MattStammers commited on
Commit
d1275f0
1 Parent(s): ed9a4d8

Upload folder using huggingface_hub

Browse files
.summary/0/events.out.tfevents.1695298994.rhmmedcatt-ProLiant-ML350-Gen10 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cedbc60144cb4fb4f42eced1af2074f374a1bffe8bdd5f4213c9bcac1f0557b
3
+ size 1248674
.summary/1/events.out.tfevents.1695298994.rhmmedcatt-ProLiant-ML350-Gen10 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:245ad86b1ba812463685c1bbcbbf34bd8d8a99ec2349ddedcb5af11af96dd1d2
3
+ size 895815
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sample-factory
3
+ tags:
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - sample-factory
7
+ model-index:
8
+ - name: APPO
9
+ results:
10
+ - task:
11
+ type: reinforcement-learning
12
+ name: reinforcement-learning
13
+ dataset:
14
+ name: mujoco_doublependulum
15
+ type: mujoco_doublependulum
16
+ metrics:
17
+ - type: mean_reward
18
+ value: 6568.13 +/- 4264.02
19
+ name: mean_reward
20
+ verified: false
21
+ ---
22
+
23
+ A(n) **APPO** model trained on the **mujoco_doublependulum** environment.
24
+
25
+ This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
+ Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
27
+
28
+
29
+ ## Downloading the model
30
+
31
+ After installing Sample-Factory, download the model with:
32
+ ```
33
+ python -m sample_factory.huggingface.load_from_hub -r MattStammers/appo-mujoco-doublependulum
34
+ ```
35
+
36
+
37
+ ## Using the model
38
+
39
+ To run the model after download, use the `enjoy` script corresponding to this environment:
40
+ ```
41
+ python -m sf_examples.mujoco.enjoy_mujoco --algo=APPO --env=mujoco_doublependulum --train_dir=./train_dir --experiment=appo-mujoco-doublependulum
42
+ ```
43
+
44
+
45
+ You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
+ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
+ ## Training with this model
49
+
50
+ To continue training with this model, use the `train` script corresponding to this environment:
51
+ ```
52
+ python -m sf_examples.mujoco.train_mujoco --algo=APPO --env=mujoco_doublependulum --train_dir=./train_dir --experiment=appo-mujoco-doublependulum --restart_behavior=resume --train_for_env_steps=10000000000
53
+ ```
54
+
55
+ Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+
checkpoint_p0/best_000001504_770048_reward_9351.115.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bf70aeb9929e461649db5e7f34fd67357c831d38c4f4c54c275a75973407d15
3
+ size 74495
checkpoint_p0/checkpoint_000019448_9957376.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db2cb78998d04694aa22ec6d4919c982a694132df626fa8169eb43b0caaa7568
3
+ size 74759
checkpoint_p0/checkpoint_000019544_10006528.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:169cdb14b5e3e1a9dce71f3efcd88a1d2ebcd5cd2b337f521ba2c469293d4bc5
3
+ size 74759
checkpoint_p1/best_000004304_2203648_reward_9356.618.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42ab1322e0664db904a8887ae624012fbe8fbaf30e7316f10d385f6cc84aea2d
3
+ size 74495
checkpoint_p1/checkpoint_000019448_9957376.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5c1d29ccabdd4ace697c81fc12af6b01d09ce3367f11f1d4daee3d92a4b13af
3
+ size 74759
checkpoint_p1/checkpoint_000019544_10006528.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bbb894b5c851bfbc82bb4695bfa0e86f8b1066389ef4833296e5496af361612
3
+ size 74759
config.json ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "help": false,
3
+ "algo": "APPO",
4
+ "env": "mujoco_doublependulum",
5
+ "experiment": "DoublePendulum",
6
+ "train_dir": "./train_dir",
7
+ "restart_behavior": "restart",
8
+ "device": "gpu",
9
+ "seed": null,
10
+ "num_policies": 2,
11
+ "async_rl": false,
12
+ "serial_mode": false,
13
+ "batched_sampling": false,
14
+ "num_batches_to_accumulate": 2,
15
+ "worker_num_splits": 2,
16
+ "policy_workers_per_policy": 1,
17
+ "max_policy_lag": 1000,
18
+ "num_workers": 8,
19
+ "num_envs_per_worker": 8,
20
+ "batch_size": 1024,
21
+ "num_batches_per_epoch": 4,
22
+ "num_epochs": 2,
23
+ "rollout": 64,
24
+ "recurrence": 1,
25
+ "shuffle_minibatches": false,
26
+ "gamma": 0.99,
27
+ "reward_scale": 1,
28
+ "reward_clip": 1000.0,
29
+ "value_bootstrap": true,
30
+ "normalize_returns": true,
31
+ "exploration_loss_coeff": 0.0,
32
+ "value_loss_coeff": 1.3,
33
+ "kl_loss_coeff": 0.1,
34
+ "exploration_loss": "entropy",
35
+ "gae_lambda": 0.95,
36
+ "ppo_clip_ratio": 0.2,
37
+ "ppo_clip_value": 1.0,
38
+ "with_vtrace": false,
39
+ "vtrace_rho": 1.0,
40
+ "vtrace_c": 1.0,
41
+ "optimizer": "adam",
42
+ "adam_eps": 1e-06,
43
+ "adam_beta1": 0.9,
44
+ "adam_beta2": 0.999,
45
+ "max_grad_norm": 3.5,
46
+ "learning_rate": 0.00295,
47
+ "lr_schedule": "linear_decay",
48
+ "lr_schedule_kl_threshold": 0.008,
49
+ "lr_adaptive_min": 1e-06,
50
+ "lr_adaptive_max": 0.01,
51
+ "obs_subtract_mean": 0.0,
52
+ "obs_scale": 1.0,
53
+ "normalize_input": true,
54
+ "normalize_input_keys": null,
55
+ "decorrelate_experience_max_seconds": 0,
56
+ "decorrelate_envs_on_one_worker": true,
57
+ "actor_worker_gpus": [],
58
+ "set_workers_cpu_affinity": true,
59
+ "force_envs_single_thread": false,
60
+ "default_niceness": 0,
61
+ "log_to_file": true,
62
+ "experiment_summaries_interval": 3,
63
+ "flush_summaries_interval": 30,
64
+ "stats_avg": 100,
65
+ "summaries_use_frameskip": true,
66
+ "heartbeat_interval": 20,
67
+ "heartbeat_reporting_interval": 180,
68
+ "train_for_env_steps": 10000000,
69
+ "train_for_seconds": 10000000000,
70
+ "save_every_sec": 15,
71
+ "keep_checkpoints": 2,
72
+ "load_checkpoint_kind": "latest",
73
+ "save_milestones_sec": -1,
74
+ "save_best_every_sec": 5,
75
+ "save_best_metric": "reward",
76
+ "save_best_after": 100000,
77
+ "benchmark": false,
78
+ "encoder_mlp_layers": [
79
+ 64,
80
+ 64
81
+ ],
82
+ "encoder_conv_architecture": "convnet_simple",
83
+ "encoder_conv_mlp_layers": [
84
+ 512
85
+ ],
86
+ "use_rnn": false,
87
+ "rnn_size": 512,
88
+ "rnn_type": "gru",
89
+ "rnn_num_layers": 1,
90
+ "decoder_mlp_layers": [],
91
+ "nonlinearity": "tanh",
92
+ "policy_initialization": "torch_default",
93
+ "policy_init_gain": 1.0,
94
+ "actor_critic_share_weights": true,
95
+ "adaptive_stddev": false,
96
+ "continuous_tanh_scale": 0.0,
97
+ "initial_stddev": 1.0,
98
+ "use_env_info_cache": false,
99
+ "env_gpu_actions": false,
100
+ "env_gpu_observations": true,
101
+ "env_frameskip": 1,
102
+ "env_framestack": 1,
103
+ "pixel_format": "CHW",
104
+ "use_record_episode_statistics": false,
105
+ "with_wandb": true,
106
+ "wandb_user": "matt-stammers",
107
+ "wandb_project": "mujoco",
108
+ "wandb_group": "mujoco_doublependulum",
109
+ "wandb_job_type": "SF",
110
+ "wandb_tags": [
111
+ "mujoco"
112
+ ],
113
+ "with_pbt": false,
114
+ "pbt_mix_policies_in_one_env": true,
115
+ "pbt_period_env_steps": 5000000,
116
+ "pbt_start_mutation": 20000000,
117
+ "pbt_replace_fraction": 0.3,
118
+ "pbt_mutation_rate": 0.15,
119
+ "pbt_replace_reward_gap": 0.1,
120
+ "pbt_replace_reward_gap_absolute": 1e-06,
121
+ "pbt_optimize_gamma": false,
122
+ "pbt_target_objective": "true_objective",
123
+ "pbt_perturb_min": 1.1,
124
+ "pbt_perturb_max": 1.5,
125
+ "command_line": "--algo=APPO --env=mujoco_doublependulum --experiment=DoublePendulum --train_dir=./train_dir",
126
+ "cli_args": {
127
+ "algo": "APPO",
128
+ "env": "mujoco_doublependulum",
129
+ "experiment": "DoublePendulum",
130
+ "train_dir": "./train_dir"
131
+ },
132
+ "git_hash": "5fff97c2f535da5987d358cdbe6927cccd43621e",
133
+ "git_repo_name": "not a git repository",
134
+ "wandb_unique_id": "DoublePendulum_20230921_132311_375001"
135
+ }
git.diff ADDED
The diff for this file is too large to render. See raw diff
 
replay.mp4 ADDED
Binary file (617 kB). View file
 
sf_log.txt ADDED
The diff for this file is too large to render. See raw diff