MattStammers
commited on
Commit
•
a00e6b7
1
Parent(s):
4637763
Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- .summary/0/events.out.tfevents.1695669315.rhmmedcatt-proliant-ml350-gen10 +3 -0
- .summary/1/events.out.tfevents.1695669315.rhmmedcatt-proliant-ml350-gen10 +3 -0
- README.md +56 -0
- checkpoint_p0/best_000000752_192512_reward_2.966.pth +3 -0
- checkpoint_p0/checkpoint_000000880_225280.pth +3 -0
- checkpoint_p1/best_000000496_126976_reward_3.672.pth +3 -0
- checkpoint_p1/checkpoint_000000880_225280.pth +3 -0
- config.json +144 -0
- git.diff +3 -0
- replay.mp4 +3 -0
- sf_log.txt +274 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
git.diff filter=lfs diff=lfs merge=lfs -text
|
37 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
.summary/0/events.out.tfevents.1695669315.rhmmedcatt-proliant-ml350-gen10
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:559efd05d5ef461af40f23b9ac02bdc8c3cf9684cc1dedb99011ffb298672e94
|
3 |
+
size 62072
|
.summary/1/events.out.tfevents.1695669315.rhmmedcatt-proliant-ml350-gen10
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5d552d7b5ffa9b296493ba3d5bb385c83c119daff9e205ba3d3dd3110b3997c
|
3 |
+
size 54596
|
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sample-factory
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- sample-factory
|
7 |
+
model-index:
|
8 |
+
- name: APPO
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: atari_beamrider
|
15 |
+
type: atari_beamrider
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 550.00 +/- 86.33
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
A(n) **APPO** model trained on the **atari_beamrider** environment.
|
24 |
+
|
25 |
+
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
|
26 |
+
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
|
27 |
+
|
28 |
+
|
29 |
+
## Downloading the model
|
30 |
+
|
31 |
+
After installing Sample-Factory, download the model with:
|
32 |
+
```
|
33 |
+
python -m sample_factory.huggingface.load_from_hub -r MattStammers/appo-atari_beamrider
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
## Using the model
|
38 |
+
|
39 |
+
To run the model after download, use the `enjoy` script corresponding to this environment:
|
40 |
+
```
|
41 |
+
python -m sf_examples.atari.enjoy_atari --algo=APPO --env=atari_beamrider --train_dir=./train_dir --experiment=appo-atari_beamrider
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
|
46 |
+
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
|
47 |
+
|
48 |
+
## Training with this model
|
49 |
+
|
50 |
+
To continue training with this model, use the `train` script corresponding to this environment:
|
51 |
+
```
|
52 |
+
python -m sf_examples.atari.train_atari --algo=APPO --env=atari_beamrider --train_dir=./train_dir --experiment=appo-atari_beamrider --restart_behavior=resume --train_for_env_steps=10000000000
|
53 |
+
```
|
54 |
+
|
55 |
+
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
56 |
+
|
checkpoint_p0/best_000000752_192512_reward_2.966.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d27fa4b43bf1c4bb05ef203e58f236e03723942eb3e5af1de903f011dd357ad
|
3 |
+
size 20740275
|
checkpoint_p0/checkpoint_000000880_225280.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af474c9a6ae1cb180abfafec10598af3d5e837471096d731ba55993c2e92e606
|
3 |
+
size 20740611
|
checkpoint_p1/best_000000496_126976_reward_3.672.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2eaff53d62ad198ba9f2c7a83f3a5f0d95d018577ccaeed72ffa3aa6ddc2f9e0
|
3 |
+
size 20740275
|
checkpoint_p1/checkpoint_000000880_225280.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5c017997b3ed2b4f105383cb39252ea612d3d8cfdb08b5e3792571adb0c2e3c
|
3 |
+
size 20740611
|
config.json
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"help": false,
|
3 |
+
"algo": "APPO",
|
4 |
+
"env": "atari_beamrider",
|
5 |
+
"experiment": "atari_beamrider",
|
6 |
+
"train_dir": "./train_atari",
|
7 |
+
"restart_behavior": "resume",
|
8 |
+
"device": "gpu",
|
9 |
+
"seed": null,
|
10 |
+
"num_policies": 2,
|
11 |
+
"async_rl": false,
|
12 |
+
"serial_mode": false,
|
13 |
+
"batched_sampling": false,
|
14 |
+
"num_batches_to_accumulate": 2,
|
15 |
+
"worker_num_splits": 1,
|
16 |
+
"policy_workers_per_policy": 1,
|
17 |
+
"max_policy_lag": 1000,
|
18 |
+
"num_workers": 8,
|
19 |
+
"num_envs_per_worker": 1,
|
20 |
+
"batch_size": 256,
|
21 |
+
"num_batches_per_epoch": 4,
|
22 |
+
"num_epochs": 4,
|
23 |
+
"rollout": 128,
|
24 |
+
"recurrence": 1,
|
25 |
+
"shuffle_minibatches": false,
|
26 |
+
"gamma": 0.99,
|
27 |
+
"reward_scale": 1.0,
|
28 |
+
"reward_clip": 1000.0,
|
29 |
+
"value_bootstrap": false,
|
30 |
+
"normalize_returns": true,
|
31 |
+
"exploration_loss_coeff": 0.01,
|
32 |
+
"value_loss_coeff": 0.5,
|
33 |
+
"kl_loss_coeff": 0.0,
|
34 |
+
"exploration_loss": "entropy",
|
35 |
+
"gae_lambda": 0.95,
|
36 |
+
"ppo_clip_ratio": 0.1,
|
37 |
+
"ppo_clip_value": 1.0,
|
38 |
+
"with_vtrace": false,
|
39 |
+
"vtrace_rho": 1.0,
|
40 |
+
"vtrace_c": 1.0,
|
41 |
+
"optimizer": "adam",
|
42 |
+
"adam_eps": 1e-05,
|
43 |
+
"adam_beta1": 0.9,
|
44 |
+
"adam_beta2": 0.999,
|
45 |
+
"max_grad_norm": 0.5,
|
46 |
+
"learning_rate": 0.00025,
|
47 |
+
"lr_schedule": "linear_decay",
|
48 |
+
"lr_schedule_kl_threshold": 0.008,
|
49 |
+
"lr_adaptive_min": 1e-06,
|
50 |
+
"lr_adaptive_max": 0.01,
|
51 |
+
"obs_subtract_mean": 0.0,
|
52 |
+
"obs_scale": 255.0,
|
53 |
+
"normalize_input": true,
|
54 |
+
"normalize_input_keys": null,
|
55 |
+
"decorrelate_experience_max_seconds": 0,
|
56 |
+
"decorrelate_envs_on_one_worker": true,
|
57 |
+
"actor_worker_gpus": [],
|
58 |
+
"set_workers_cpu_affinity": true,
|
59 |
+
"force_envs_single_thread": false,
|
60 |
+
"default_niceness": 0,
|
61 |
+
"log_to_file": true,
|
62 |
+
"experiment_summaries_interval": 3,
|
63 |
+
"flush_summaries_interval": 30,
|
64 |
+
"stats_avg": 100,
|
65 |
+
"summaries_use_frameskip": true,
|
66 |
+
"heartbeat_interval": 20,
|
67 |
+
"heartbeat_reporting_interval": 180,
|
68 |
+
"train_for_env_steps": 10000000,
|
69 |
+
"train_for_seconds": 10000000000,
|
70 |
+
"save_every_sec": 120,
|
71 |
+
"keep_checkpoints": 2,
|
72 |
+
"load_checkpoint_kind": "latest",
|
73 |
+
"save_milestones_sec": -1,
|
74 |
+
"save_best_every_sec": 5,
|
75 |
+
"save_best_metric": "reward",
|
76 |
+
"save_best_after": 100000,
|
77 |
+
"benchmark": false,
|
78 |
+
"encoder_mlp_layers": [
|
79 |
+
512,
|
80 |
+
512
|
81 |
+
],
|
82 |
+
"encoder_conv_architecture": "convnet_atari",
|
83 |
+
"encoder_conv_mlp_layers": [
|
84 |
+
512
|
85 |
+
],
|
86 |
+
"use_rnn": false,
|
87 |
+
"rnn_size": 512,
|
88 |
+
"rnn_type": "gru",
|
89 |
+
"rnn_num_layers": 1,
|
90 |
+
"decoder_mlp_layers": [],
|
91 |
+
"nonlinearity": "relu",
|
92 |
+
"policy_initialization": "orthogonal",
|
93 |
+
"policy_init_gain": 1.0,
|
94 |
+
"actor_critic_share_weights": true,
|
95 |
+
"adaptive_stddev": false,
|
96 |
+
"continuous_tanh_scale": 0.0,
|
97 |
+
"initial_stddev": 1.0,
|
98 |
+
"use_env_info_cache": false,
|
99 |
+
"env_gpu_actions": false,
|
100 |
+
"env_gpu_observations": true,
|
101 |
+
"env_frameskip": 4,
|
102 |
+
"env_framestack": 4,
|
103 |
+
"pixel_format": "CHW",
|
104 |
+
"use_record_episode_statistics": true,
|
105 |
+
"with_wandb": true,
|
106 |
+
"wandb_user": "matt-stammers",
|
107 |
+
"wandb_project": "atari",
|
108 |
+
"wandb_group": "atari_beamrider",
|
109 |
+
"wandb_job_type": "SF",
|
110 |
+
"wandb_tags": [
|
111 |
+
"atari"
|
112 |
+
],
|
113 |
+
"with_pbt": false,
|
114 |
+
"pbt_mix_policies_in_one_env": true,
|
115 |
+
"pbt_period_env_steps": 5000000,
|
116 |
+
"pbt_start_mutation": 20000000,
|
117 |
+
"pbt_replace_fraction": 0.3,
|
118 |
+
"pbt_mutation_rate": 0.15,
|
119 |
+
"pbt_replace_reward_gap": 0.1,
|
120 |
+
"pbt_replace_reward_gap_absolute": 1e-06,
|
121 |
+
"pbt_optimize_gamma": false,
|
122 |
+
"pbt_target_objective": "true_objective",
|
123 |
+
"pbt_perturb_min": 1.1,
|
124 |
+
"pbt_perturb_max": 1.5,
|
125 |
+
"command_line": "--algo=APPO --env=atari_beamrider --experiment=atari_beamrider --num_policies=2 --train_dir=./train_atari --with_wandb=true --wandb_user=matt-stammers --wandb_project=atari --wandb_group=atari_beamrider --wandb_job_type=SF --wandb_tags=atari",
|
126 |
+
"cli_args": {
|
127 |
+
"algo": "APPO",
|
128 |
+
"env": "atari_beamrider",
|
129 |
+
"experiment": "atari_beamrider",
|
130 |
+
"train_dir": "./train_atari",
|
131 |
+
"num_policies": 2,
|
132 |
+
"with_wandb": true,
|
133 |
+
"wandb_user": "matt-stammers",
|
134 |
+
"wandb_project": "atari",
|
135 |
+
"wandb_group": "atari_beamrider",
|
136 |
+
"wandb_job_type": "SF",
|
137 |
+
"wandb_tags": [
|
138 |
+
"atari"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
"git_hash": "5fff97c2f535da5987d358cdbe6927cccd43621e",
|
142 |
+
"git_repo_name": "not a git repository",
|
143 |
+
"wandb_unique_id": "atari_beamrider_20230925_201508_276248"
|
144 |
+
}
|
git.diff
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28f3fe545f35e5db1e419bf1e198c0bc5ef89459d55f59e2d06d3c108907e732
|
3 |
+
size 14403396
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf78ebefce98d2ed24463f365e952edb24143855d16a515555682269cdc9365b
|
3 |
+
size 8980259
|
sf_log.txt
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[2023-09-25 20:15:19,439][95689] Saving configuration to ./train_atari/atari_beamrider/config.json...
|
2 |
+
[2023-09-25 20:15:19,756][95689] Rollout worker 0 uses device cpu
|
3 |
+
[2023-09-25 20:15:19,757][95689] Rollout worker 1 uses device cpu
|
4 |
+
[2023-09-25 20:15:19,757][95689] Rollout worker 2 uses device cpu
|
5 |
+
[2023-09-25 20:15:19,758][95689] Rollout worker 3 uses device cpu
|
6 |
+
[2023-09-25 20:15:19,758][95689] Rollout worker 4 uses device cpu
|
7 |
+
[2023-09-25 20:15:19,759][95689] Rollout worker 5 uses device cpu
|
8 |
+
[2023-09-25 20:15:19,759][95689] Rollout worker 6 uses device cpu
|
9 |
+
[2023-09-25 20:15:19,760][95689] Rollout worker 7 uses device cpu
|
10 |
+
[2023-09-25 20:15:19,760][95689] In synchronous mode, we only accumulate one batch. Setting num_batches_to_accumulate to 1
|
11 |
+
[2023-09-25 20:15:19,806][95689] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
12 |
+
[2023-09-25 20:15:19,806][95689] InferenceWorker_p0-w0: min num requests: 1
|
13 |
+
[2023-09-25 20:15:19,810][95689] Using GPUs [1] for process 1 (actually maps to GPUs [1])
|
14 |
+
[2023-09-25 20:15:19,810][95689] InferenceWorker_p1-w0: min num requests: 1
|
15 |
+
[2023-09-25 20:15:19,834][95689] Starting all processes...
|
16 |
+
[2023-09-25 20:15:19,834][95689] Starting process learner_proc0
|
17 |
+
[2023-09-25 20:15:21,428][95689] Starting process learner_proc1
|
18 |
+
[2023-09-25 20:15:21,431][96647] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
19 |
+
[2023-09-25 20:15:21,431][96647] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
|
20 |
+
[2023-09-25 20:15:21,449][96647] Num visible devices: 1
|
21 |
+
[2023-09-25 20:15:21,465][96647] Starting seed is not provided
|
22 |
+
[2023-09-25 20:15:21,465][96647] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
23 |
+
[2023-09-25 20:15:21,465][96647] Initializing actor-critic model on device cuda:0
|
24 |
+
[2023-09-25 20:15:21,466][96647] RunningMeanStd input shape: (4, 84, 84)
|
25 |
+
[2023-09-25 20:15:21,466][96647] RunningMeanStd input shape: (1,)
|
26 |
+
[2023-09-25 20:15:21,477][96647] ConvEncoder: input_channels=4
|
27 |
+
[2023-09-25 20:15:21,635][96647] Conv encoder output size: 512
|
28 |
+
[2023-09-25 20:15:21,637][96647] Created Actor Critic model with architecture:
|
29 |
+
[2023-09-25 20:15:21,637][96647] ActorCriticSharedWeights(
|
30 |
+
(obs_normalizer): ObservationNormalizer(
|
31 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
32 |
+
(running_mean_std): ModuleDict(
|
33 |
+
(obs): RunningMeanStdInPlace()
|
34 |
+
)
|
35 |
+
)
|
36 |
+
)
|
37 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
38 |
+
(encoder): MultiInputEncoder(
|
39 |
+
(encoders): ModuleDict(
|
40 |
+
(obs): ConvEncoder(
|
41 |
+
(enc): RecursiveScriptModule(
|
42 |
+
original_name=ConvEncoderImpl
|
43 |
+
(conv_head): RecursiveScriptModule(
|
44 |
+
original_name=Sequential
|
45 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
46 |
+
(1): RecursiveScriptModule(original_name=ReLU)
|
47 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
48 |
+
(3): RecursiveScriptModule(original_name=ReLU)
|
49 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
50 |
+
(5): RecursiveScriptModule(original_name=ReLU)
|
51 |
+
)
|
52 |
+
(mlp_layers): RecursiveScriptModule(
|
53 |
+
original_name=Sequential
|
54 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
55 |
+
(1): RecursiveScriptModule(original_name=ReLU)
|
56 |
+
)
|
57 |
+
)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
)
|
61 |
+
(core): ModelCoreIdentity()
|
62 |
+
(decoder): MlpDecoder(
|
63 |
+
(mlp): Identity()
|
64 |
+
)
|
65 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
66 |
+
(action_parameterization): ActionParameterizationDefault(
|
67 |
+
(distribution_linear): Linear(in_features=512, out_features=9, bias=True)
|
68 |
+
)
|
69 |
+
)
|
70 |
+
[2023-09-25 20:15:22,224][96647] Using optimizer <class 'torch.optim.adam.Adam'>
|
71 |
+
[2023-09-25 20:15:22,225][96647] No checkpoints found
|
72 |
+
[2023-09-25 20:15:22,225][96647] Did not load from checkpoint, starting from scratch!
|
73 |
+
[2023-09-25 20:15:22,225][96647] Initialized policy 0 weights for model version 0
|
74 |
+
[2023-09-25 20:15:22,226][96647] LearnerWorker_p0 finished initialization!
|
75 |
+
[2023-09-25 20:15:22,227][96647] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
76 |
+
[2023-09-25 20:15:23,053][95689] Starting all processes...
|
77 |
+
[2023-09-25 20:15:23,057][96710] Using GPUs [1] for process 1 (actually maps to GPUs [1])
|
78 |
+
[2023-09-25 20:15:23,057][96710] Set environment var CUDA_VISIBLE_DEVICES to '1' (GPU indices [1]) for learning process 1
|
79 |
+
[2023-09-25 20:15:23,061][95689] Starting process inference_proc0-0
|
80 |
+
[2023-09-25 20:15:23,061][95689] Starting process inference_proc1-0
|
81 |
+
[2023-09-25 20:15:23,061][95689] Starting process rollout_proc0
|
82 |
+
[2023-09-25 20:15:23,075][96710] Num visible devices: 1
|
83 |
+
[2023-09-25 20:15:23,061][95689] Starting process rollout_proc1
|
84 |
+
[2023-09-25 20:15:23,062][95689] Starting process rollout_proc2
|
85 |
+
[2023-09-25 20:15:23,092][96710] Starting seed is not provided
|
86 |
+
[2023-09-25 20:15:23,092][96710] Using GPUs [0] for process 1 (actually maps to GPUs [1])
|
87 |
+
[2023-09-25 20:15:23,092][96710] Initializing actor-critic model on device cuda:0
|
88 |
+
[2023-09-25 20:15:23,093][96710] RunningMeanStd input shape: (4, 84, 84)
|
89 |
+
[2023-09-25 20:15:23,062][95689] Starting process rollout_proc3
|
90 |
+
[2023-09-25 20:15:23,093][96710] RunningMeanStd input shape: (1,)
|
91 |
+
[2023-09-25 20:15:23,063][95689] Starting process rollout_proc4
|
92 |
+
[2023-09-25 20:15:23,066][95689] Starting process rollout_proc5
|
93 |
+
[2023-09-25 20:15:23,067][95689] Starting process rollout_proc6
|
94 |
+
[2023-09-25 20:15:23,067][95689] Starting process rollout_proc7
|
95 |
+
[2023-09-25 20:15:23,105][96710] ConvEncoder: input_channels=4
|
96 |
+
[2023-09-25 20:15:23,358][96710] Conv encoder output size: 512
|
97 |
+
[2023-09-25 20:15:23,360][96710] Created Actor Critic model with architecture:
|
98 |
+
[2023-09-25 20:15:23,361][96710] ActorCriticSharedWeights(
|
99 |
+
(obs_normalizer): ObservationNormalizer(
|
100 |
+
(running_mean_std): RunningMeanStdDictInPlace(
|
101 |
+
(running_mean_std): ModuleDict(
|
102 |
+
(obs): RunningMeanStdInPlace()
|
103 |
+
)
|
104 |
+
)
|
105 |
+
)
|
106 |
+
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
|
107 |
+
(encoder): MultiInputEncoder(
|
108 |
+
(encoders): ModuleDict(
|
109 |
+
(obs): ConvEncoder(
|
110 |
+
(enc): RecursiveScriptModule(
|
111 |
+
original_name=ConvEncoderImpl
|
112 |
+
(conv_head): RecursiveScriptModule(
|
113 |
+
original_name=Sequential
|
114 |
+
(0): RecursiveScriptModule(original_name=Conv2d)
|
115 |
+
(1): RecursiveScriptModule(original_name=ReLU)
|
116 |
+
(2): RecursiveScriptModule(original_name=Conv2d)
|
117 |
+
(3): RecursiveScriptModule(original_name=ReLU)
|
118 |
+
(4): RecursiveScriptModule(original_name=Conv2d)
|
119 |
+
(5): RecursiveScriptModule(original_name=ReLU)
|
120 |
+
)
|
121 |
+
(mlp_layers): RecursiveScriptModule(
|
122 |
+
original_name=Sequential
|
123 |
+
(0): RecursiveScriptModule(original_name=Linear)
|
124 |
+
(1): RecursiveScriptModule(original_name=ReLU)
|
125 |
+
)
|
126 |
+
)
|
127 |
+
)
|
128 |
+
)
|
129 |
+
)
|
130 |
+
(core): ModelCoreIdentity()
|
131 |
+
(decoder): MlpDecoder(
|
132 |
+
(mlp): Identity()
|
133 |
+
)
|
134 |
+
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
|
135 |
+
(action_parameterization): ActionParameterizationDefault(
|
136 |
+
(distribution_linear): Linear(in_features=512, out_features=9, bias=True)
|
137 |
+
)
|
138 |
+
)
|
139 |
+
[2023-09-25 20:15:23,963][96710] Using optimizer <class 'torch.optim.adam.Adam'>
|
140 |
+
[2023-09-25 20:15:23,964][96710] No checkpoints found
|
141 |
+
[2023-09-25 20:15:23,964][96710] Did not load from checkpoint, starting from scratch!
|
142 |
+
[2023-09-25 20:15:23,964][96710] Initialized policy 1 weights for model version 0
|
143 |
+
[2023-09-25 20:15:23,966][96710] LearnerWorker_p1 finished initialization!
|
144 |
+
[2023-09-25 20:15:23,966][96710] Using GPUs [0] for process 1 (actually maps to GPUs [1])
|
145 |
+
[2023-09-25 20:15:24,995][96848] Using GPUs [0] for process 0 (actually maps to GPUs [0])
|
146 |
+
[2023-09-25 20:15:24,995][96848] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
|
147 |
+
[2023-09-25 20:15:25,013][96848] Num visible devices: 1
|
148 |
+
[2023-09-25 20:15:25,039][96885] Worker 3 uses CPU cores [12, 13, 14, 15]
|
149 |
+
[2023-09-25 20:15:25,063][96887] Worker 5 uses CPU cores [20, 21, 22, 23]
|
150 |
+
[2023-09-25 20:15:25,085][96882] Worker 1 uses CPU cores [4, 5, 6, 7]
|
151 |
+
[2023-09-25 20:15:25,089][96849] Using GPUs [1] for process 1 (actually maps to GPUs [1])
|
152 |
+
[2023-09-25 20:15:25,089][96849] Set environment var CUDA_VISIBLE_DEVICES to '1' (GPU indices [1]) for inference process 1
|
153 |
+
[2023-09-25 20:15:25,109][96849] Num visible devices: 1
|
154 |
+
[2023-09-25 20:15:25,110][96886] Worker 4 uses CPU cores [16, 17, 18, 19]
|
155 |
+
[2023-09-25 20:15:25,130][96888] Worker 6 uses CPU cores [24, 25, 26, 27]
|
156 |
+
[2023-09-25 20:15:25,160][96889] Worker 7 uses CPU cores [28, 29, 30, 31]
|
157 |
+
[2023-09-25 20:15:25,210][96868] Worker 0 uses CPU cores [0, 1, 2, 3]
|
158 |
+
[2023-09-25 20:15:25,262][96884] Worker 2 uses CPU cores [8, 9, 10, 11]
|
159 |
+
[2023-09-25 20:15:25,632][96848] RunningMeanStd input shape: (4, 84, 84)
|
160 |
+
[2023-09-25 20:15:25,632][96848] RunningMeanStd input shape: (1,)
|
161 |
+
[2023-09-25 20:15:25,642][96848] ConvEncoder: input_channels=4
|
162 |
+
[2023-09-25 20:15:25,710][95689] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan, 1: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
|
163 |
+
[2023-09-25 20:15:25,727][96849] RunningMeanStd input shape: (4, 84, 84)
|
164 |
+
[2023-09-25 20:15:25,728][96849] RunningMeanStd input shape: (1,)
|
165 |
+
[2023-09-25 20:15:25,739][96849] ConvEncoder: input_channels=4
|
166 |
+
[2023-09-25 20:15:25,742][96848] Conv encoder output size: 512
|
167 |
+
[2023-09-25 20:15:25,747][95689] Inference worker 0-0 is ready!
|
168 |
+
[2023-09-25 20:15:25,838][96849] Conv encoder output size: 512
|
169 |
+
[2023-09-25 20:15:25,843][95689] Inference worker 1-0 is ready!
|
170 |
+
[2023-09-25 20:15:25,844][95689] All inference workers are ready! Signal rollout workers to start!
|
171 |
+
[2023-09-25 20:15:26,302][96886] Decorrelating experience for 0 frames...
|
172 |
+
[2023-09-25 20:15:26,306][96884] Decorrelating experience for 0 frames...
|
173 |
+
[2023-09-25 20:15:26,306][96889] Decorrelating experience for 0 frames...
|
174 |
+
[2023-09-25 20:15:26,307][96882] Decorrelating experience for 0 frames...
|
175 |
+
[2023-09-25 20:15:26,307][96888] Decorrelating experience for 0 frames...
|
176 |
+
[2023-09-25 20:15:26,309][96868] Decorrelating experience for 0 frames...
|
177 |
+
[2023-09-25 20:15:26,310][96885] Decorrelating experience for 0 frames...
|
178 |
+
[2023-09-25 20:15:26,312][96887] Decorrelating experience for 0 frames...
|
179 |
+
[2023-09-25 20:15:30,710][95689] Fps is (10 sec: 1638.4, 60 sec: 1638.4, 300 sec: 1638.4). Total num frames: 8192. Throughput: 0: 204.8, 1: 204.8. Samples: 2048. Policy #0 lag: (min: 4.0, avg: 4.0, max: 4.0)
|
180 |
+
[2023-09-25 20:15:35,710][95689] Fps is (10 sec: 3276.8, 60 sec: 3276.8, 300 sec: 3276.8). Total num frames: 32768. Throughput: 0: 398.0, 1: 406.3. Samples: 8043. Policy #0 lag: (min: 15.0, avg: 15.0, max: 15.0)
|
181 |
+
[2023-09-25 20:15:35,711][95689] Avg episode reward: [(0, '2.667'), (1, '7.000')]
|
182 |
+
[2023-09-25 20:15:39,794][95689] Heartbeat connected on Batcher_0
|
183 |
+
[2023-09-25 20:15:39,797][95689] Heartbeat connected on LearnerWorker_p0
|
184 |
+
[2023-09-25 20:15:39,800][95689] Heartbeat connected on Batcher_1
|
185 |
+
[2023-09-25 20:15:39,802][95689] Heartbeat connected on LearnerWorker_p1
|
186 |
+
[2023-09-25 20:15:39,809][95689] Heartbeat connected on InferenceWorker_p0-w0
|
187 |
+
[2023-09-25 20:15:39,812][95689] Heartbeat connected on InferenceWorker_p1-w0
|
188 |
+
[2023-09-25 20:15:39,813][95689] Heartbeat connected on RolloutWorker_w0
|
189 |
+
[2023-09-25 20:15:39,818][95689] Heartbeat connected on RolloutWorker_w1
|
190 |
+
[2023-09-25 20:15:39,819][95689] Heartbeat connected on RolloutWorker_w2
|
191 |
+
[2023-09-25 20:15:39,822][95689] Heartbeat connected on RolloutWorker_w3
|
192 |
+
[2023-09-25 20:15:39,826][95689] Heartbeat connected on RolloutWorker_w4
|
193 |
+
[2023-09-25 20:15:39,827][95689] Heartbeat connected on RolloutWorker_w5
|
194 |
+
[2023-09-25 20:15:39,830][95689] Heartbeat connected on RolloutWorker_w6
|
195 |
+
[2023-09-25 20:15:39,835][95689] Heartbeat connected on RolloutWorker_w7
|
196 |
+
[2023-09-25 20:15:40,710][95689] Fps is (10 sec: 5734.3, 60 sec: 4369.1, 300 sec: 4369.1). Total num frames: 65536. Throughput: 0: 414.1, 1: 419.9. Samples: 12511. Policy #0 lag: (min: 14.0, avg: 14.0, max: 14.0)
|
197 |
+
[2023-09-25 20:15:40,711][95689] Avg episode reward: [(0, '2.611'), (1, '4.600')]
|
198 |
+
[2023-09-25 20:15:42,747][96848] Updated weights for policy 0, policy_version 160 (0.0018)
|
199 |
+
[2023-09-25 20:15:42,748][96849] Updated weights for policy 1, policy_version 160 (0.0017)
|
200 |
+
[2023-09-25 20:15:45,710][95689] Fps is (10 sec: 6553.6, 60 sec: 4915.2, 300 sec: 4915.2). Total num frames: 98304. Throughput: 0: 563.0, 1: 563.2. Samples: 22524. Policy #0 lag: (min: 15.0, avg: 15.0, max: 15.0)
|
201 |
+
[2023-09-25 20:15:45,711][95689] Avg episode reward: [(0, '2.586'), (1, '4.250')]
|
202 |
+
[2023-09-25 20:15:50,710][95689] Fps is (10 sec: 6553.6, 60 sec: 5242.9, 300 sec: 5242.9). Total num frames: 131072. Throughput: 0: 638.3, 1: 641.1. Samples: 31985. Policy #0 lag: (min: 13.0, avg: 13.0, max: 13.0)
|
203 |
+
[2023-09-25 20:15:50,711][95689] Avg episode reward: [(0, '2.686'), (1, '4.310')]
|
204 |
+
[2023-09-25 20:15:55,667][96849] Updated weights for policy 1, policy_version 320 (0.0017)
|
205 |
+
[2023-09-25 20:15:55,667][96848] Updated weights for policy 0, policy_version 320 (0.0017)
|
206 |
+
[2023-09-25 20:15:55,710][95689] Fps is (10 sec: 6553.6, 60 sec: 5461.3, 300 sec: 5461.3). Total num frames: 163840. Throughput: 0: 613.2, 1: 614.4. Samples: 36827. Policy #0 lag: (min: 4.0, avg: 4.0, max: 4.0)
|
207 |
+
[2023-09-25 20:15:55,711][95689] Avg episode reward: [(0, '2.628'), (1, '3.974')]
|
208 |
+
[2023-09-25 20:16:00,710][95689] Fps is (10 sec: 5734.4, 60 sec: 5383.3, 300 sec: 5383.3). Total num frames: 188416. Throughput: 0: 656.8, 1: 659.3. Samples: 46063. Policy #0 lag: (min: 15.0, avg: 15.0, max: 15.0)
|
209 |
+
[2023-09-25 20:16:00,711][95689] Avg episode reward: [(0, '2.648'), (1, '3.857')]
|
210 |
+
[2023-09-25 20:16:05,710][95689] Fps is (10 sec: 5734.4, 60 sec: 5529.6, 300 sec: 5529.6). Total num frames: 221184. Throughput: 0: 693.5, 1: 695.9. Samples: 55579. Policy #0 lag: (min: 7.0, avg: 7.0, max: 7.0)
|
211 |
+
[2023-09-25 20:16:05,711][95689] Avg episode reward: [(0, '2.633'), (1, '3.614')]
|
212 |
+
[2023-09-25 20:16:05,869][96647] Saving new best policy, reward=2.633!
|
213 |
+
[2023-09-25 20:16:05,899][96710] Saving new best policy, reward=3.614!
|
214 |
+
[2023-09-25 20:16:08,456][96849] Updated weights for policy 1, policy_version 480 (0.0016)
|
215 |
+
[2023-09-25 20:16:08,457][96848] Updated weights for policy 0, policy_version 480 (0.0018)
|
216 |
+
[2023-09-25 20:16:10,710][95689] Fps is (10 sec: 6553.7, 60 sec: 5643.4, 300 sec: 5643.4). Total num frames: 253952. Throughput: 0: 671.6, 1: 674.6. Samples: 60581. Policy #0 lag: (min: 12.0, avg: 12.0, max: 12.0)
|
217 |
+
[2023-09-25 20:16:10,711][95689] Avg episode reward: [(0, '2.697'), (1, '3.672')]
|
218 |
+
[2023-09-25 20:16:10,711][96647] Saving new best policy, reward=2.697!
|
219 |
+
[2023-09-25 20:16:10,711][96710] Saving new best policy, reward=3.672!
|
220 |
+
[2023-09-25 20:16:15,710][95689] Fps is (10 sec: 6553.6, 60 sec: 5734.4, 300 sec: 5734.4). Total num frames: 286720. Throughput: 0: 751.0, 1: 752.4. Samples: 69703. Policy #0 lag: (min: 8.0, avg: 8.0, max: 8.0)
|
221 |
+
[2023-09-25 20:16:15,711][95689] Avg episode reward: [(0, '2.747'), (1, '3.533')]
|
222 |
+
[2023-09-25 20:16:15,712][96647] Saving new best policy, reward=2.747!
|
223 |
+
[2023-09-25 20:16:20,710][95689] Fps is (10 sec: 6553.4, 60 sec: 5808.9, 300 sec: 5808.9). Total num frames: 319488. Throughput: 0: 790.7, 1: 790.0. Samples: 79176. Policy #0 lag: (min: 15.0, avg: 15.0, max: 15.0)
|
224 |
+
[2023-09-25 20:16:20,711][95689] Avg episode reward: [(0, '2.695'), (1, '3.565')]
|
225 |
+
[2023-09-25 20:16:21,656][96849] Updated weights for policy 1, policy_version 640 (0.0019)
|
226 |
+
[2023-09-25 20:16:21,656][96848] Updated weights for policy 0, policy_version 640 (0.0017)
|
227 |
+
[2023-09-25 20:16:25,710][95689] Fps is (10 sec: 6553.6, 60 sec: 5870.9, 300 sec: 5870.9). Total num frames: 352256. Throughput: 0: 794.9, 1: 793.0. Samples: 83968. Policy #0 lag: (min: 15.0, avg: 15.0, max: 15.0)
|
228 |
+
[2023-09-25 20:16:25,711][95689] Avg episode reward: [(0, '2.814'), (1, '3.484')]
|
229 |
+
[2023-09-25 20:16:25,712][96647] Saving new best policy, reward=2.814!
|
230 |
+
[2023-09-25 20:16:30,710][95689] Fps is (10 sec: 6144.1, 60 sec: 6212.3, 300 sec: 5860.4). Total num frames: 380928. Throughput: 0: 786.3, 1: 789.4. Samples: 93429. Policy #0 lag: (min: 15.0, avg: 15.0, max: 15.0)
|
231 |
+
[2023-09-25 20:16:30,711][95689] Avg episode reward: [(0, '2.966'), (1, '3.390')]
|
232 |
+
[2023-09-25 20:16:30,731][96647] Saving new best policy, reward=2.966!
|
233 |
+
[2023-09-25 20:16:34,554][96849] Updated weights for policy 1, policy_version 800 (0.0014)
|
234 |
+
[2023-09-25 20:16:34,555][96848] Updated weights for policy 0, policy_version 800 (0.0018)
|
235 |
+
[2023-09-25 20:16:35,710][95689] Fps is (10 sec: 5734.4, 60 sec: 6280.5, 300 sec: 5851.4). Total num frames: 409600. Throughput: 0: 787.2, 1: 788.1. Samples: 102873. Policy #0 lag: (min: 15.0, avg: 15.0, max: 15.0)
|
236 |
+
[2023-09-25 20:16:35,711][95689] Avg episode reward: [(0, '2.927'), (1, '3.360')]
|
237 |
+
[2023-09-25 20:16:40,710][95689] Fps is (10 sec: 6144.0, 60 sec: 6280.5, 300 sec: 5898.2). Total num frames: 442368. Throughput: 0: 790.2, 1: 790.4. Samples: 107958. Policy #0 lag: (min: 6.0, avg: 6.0, max: 6.0)
|
238 |
+
[2023-09-25 20:16:40,711][95689] Avg episode reward: [(0, '2.860'), (1, '3.280')]
|
239 |
+
[2023-09-25 20:16:41,784][95689] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 95689], exiting...
|
240 |
+
[2023-09-25 20:16:41,784][96885] Stopping RolloutWorker_w3...
|
241 |
+
[2023-09-25 20:16:41,784][96884] Stopping RolloutWorker_w2...
|
242 |
+
[2023-09-25 20:16:41,784][96886] Stopping RolloutWorker_w4...
|
243 |
+
[2023-09-25 20:16:41,784][96882] Stopping RolloutWorker_w1...
|
244 |
+
[2023-09-25 20:16:41,785][96868] Stopping RolloutWorker_w0...
|
245 |
+
[2023-09-25 20:16:41,785][96885] Loop rollout_proc3_evt_loop terminating...
|
246 |
+
[2023-09-25 20:16:41,784][95689] Runner profile tree view:
|
247 |
+
main_loop: 81.9507
|
248 |
+
[2023-09-25 20:16:41,785][96884] Loop rollout_proc2_evt_loop terminating...
|
249 |
+
[2023-09-25 20:16:41,785][96868] Loop rollout_proc0_evt_loop terminating...
|
250 |
+
[2023-09-25 20:16:41,785][96886] Loop rollout_proc4_evt_loop terminating...
|
251 |
+
[2023-09-25 20:16:41,785][96882] Loop rollout_proc1_evt_loop terminating...
|
252 |
+
[2023-09-25 20:16:41,785][95689] Collected {0: 225280, 1: 225280}, FPS: 5497.9
|
253 |
+
[2023-09-25 20:16:41,785][96888] Stopping RolloutWorker_w6...
|
254 |
+
[2023-09-25 20:16:41,785][96889] Stopping RolloutWorker_w7...
|
255 |
+
[2023-09-25 20:16:41,785][96888] Loop rollout_proc6_evt_loop terminating...
|
256 |
+
[2023-09-25 20:16:41,785][96710] Stopping Batcher_1...
|
257 |
+
[2023-09-25 20:16:41,785][96887] Stopping RolloutWorker_w5...
|
258 |
+
[2023-09-25 20:16:41,785][96889] Loop rollout_proc7_evt_loop terminating...
|
259 |
+
[2023-09-25 20:16:41,786][96887] Loop rollout_proc5_evt_loop terminating...
|
260 |
+
[2023-09-25 20:16:41,785][96647] Stopping Batcher_0...
|
261 |
+
[2023-09-25 20:16:41,786][96710] Loop batcher_evt_loop terminating...
|
262 |
+
[2023-09-25 20:16:41,786][96647] Loop batcher_evt_loop terminating...
|
263 |
+
[2023-09-25 20:16:41,787][96710] Saving ./train_atari/atari_beamrider/checkpoint_p1/checkpoint_000000880_225280.pth...
|
264 |
+
[2023-09-25 20:16:41,787][96647] Saving ./train_atari/atari_beamrider/checkpoint_p0/checkpoint_000000880_225280.pth...
|
265 |
+
[2023-09-25 20:16:41,800][96849] Weights refcount: 2 0
|
266 |
+
[2023-09-25 20:16:41,800][96848] Weights refcount: 2 0
|
267 |
+
[2023-09-25 20:16:41,801][96849] Stopping InferenceWorker_p1-w0...
|
268 |
+
[2023-09-25 20:16:41,801][96848] Stopping InferenceWorker_p0-w0...
|
269 |
+
[2023-09-25 20:16:41,801][96849] Loop inference_proc1-0_evt_loop terminating...
|
270 |
+
[2023-09-25 20:16:41,801][96848] Loop inference_proc0-0_evt_loop terminating...
|
271 |
+
[2023-09-25 20:16:41,824][96710] Stopping LearnerWorker_p1...
|
272 |
+
[2023-09-25 20:16:41,824][96710] Loop learner_proc1_evt_loop terminating...
|
273 |
+
[2023-09-25 20:16:41,825][96647] Stopping LearnerWorker_p0...
|
274 |
+
[2023-09-25 20:16:41,825][96647] Loop learner_proc0_evt_loop terminating...
|