", "b5a7",
|
247 |
+
"b5b7", "b5c7", "b5d7", "b5b8", "b5e8", "c5c1", "c5g1", "c5c2", "c5f2",
|
248 |
+
"c5a3", "c5b3", "c5c3", "c5d3", "c5e3", "c5a4", "c5b4", "c5c4", "c5d4",
|
249 |
+
"c5e4", "c5a5", "c5b5", "c5d5", "c5e5", "c5f5", "c5g5", "c5h5", "c5a6",
|
250 |
+
"c5b6", "c5c6", "c5d6", "c5e6", "c5a7", "c5b7", "c5c7", "c5d7", "c5e7",
|
251 |
+
"c5c8", "c5f8", "d5d1", "d5h1", "d5a2", "d5d2", "d5g2", "d5b3", "d5c3",
|
252 |
+
"d5d3", "d5e3", "d5f3", "d5b4", "d5c4", "d5d4", "d5e4", "d5f4", "d5a5",
|
253 |
+
"d5b5", "d5c5", "d5e5", "d5f5", "d5g5", "d5h5", "d5b6", "d5c6", "d5d6",
|
254 |
+
"d5e6", "d5f6", "d5b7", "d5c7", "d5d7", "d5e7", "d5f7", "d5a8", "d5d8",
|
255 |
+
"d5g8", "e5a1", "e5e1", "e5b2", "e5e2", "e5h2", "e5c3", "e5d3", "e5e3",
|
256 |
+
"e5f3", "e5g3", "e5c4", "e5d4", "e5e4", "e5f4", "e5g4", "e5a5", "e5b5",
|
257 |
+
"e5c5", "e5d5", "e5f5", "e5g5", "e5h5", "e5c6", "e5d6", "e5e6", "e5f6",
|
258 |
+
"e5g6", "e5c7", "e5d7", "e5e7", "e5f7", "e5g7", "e5b8", "e5e8", "e5h8",
|
259 |
+
"f5b1", "f5f1", "f5c2", "f5f2", "f5d3", "f5e3", "f5f3", "f5g3", "f5h3",
|
260 |
+
"f5d4", "f5e4", "f5f4", "f5g4", "f5h4", "f5a5", "f5b5", "f5c5", "f5d5",
|
261 |
+
"f5e5", "f5g5", "f5h5", "f5d6", "f5e6", "f5f6", "f5g6", "f5h6", "f5d7",
|
262 |
+
"f5e7", "f5f7", "f5g7", "f5h7", "f5c8", "f5f8", "g5c1", "g5g1", "g5d2",
|
263 |
+
"g5g2", "g5e3", "g5f3", "g5g3", "g5h3", "g5e4", "g5f4", "g5g4", "g5h4",
|
264 |
+
"g5a5", "g5b5", "g5c5", "g5d5", "g5e5", "g5f5", "g5h5", "g5e6", "g5f6",
|
265 |
+
"g5g6", "g5h6", "g5e7", "g5f7", "g5g7", "g5h7", "g5d8", "g5g8", "h5d1",
|
266 |
+
"h5h1", "h5e2", "h5h2", "h5f3", "h5g3", "h5h3", "h5f4", "h5g4", "h5h4",
|
267 |
+
"h5a5", "h5b5", "h5c5", "h5d5", "h5e5", "h5f5", "h5g5", "h5f6", "h5g6",
|
268 |
+
"h5h6", "h5f7", "h5g7", "h5h7", "h5e8", "h5h8", "a6a1", "a6f1", "a6a2",
|
269 |
+
"a6e2", "a6a3", "a6d3", "a6a4", "a6b4", "a6c4", "a6a5", "a6b5", "a6c5",
|
270 |
+
"a6b6", "a6c6", "a6d6", "a6e6", "a6f6", "a6g6", "a6h6", "a6a7", "a6b7",
|
271 |
+
"a6c7", "a6a8", "a6b8", "a6c8", "b6b1", "b6g1", "b6b2", "b6f2", "b6b3",
|
272 |
+
"b6e3", "b6a4", "b6b4", "b6c4", "b6d4", "b6a5", "b6b5", "b6c5", "b6d5",
|
273 |
+
"b6a6", "b6c6", "b6d6", "b6e6", "b6f6", "b6g6", "b6h6", "b6a7", "b6b7",
|
274 |
+
"b6c7", "b6d7", "b6a8", "b6b8", "b6c8", "b6d8", "c6c1", "c6h1", "c6c2",
|
275 |
+
"c6g2", "c6c3", "c6f3", "c6a4", "c6b4", "c6c4", "c6d4", "c6e4", "c6a5",
|
276 |
+
"c6b5", "c6c5", "c6d5", "c6e5", "c6a6", "c6b6", "c6d6", "c6e6", "c6f6",
|
277 |
+
"c6g6", "c6h6", "c6a7", "c6b7", "c6c7", "c6d7", "c6e7", "c6a8", "c6b8",
|
278 |
+
"c6c8", "c6d8", "c6e8", "d6d1", "d6d2", "d6h2", "d6a3", "d6d3", "d6g3",
|
279 |
+
"d6b4", "d6c4", "d6d4", "d6e4", "d6f4", "d6b5", "d6c5", "d6d5", "d6e5",
|
280 |
+
"d6f5", "d6a6", "d6b6", "d6c6", "d6e6", "d6f6", "d6g6", "d6h6", "d6b7",
|
281 |
+
"d6c7", "d6d7", "d6e7", "d6f7", "d6b8", "d6c8", "d6d8", "d6e8", "d6f8",
|
282 |
+
"e6e1", "e6a2", "e6e2", "e6b3", "e6e3", "e6h3", "e6c4", "e6d4", "e6e4",
|
283 |
+
"e6f4", "e6g4", "e6c5", "e6d5", "e6e5", "e6f5", "e6g5", "e6a6", "e6b6",
|
284 |
+
"e6c6", "e6d6", "e6f6", "e6g6", "e6h6", "e6c7", "e6d7", "e6e7", "e6f7",
|
285 |
+
"e6g7", "e6c8", "e6d8", "e6e8", "e6f8", "e6g8", "f6a1", "f6f1", "f6b2",
|
286 |
+
"f6f2", "f6c3", "f6f3", "f6d4", "f6e4", "f6f4", "f6g4", "f6h4", "f6d5",
|
287 |
+
"f6e5", "f6f5", "f6g5", "f6h5", "f6a6", "f6b6", "f6c6", "f6d6", "f6e6",
|
288 |
+
"f6g6", "f6h6", "f6d7", "f6e7", "f6f7", "f6g7", "f6h7", "f6d8", "f6e8",
|
289 |
+
"f6f8", "f6g8", "f6h8", "g6b1", "g6g1", "g6c2", "g6g2", "g6d3", "g6g3",
|
290 |
+
"g6e4", "g6f4", "g6g4", "g6h4", "g6e5", "g6f5", "g6g5", "g6h5", "g6a6",
|
291 |
+
"g6b6", "g6c6", "g6d6", "g6e6", "g6f6", "g6h6", "g6e7", "g6f7", "g6g7",
|
292 |
+
"g6h7", "g6e8", "g6f8", "g6g8", "g6h8", "h6c1", "h6h1", "h6d2", "h6h2",
|
293 |
+
"h6e3", "h6h3", "h6f4", "h6g4", "h6h4", "h6f5", "h6g5", "h6h5", "h6a6",
|
294 |
+
"h6b6", "h6c6", "h6d6", "h6e6", "h6f6", "h6g6", "h6f7", "h6g7", "h6h7",
|
295 |
+
"h6f8", "h6g8", "h6h8", "a7a1", "a7g1", "a7a2", "a7f2", "a7a3", "a7e3",
|
296 |
+
"a7a4", "a7d4", "a7a5", "a7b5", "a7c5", "a7a6", "a7b6", "a7c6", "a7b7",
|
297 |
+
"a7c7", "a7d7", "a7e7", "a7f7", "a7g7", "a7h7", "a7a8", "a7b8", "a7c8",
|
298 |
+
"b7b1", "b7h1", "b7b2", "b7g2", "b7b3", "b7f3", "b7b4", "b7e4", "b7a5",
|
299 |
+
"b7b5", "b7c5", "b7d5", "b7a6", "b7b6", "b7c6", "b7d6", "b7a7", "b7c7",
|
300 |
+
"b7d7", "b7e7", "b7f7", "b7g7", "b7h7", "b7a8", "b7b8", "b7c8", "b7d8",
|
301 |
+
"c7c1", "c7c2", "c7h2", "c7c3", "c7g3", "c7c4", "c7f4", "c7a5", "c7b5",
|
302 |
+
"c7c5", "c7d5", "c7e5", "c7a6", "c7b6", "c7c6", "c7d6", "c7e6", "c7a7",
|
303 |
+
"c7b7", "c7d7", "c7e7", "c7f7", "c7g7", "c7h7", "c7a8", "c7b8", "c7c8",
|
304 |
+
"c7d8", "c7e8", "d7d1", "d7d2", "d7d3", "d7h3", "d7a4", "d7d4", "d7g4",
|
305 |
+
"d7b5", "d7c5", "d7d5", "d7e5", "d7f5", "d7b6", "d7c6", "d7d6", "d7e6",
|
306 |
+
"d7f6", "d7a7", "d7b7", "d7c7", "d7e7", "d7f7", "d7g7", "d7h7", "d7b8",
|
307 |
+
"d7c8", "d7d8", "d7e8", "d7f8", "e7e1", "e7e2", "e7a3", "e7e3", "e7b4",
|
308 |
+
"e7e4", "e7h4", "e7c5", "e7d5", "e7e5", "e7f5", "e7g5", "e7c6", "e7d6",
|
309 |
+
"e7e6", "e7f6", "e7g6", "e7a7", "e7b7", "e7c7", "e7d7", "e7f7", "e7g7",
|
310 |
+
"e7h7", "e7c8", "e7d8", "e7e8", "e7f8", "e7g8", "f7f1", "f7a2", "f7f2",
|
311 |
+
"f7b3", "f7f3", "f7c4", "f7f4", "f7d5", "f7e5", "f7f5", "f7g5", "f7h5",
|
312 |
+
"f7d6", "f7e6", "f7f6", "f7g6", "f7h6", "f7a7", "f7b7", "f7c7", "f7d7",
|
313 |
+
"f7e7", "f7g7", "f7h7", "f7d8", "f7e8", "f7f8", "f7g8", "f7h8", "g7a1",
|
314 |
+
"g7g1", "g7b2", "g7g2", "g7c3", "g7g3", "g7d4", "g7g4", "g7e5", "g7f5",
|
315 |
+
"g7g5", "g7h5", "g7e6", "g7f6", "g7g6", "g7h6", "g7a7", "g7b7", "g7c7",
|
316 |
+
"g7d7", "g7e7", "g7f7", "g7h7", "g7e8", "g7f8", "g7g8", "g7h8", "h7b1",
|
317 |
+
"h7h1", "h7c2", "h7h2", "h7d3", "h7h3", "h7e4", "h7h4", "h7f5", "h7g5",
|
318 |
+
"h7h5", "h7f6", "h7g6", "h7h6", "h7a7", "h7b7", "h7c7", "h7d7", "h7e7",
|
319 |
+
"h7f7", "h7g7", "h7f8", "h7g8", "h7h8", "a8a1", "a8h1", "a8a2", "a8g2",
|
320 |
+
"a8a3", "a8f3", "a8a4", "a8e4", "a8a5", "a8d5", "a8a6", "a8b6", "a8c6",
|
321 |
+
"a8a7", "a8b7", "a8c7", "a8b8", "a8c8", "a8d8", "a8e8", "a8f8", "a8g8",
|
322 |
+
"a8h8", "b8b1", "b8b2", "b8h2", "b8b3", "b8g3", "b8b4", "b8f4", "b8b5",
|
323 |
+
"b8e5", "b8a6", "b8b6", "b8c6", "b8d6", "b8a7", "b8b7", "b8c7", "b8d7",
|
324 |
+
"b8a8", "b8c8", "b8d8", "b8e8", "b8f8", "b8g8", "b8h8", "c8c1", "c8c2",
|
325 |
+
"c8c3", "c8h3", "c8c4", "c8g4", "c8c5", "c8f5", "c8a6", "c8b6", "c8c6",
|
326 |
+
"c8d6", "c8e6", "c8a7", "c8b7", "c8c7", "c8d7", "c8e7", "c8a8", "c8b8",
|
327 |
+
"c8d8", "c8e8", "c8f8", "c8g8", "c8h8", "d8d1", "d8d2", "d8d3", "d8d4",
|
328 |
+
"d8h4", "d8a5", "d8d5", "d8g5", "d8b6", "d8c6", "d8d6", "d8e6", "d8f6",
|
329 |
+
"d8b7", "d8c7", "d8d7", "d8e7", "d8f7", "d8a8", "d8b8", "d8c8", "d8e8",
|
330 |
+
"d8f8", "d8g8", "d8h8", "e8e1", "e8e2", "e8e3", "e8a4", "e8e4", "e8b5",
|
331 |
+
"e8e5", "e8h5", "e8c6", "e8d6", "e8e6", "e8f6", "e8g6", "e8c7", "e8d7",
|
332 |
+
"e8e7", "e8f7", "e8g7", "e8a8", "e8b8", "e8c8", "e8d8", "e8f8", "e8g8",
|
333 |
+
"e8h8", "f8f1", "f8f2", "f8a3", "f8f3", "f8b4", "f8f4", "f8c5", "f8f5",
|
334 |
+
"f8d6", "f8e6", "f8f6", "f8g6", "f8h6", "f8d7", "f8e7", "f8f7", "f8g7",
|
335 |
+
"f8h7", "f8a8", "f8b8", "f8c8", "f8d8", "f8e8", "f8g8", "f8h8", "g8g1",
|
336 |
+
"g8a2", "g8g2", "g8b3", "g8g3", "g8c4", "g8g4", "g8d5", "g8g5", "g8e6",
|
337 |
+
"g8f6", "g8g6", "g8h6", "g8e7", "g8f7", "g8g7", "g8h7", "g8a8", "g8b8",
|
338 |
+
"g8c8", "g8d8", "g8e8", "g8f8", "g8h8", "h8a1", "h8h1", "h8b2", "h8h2",
|
339 |
+
"h8c3", "h8h3", "h8d4", "h8h4", "h8e5", "h8h5", "h8f6", "h8g6", "h8h6",
|
340 |
+
"h8f7", "h8g7", "h8h7", "h8a8", "h8b8", "h8c8", "h8d8", "h8e8", "h8f8",
|
341 |
+
"h8g8", "a7a8q", "a7a8r", "a7a8b", "a7b8q", "a7b8r", "a7b8b", "b7a8q",
|
342 |
+
"b7a8r", "b7a8b", "b7b8q", "b7b8r", "b7b8b", "b7c8q", "b7c8r", "b7c8b",
|
343 |
+
"c7b8q", "c7b8r", "c7b8b", "c7c8q", "c7c8r", "c7c8b", "c7d8q", "c7d8r",
|
344 |
+
"c7d8b", "d7c8q", "d7c8r", "d7c8b", "d7d8q", "d7d8r", "d7d8b", "d7e8q",
|
345 |
+
"d7e8r", "d7e8b", "e7d8q", "e7d8r", "e7d8b", "e7e8q", "e7e8r", "e7e8b",
|
346 |
+
"e7f8q", "e7f8r", "e7f8b", "f7e8q", "f7e8r", "f7e8b", "f7f8q", "f7f8r",
|
347 |
+
"f7f8b", "f7g8q", "f7g8r", "f7g8b", "g7f8q", "g7f8r", "g7f8b", "g7g8q",
|
348 |
+
"g7g8r", "g7g8b", "g7h8q", "g7h8r", "g7h8b", "h7g8q", "h7g8r", "h7g8b",
|
349 |
+
"h7h8q", "h7h8r", "h7h8b", #add the promotions for black
|
350 |
+
"a2a1q","a2a1r","a2a1b","a2b1q","a2b1r","a2b1b",
|
351 |
+
"b2a1q","b2a1r","b2a1b","b2b1q","b2b1r","b2b1b","b2c1q","b2c1r","b2c1b",
|
352 |
+
"c2b1q","c2b1r","c2b1b","c2c1q","c2c1r","c2c1b","c2d1q","c2d1r","c2d1b",
|
353 |
+
"d2c1q","d2c1r","d2c1b","d2d1q","d2d1r","d2d1b","d2e1q","d2e1r","d2e1b",
|
354 |
+
"e2d1q","e2d1r","e2d1b","e2e1q","e2e1r","e2e1b","e2f1q","e2f1r","e2f1b",
|
355 |
+
"f2e1q","f2e1r","f2e1b","f2f1q","f2f1r","f2f1b","f2g1q","f2g1r","f2g1b",
|
356 |
+
"g2f1q","g2f1r","g2f1b","g2g1q","g2g1r","g2g1b","g2h1q","g2h1r","g2h1b",
|
357 |
+
"h2g1q","h2g1r","h2g1b","h2h1q","h2h1r","h2h1b",#add special tokens
|
358 |
+
"<thinking>","</thinking>","end_variation","end","padding_token"
|
359 |
+
]
|
360 |
|
361 |
|
362 |
# Configuration class
|
|
|
371 |
self,
|
372 |
num_layers: int = 10,
|
373 |
d_model: int = 512,
|
374 |
+
d_ff: int = 1024, # Updated to match new architecture
|
375 |
num_heads: int = 8,
|
376 |
vocab_size: int = 1929,
|
377 |
max_position_embeddings: int = 64,
|
|
|
386 |
self.max_position_embeddings = max_position_embeddings
|
387 |
|
388 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
# Model components
|
390 |
class MaGating(nn.Module):
|
391 |
def __init__(self, d_model):
|
|
|
413 |
x = self.norm1(x)
|
414 |
|
415 |
y = self.ff1(x)
|
|
|
416 |
y = self.gelu(y)
|
417 |
+
y = self.ff2(y)
|
418 |
y = y + x
|
419 |
y = self.norm2(y)
|
420 |
|
|
|
499 |
|
500 |
class ChessBotModel(ChessBotPreTrainedModel):
|
501 |
"""
|
502 |
+
Updated HuggingFace compatible ChessBot Chess model with d_ff=1024
|
503 |
"""
|
504 |
|
505 |
def __init__(self, config):
|
506 |
super().__init__(config)
|
507 |
self.config = config
|
508 |
|
509 |
+
# Initialize exactly like the updated BT4 model
|
510 |
self.is_thinking_model = False
|
511 |
self.d_model = config.d_model
|
512 |
self.num_layers = config.num_layers
|
513 |
|
514 |
+
# Model layers - same as updated model
|
515 |
self.layers = nn.ModuleList([
|
516 |
EncoderLayer(config.d_model, config.d_ff, config.num_heads)
|
517 |
for _ in range(config.num_layers)
|
|
|
580 |
targets = inp[1]
|
581 |
true_values = inp[3]
|
582 |
q_values = inp[4]
|
583 |
+
true_values = q_values
|
584 |
+
|
585 |
z = torch.argmax(true_values, dim=-1)
|
586 |
+
q = torch.argmax(q_values, dim=-1)
|
587 |
+
value_h_q_softmax = torch.softmax(value_h_q, dim=-1)
|
588 |
+
|
589 |
+
# Always compute policy loss
|
590 |
+
loss_policy = F.cross_entropy(policy.view(-1, policy.size(-1)), targets.view(-1), ignore_index=1928)
|
591 |
+
|
592 |
+
# Create mask for samples where true_values/q_values is not [0,0,0]
|
593 |
+
valid_mask = (true_values.sum(dim=-1) != 0) & (q_values.sum(dim=-1) != 0)
|
594 |
+
|
595 |
+
# Only compute value losses if we have valid samples
|
596 |
+
if valid_mask.any():
|
597 |
+
# Filter to only valid samples
|
598 |
+
valid_value_h = value_h[valid_mask]
|
599 |
+
valid_value_h_q = value_h_q_softmax[valid_mask]
|
600 |
+
valid_z = z[valid_mask]
|
601 |
+
valid_q_values = q_values[valid_mask]
|
602 |
+
|
603 |
+
loss_value = F.cross_entropy(valid_value_h.view(-1, valid_value_h.size(-1)), valid_z.view(-1))
|
604 |
+
loss_q = F.mse_loss(valid_value_h_q.view(-1, valid_value_h_q.size(-1)), valid_q_values.view(-1, 3))
|
605 |
+
else:
|
606 |
+
# No valid samples, set losses to zero
|
607 |
+
loss_value = torch.tensor(0.0, device=value_h.device, requires_grad=True)
|
608 |
+
loss_q = torch.tensor(0.0, device=value_h_q.device, requires_grad=True)
|
609 |
+
|
610 |
+
return policy, value_h, value_h_q, loss_policy, loss_value, loss_q, targets, z, q
|
611 |
|
612 |
return BaseModelOutput(
|
613 |
last_hidden_state=x,
|
|
|
616 |
), policy, value_h, value_h_q
|
617 |
|
618 |
def get_move_from_fen_no_thinking(self, fen, T=1, device="cuda", force_legal=True, return_probs=False):
|
619 |
+
"""Get a move from FEN string without thinking"""
|
|
|
|
|
620 |
board = chess.Board(fen)
|
621 |
+
x = torch.from_numpy(fen_to_tensor(fen)).to(device).to(torch.float32)
|
622 |
+
x = x.view(1, 1, 8, 8, 19)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
623 |
|
624 |
+
_, logits, _, _ = self.forward(x)
|
625 |
+
logits = logits.view(-1, 1929)
|
626 |
+
legal_move_mask = torch.zeros((1, 1929), device=device)
|
627 |
+
for legal_move in board.legal_moves:
|
628 |
+
if legal_move.uci()[-1] == 'n':
|
629 |
+
legal_move_uci = legal_move.uci()[:-1]
|
|
|
|
|
630 |
else:
|
631 |
+
legal_move_uci = legal_move.uci()
|
632 |
+
if legal_move_uci in policy_index:
|
633 |
+
legal_move_mask[0][policy_index.index(legal_move_uci)] = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
634 |
|
635 |
+
# Set all illegal moves to -inf
|
636 |
if force_legal:
|
637 |
+
logits = logits + (1-legal_move_mask) * -999
|
|
|
|
|
638 |
|
639 |
+
if T == 0:
|
640 |
+
sampled = torch.argmax(logits, dim=-1, keepdim=True)
|
|
|
|
|
641 |
else:
|
642 |
+
probs = F.softmax(logits/T, dim=-1)
|
643 |
+
sampled = torch.multinomial(probs, num_samples=1)
|
644 |
+
if return_probs:
|
645 |
+
return sampled, probs
|
646 |
|
647 |
+
move = policy_index[sampled.item()]
|
648 |
+
return move
|
649 |
+
|
650 |
def get_position_value(self, fen, device="cuda"):
|
651 |
+
"""Get the value evaluation for a given FEN position."""
|
|
|
|
|
|
|
652 |
x = torch.from_numpy(fen_to_tensor(fen)).to(device).to(torch.float32)
|
653 |
x = x.view(1, 1, 8, 8, 19)
|
654 |
|
|
|
655 |
with torch.no_grad():
|
|
|
656 |
b, seq_len, _, _, emb = x.size()
|
657 |
x_processed = x.view(b * seq_len, 64, emb)
|
658 |
x_processed = self.linear1(x_processed)
|
|
|
666 |
|
667 |
value_logits = self.value_head_q(x_processed)
|
668 |
value_logits = value_logits.view(b, seq_len, 3)
|
669 |
+
value = torch.softmax(value_logits, dim=-1)
|
670 |
+
return value.squeeze()
|
|
|
671 |
|
672 |
def get_batch_position_values(self, fens, device="cuda"):
|
673 |
+
"""Get the value evaluation for a batch of FEN positions efficiently."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
674 |
if len(fens) == 0:
|
675 |
return torch.empty(0, 3, device=device)
|
676 |
|
|
|
677 |
position_tensors = []
|
678 |
for fen in fens:
|
679 |
x = torch.from_numpy(fen_to_tensor(fen)).to(device).to(torch.float32)
|
680 |
position_tensors.append(x)
|
681 |
|
|
|
682 |
batch_x = torch.stack(position_tensors, dim=0)
|
|
|
683 |
batch_x = batch_x.unsqueeze(1)
|
684 |
|
|
|
685 |
with torch.no_grad():
|
686 |
b, seq_len, _, _, emb = batch_x.size()
|
687 |
x_processed = batch_x.view(b * seq_len, 64, emb)
|
|
|
697 |
value_logits = self.value_head_q(x_processed)
|
698 |
value_logits = value_logits.view(b, seq_len, 3)
|
699 |
value_logits = torch.softmax(value_logits, dim=-1)
|
700 |
+
return value_logits.squeeze(1)
|
701 |
|
702 |
def calculate_move_values(self, fen, device="cuda"):
|
703 |
+
"""Calculate the value for each legal move from the given position efficiently using batching."""
|
|
|
|
|
|
|
|
|
704 |
board = chess.Board()
|
705 |
board.set_fen(fen)
|
706 |
|
|
|
707 |
is_white_turn = board.turn == chess.WHITE
|
708 |
|
709 |
legal_moves = list(board.legal_moves)
|
710 |
if len(legal_moves) == 0:
|
711 |
return [], torch.empty(0, device=device)
|
712 |
|
|
|
713 |
resulting_fens = []
|
714 |
for move in legal_moves:
|
715 |
board.push(move)
|
716 |
resulting_fens.append(board.fen())
|
717 |
board.pop()
|
718 |
|
|
|
719 |
batch_value_q = self.get_batch_position_values(resulting_fens, device)
|
720 |
|
721 |
# Calculate values from the current player's perspective
|
|
|
722 |
batch_value_q = batch_value_q[:,2]-batch_value_q[:,0]
|
723 |
if is_white_turn:
|
|
|
724 |
player_values = batch_value_q
|
725 |
else:
|
|
|
726 |
player_values = -batch_value_q
|
727 |
|
728 |
return legal_moves, player_values
|
729 |
|
730 |
+
def get_best_move_value(self, fen, T=1, device="cuda", return_probs=False, to_fall_back_to_policy=False):
|
731 |
+
"""Determine the best move based on the value of resulting positions using efficient batching."""
|
732 |
+
# Check if we should fall back to policy
|
733 |
+
if to_fall_back_to_policy:
|
734 |
+
value = self.get_position_value(fen, device)
|
735 |
+
board = chess.Board()
|
736 |
+
board.set_fen(fen)
|
|
|
|
|
737 |
|
738 |
+
is_white_turn = board.turn == chess.WHITE
|
739 |
+
if is_white_turn:
|
740 |
+
value = value[2]-value[0]
|
741 |
+
else:
|
742 |
+
value = value[0]-value[2]
|
743 |
+
|
744 |
+
if value > 0.9:
|
745 |
+
return self.get_move_from_fen_no_thinking(fen, T, device, force_legal=True, return_probs=return_probs)
|
746 |
+
|
747 |
legal_moves, move_values = self.calculate_move_values(fen, device)
|
748 |
|
749 |
if len(legal_moves) == 0:
|
750 |
raise ValueError("No legal moves available")
|
751 |
|
752 |
if T == 0:
|
|
|
753 |
best_idx = torch.argmax(move_values)
|
754 |
selected_move = legal_moves[best_idx]
|
755 |
else:
|
|
|
|
|
756 |
probs = F.softmax(move_values / T, dim=0)
|
|
|
|
|
757 |
sampled_idx = torch.multinomial(probs, num_samples=1)
|
758 |
selected_move = legal_moves[sampled_idx.item()]
|
759 |
|
|
|
760 |
move_uci = selected_move.uci()
|
761 |
|
762 |
if return_probs:
|
763 |
if T == 0:
|
|
|
764 |
probs = torch.zeros_like(move_values)
|
765 |
probs[best_idx] = 1.0
|
766 |
else:
|
767 |
probs = F.softmax(move_values / T, dim=0)
|
768 |
|
|
|
769 |
move_dict = {}
|
770 |
for i, move in enumerate(legal_moves):
|
771 |
move_dict[move.uci()] = probs[i].item()
|