AuroraSDGsModel / train_multiclass_model.py
MauriceV2021's picture
Upload 5 files
6f70897
# IMPORTS
import pandas as pd
import nltk
nltk.download("punkt")
from nltk import tokenize
import time
from sklearn.model_selection import train_test_split
from transformers import BertConfig, BertTokenizer, TFBertModel
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow import convert_to_tensor
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.initializers import TruncatedNormal
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import CategoricalAccuracy, Precision, Recall
# SET PARAMETERS
DATA_PATH="..."
SAVE_MODEL_TO=".../"
# READ DATA
tab=pd.read_hdf(DATA_PATH)
# PREPARE DATA FOR BERT
def data_to_values(dataframe):
"""Converts data to values.
"""
abstracts=dataframe.Abstract.values
labels=dataframe.Label.values
return abstracts, labels
def tokenize_abstracts(abstracts):
"""For given texts, adds '[CLS]' and '[SEP]' tokens
at the beginning and the end of each sentence, respectively.
"""
t_abstracts=[]
for abstract in abstracts:
t_abstract="[CLS] "
for sentence in tokenize.sent_tokenize(abstract):
t_abstract=t_abstract + sentence + " [SEP] "
t_abstracts.append(t_abstract)
return t_abstracts
tokenizer=BertTokenizer.from_pretrained('bert-base-multilingual-uncased')
def b_tokenize_abstracts(t_abstracts, max_len=512):
"""Tokenizes sentences with the help
of a 'bert-base-multilingual-uncased' tokenizer.
"""
b_t_abstracts=[tokenizer.tokenize(_)[:max_len] for _ in t_abstracts]
return b_t_abstracts
def convert_to_ids(b_t_abstracts):
"""Converts tokens to its specific
IDs in a bert vocabulary.
"""
input_ids=[tokenizer.convert_tokens_to_ids(_) for _ in b_t_abstracts]
return input_ids
def abstracts_to_ids(abstracts):
"""Tokenizes abstracts and converts
tokens to their specific IDs
in a bert vocabulary.
"""
tokenized_abstracts=tokenize_abstracts(abstracts)
b_tokenized_abstracts=b_tokenize_abstracts(tokenized_abstracts)
ids=convert_to_ids(b_tokenized_abstracts)
return ids
def pad_ids(input_ids, max_len=512):
"""Padds sequences of a given IDs.
"""
p_input_ids=pad_sequences(input_ids,
maxlen=max_len,
dtype="long",
truncating="post",
padding="post")
return p_input_ids
def create_attention_masks(inputs):
"""Creates attention masks
for a given seuquences.
"""
masks=[]
for sequence in inputs:
sequence_mask=[float(_>0) for _ in sequence]
masks.append(sequence_mask)
return masks
# CREATE MODEL
def create_model():
config=BertConfig.from_pretrained(
"bert-base-multilingual-uncased",
num_labels=16,
hidden_dropout_prob=0.2,
attention_probs_dropout_prob=0.2)
bert=TFBertModel.from_pretrained(
"bert-base-multilingual-uncased",
config=config)
bert_layer=bert.layers[0]
input_ids_layer=Input(
shape=(512),
name="input_ids",
dtype="int32")
input_attention_masks_layer=Input(
shape=(512),
name="attention_masks",
dtype="int32")
bert_model=bert_layer(
input_ids_layer,
input_attention_masks_layer)
target_layer=Dense(
units=16,
kernel_initializer=TruncatedNormal(stddev=config.initializer_range),
name="target_layer",
activation="softmax")(bert_model[1])
model=Model(
inputs=[input_ids_layer, input_attention_masks_layer],
outputs=target_layer,
name="mbert_multiclass_16")
optimizer=Adam(
learning_rate=5e-05,
epsilon=1e-08,
decay=0.01,
clipnorm=1.0)
model.compile(
optimizer=optimizer,
loss="categorical_crossentropy",
metrics=[CategoricalAccuracy(), Precision(), Recall()])
return model
abstracts, labels=data_to_values(tab)
ids=abstracts_to_ids(abstracts)
print("Abstracts tokenized, tokens converted to ids.")
padded_ids=pad_ids(ids)
print("Sequences padded.")
train_inputs, temp_inputs, train_labels, temp_labels=train_test_split(padded_ids, labels, random_state=1993, test_size=0.3)
validation_inputs, test_inputs, validation_labels, test_labels=train_test_split(temp_inputs, temp_labels, random_state=1993, test_size=0.5)
print("Data splited into train, validation, test sets.")
train_masks, validation_masks, test_masks=[create_attention_masks(_) for _ in [train_inputs, validation_inputs, test_inputs]]
print("Attention masks created.")
train_inputs, validation_inputs, test_inputs=[convert_to_tensor(_) for _ in [train_inputs, validation_inputs, test_inputs]]
print("Inputs converted to tensors.")
train_labels, validation_labels, test_labels=[convert_to_tensor(_) for _ in [train_labels, validation_labels, test_labels]]
print("Labels converted to tensors.")
train_masks, validation_masks, test_masks=[convert_to_tensor(_) for _ in [train_masks, validation_masks, test_masks]]
print("Masks converted to tensors.")
model=create_model()
print("Model initialized.")
history=model.fit([train_inputs, train_masks], train_labels,
batch_size=8,
epochs=2,
validation_data=([validation_inputs, validation_masks], validation_labels))
model.save(SAVE_MODEL_TO+"mbert_multiclass_16.h5")
print("Model saved.")
test_score=model.evaluate([test_inputs, test_masks], test_labels,
batch_size=8)
print("Model tested.")
stats=pd.DataFrame(test_score, columns=["loss", "accuracy", "precision", "recall"])
stats.to_excel(SAVE_MODEL_TO+"mbert_multiclass_16_stats.xlsx", index=False)
print("Stats saved.")