MattStammers commited on
Commit
a00e6b7
1 Parent(s): 4637763

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ git.diff filter=lfs diff=lfs merge=lfs -text
37
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
.summary/0/events.out.tfevents.1695669315.rhmmedcatt-proliant-ml350-gen10 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:559efd05d5ef461af40f23b9ac02bdc8c3cf9684cc1dedb99011ffb298672e94
3
+ size 62072
.summary/1/events.out.tfevents.1695669315.rhmmedcatt-proliant-ml350-gen10 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5d552d7b5ffa9b296493ba3d5bb385c83c119daff9e205ba3d3dd3110b3997c
3
+ size 54596
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sample-factory
3
+ tags:
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - sample-factory
7
+ model-index:
8
+ - name: APPO
9
+ results:
10
+ - task:
11
+ type: reinforcement-learning
12
+ name: reinforcement-learning
13
+ dataset:
14
+ name: atari_beamrider
15
+ type: atari_beamrider
16
+ metrics:
17
+ - type: mean_reward
18
+ value: 550.00 +/- 86.33
19
+ name: mean_reward
20
+ verified: false
21
+ ---
22
+
23
+ A(n) **APPO** model trained on the **atari_beamrider** environment.
24
+
25
+ This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
+ Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
27
+
28
+
29
+ ## Downloading the model
30
+
31
+ After installing Sample-Factory, download the model with:
32
+ ```
33
+ python -m sample_factory.huggingface.load_from_hub -r MattStammers/appo-atari_beamrider
34
+ ```
35
+
36
+
37
+ ## Using the model
38
+
39
+ To run the model after download, use the `enjoy` script corresponding to this environment:
40
+ ```
41
+ python -m sf_examples.atari.enjoy_atari --algo=APPO --env=atari_beamrider --train_dir=./train_dir --experiment=appo-atari_beamrider
42
+ ```
43
+
44
+
45
+ You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
+ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
+ ## Training with this model
49
+
50
+ To continue training with this model, use the `train` script corresponding to this environment:
51
+ ```
52
+ python -m sf_examples.atari.train_atari --algo=APPO --env=atari_beamrider --train_dir=./train_dir --experiment=appo-atari_beamrider --restart_behavior=resume --train_for_env_steps=10000000000
53
+ ```
54
+
55
+ Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+
checkpoint_p0/best_000000752_192512_reward_2.966.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d27fa4b43bf1c4bb05ef203e58f236e03723942eb3e5af1de903f011dd357ad
3
+ size 20740275
checkpoint_p0/checkpoint_000000880_225280.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af474c9a6ae1cb180abfafec10598af3d5e837471096d731ba55993c2e92e606
3
+ size 20740611
checkpoint_p1/best_000000496_126976_reward_3.672.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2eaff53d62ad198ba9f2c7a83f3a5f0d95d018577ccaeed72ffa3aa6ddc2f9e0
3
+ size 20740275
checkpoint_p1/checkpoint_000000880_225280.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5c017997b3ed2b4f105383cb39252ea612d3d8cfdb08b5e3792571adb0c2e3c
3
+ size 20740611
config.json ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "help": false,
3
+ "algo": "APPO",
4
+ "env": "atari_beamrider",
5
+ "experiment": "atari_beamrider",
6
+ "train_dir": "./train_atari",
7
+ "restart_behavior": "resume",
8
+ "device": "gpu",
9
+ "seed": null,
10
+ "num_policies": 2,
11
+ "async_rl": false,
12
+ "serial_mode": false,
13
+ "batched_sampling": false,
14
+ "num_batches_to_accumulate": 2,
15
+ "worker_num_splits": 1,
16
+ "policy_workers_per_policy": 1,
17
+ "max_policy_lag": 1000,
18
+ "num_workers": 8,
19
+ "num_envs_per_worker": 1,
20
+ "batch_size": 256,
21
+ "num_batches_per_epoch": 4,
22
+ "num_epochs": 4,
23
+ "rollout": 128,
24
+ "recurrence": 1,
25
+ "shuffle_minibatches": false,
26
+ "gamma": 0.99,
27
+ "reward_scale": 1.0,
28
+ "reward_clip": 1000.0,
29
+ "value_bootstrap": false,
30
+ "normalize_returns": true,
31
+ "exploration_loss_coeff": 0.01,
32
+ "value_loss_coeff": 0.5,
33
+ "kl_loss_coeff": 0.0,
34
+ "exploration_loss": "entropy",
35
+ "gae_lambda": 0.95,
36
+ "ppo_clip_ratio": 0.1,
37
+ "ppo_clip_value": 1.0,
38
+ "with_vtrace": false,
39
+ "vtrace_rho": 1.0,
40
+ "vtrace_c": 1.0,
41
+ "optimizer": "adam",
42
+ "adam_eps": 1e-05,
43
+ "adam_beta1": 0.9,
44
+ "adam_beta2": 0.999,
45
+ "max_grad_norm": 0.5,
46
+ "learning_rate": 0.00025,
47
+ "lr_schedule": "linear_decay",
48
+ "lr_schedule_kl_threshold": 0.008,
49
+ "lr_adaptive_min": 1e-06,
50
+ "lr_adaptive_max": 0.01,
51
+ "obs_subtract_mean": 0.0,
52
+ "obs_scale": 255.0,
53
+ "normalize_input": true,
54
+ "normalize_input_keys": null,
55
+ "decorrelate_experience_max_seconds": 0,
56
+ "decorrelate_envs_on_one_worker": true,
57
+ "actor_worker_gpus": [],
58
+ "set_workers_cpu_affinity": true,
59
+ "force_envs_single_thread": false,
60
+ "default_niceness": 0,
61
+ "log_to_file": true,
62
+ "experiment_summaries_interval": 3,
63
+ "flush_summaries_interval": 30,
64
+ "stats_avg": 100,
65
+ "summaries_use_frameskip": true,
66
+ "heartbeat_interval": 20,
67
+ "heartbeat_reporting_interval": 180,
68
+ "train_for_env_steps": 10000000,
69
+ "train_for_seconds": 10000000000,
70
+ "save_every_sec": 120,
71
+ "keep_checkpoints": 2,
72
+ "load_checkpoint_kind": "latest",
73
+ "save_milestones_sec": -1,
74
+ "save_best_every_sec": 5,
75
+ "save_best_metric": "reward",
76
+ "save_best_after": 100000,
77
+ "benchmark": false,
78
+ "encoder_mlp_layers": [
79
+ 512,
80
+ 512
81
+ ],
82
+ "encoder_conv_architecture": "convnet_atari",
83
+ "encoder_conv_mlp_layers": [
84
+ 512
85
+ ],
86
+ "use_rnn": false,
87
+ "rnn_size": 512,
88
+ "rnn_type": "gru",
89
+ "rnn_num_layers": 1,
90
+ "decoder_mlp_layers": [],
91
+ "nonlinearity": "relu",
92
+ "policy_initialization": "orthogonal",
93
+ "policy_init_gain": 1.0,
94
+ "actor_critic_share_weights": true,
95
+ "adaptive_stddev": false,
96
+ "continuous_tanh_scale": 0.0,
97
+ "initial_stddev": 1.0,
98
+ "use_env_info_cache": false,
99
+ "env_gpu_actions": false,
100
+ "env_gpu_observations": true,
101
+ "env_frameskip": 4,
102
+ "env_framestack": 4,
103
+ "pixel_format": "CHW",
104
+ "use_record_episode_statistics": true,
105
+ "with_wandb": true,
106
+ "wandb_user": "matt-stammers",
107
+ "wandb_project": "atari",
108
+ "wandb_group": "atari_beamrider",
109
+ "wandb_job_type": "SF",
110
+ "wandb_tags": [
111
+ "atari"
112
+ ],
113
+ "with_pbt": false,
114
+ "pbt_mix_policies_in_one_env": true,
115
+ "pbt_period_env_steps": 5000000,
116
+ "pbt_start_mutation": 20000000,
117
+ "pbt_replace_fraction": 0.3,
118
+ "pbt_mutation_rate": 0.15,
119
+ "pbt_replace_reward_gap": 0.1,
120
+ "pbt_replace_reward_gap_absolute": 1e-06,
121
+ "pbt_optimize_gamma": false,
122
+ "pbt_target_objective": "true_objective",
123
+ "pbt_perturb_min": 1.1,
124
+ "pbt_perturb_max": 1.5,
125
+ "command_line": "--algo=APPO --env=atari_beamrider --experiment=atari_beamrider --num_policies=2 --train_dir=./train_atari --with_wandb=true --wandb_user=matt-stammers --wandb_project=atari --wandb_group=atari_beamrider --wandb_job_type=SF --wandb_tags=atari",
126
+ "cli_args": {
127
+ "algo": "APPO",
128
+ "env": "atari_beamrider",
129
+ "experiment": "atari_beamrider",
130
+ "train_dir": "./train_atari",
131
+ "num_policies": 2,
132
+ "with_wandb": true,
133
+ "wandb_user": "matt-stammers",
134
+ "wandb_project": "atari",
135
+ "wandb_group": "atari_beamrider",
136
+ "wandb_job_type": "SF",
137
+ "wandb_tags": [
138
+ "atari"
139
+ ]
140
+ },
141
+ "git_hash": "5fff97c2f535da5987d358cdbe6927cccd43621e",
142
+ "git_repo_name": "not a git repository",
143
+ "wandb_unique_id": "atari_beamrider_20230925_201508_276248"
144
+ }
git.diff ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28f3fe545f35e5db1e419bf1e198c0bc5ef89459d55f59e2d06d3c108907e732
3
+ size 14403396
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf78ebefce98d2ed24463f365e952edb24143855d16a515555682269cdc9365b
3
+ size 8980259
sf_log.txt ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2023-09-25 20:15:19,439][95689] Saving configuration to ./train_atari/atari_beamrider/config.json...
2
+ [2023-09-25 20:15:19,756][95689] Rollout worker 0 uses device cpu
3
+ [2023-09-25 20:15:19,757][95689] Rollout worker 1 uses device cpu
4
+ [2023-09-25 20:15:19,757][95689] Rollout worker 2 uses device cpu
5
+ [2023-09-25 20:15:19,758][95689] Rollout worker 3 uses device cpu
6
+ [2023-09-25 20:15:19,758][95689] Rollout worker 4 uses device cpu
7
+ [2023-09-25 20:15:19,759][95689] Rollout worker 5 uses device cpu
8
+ [2023-09-25 20:15:19,759][95689] Rollout worker 6 uses device cpu
9
+ [2023-09-25 20:15:19,760][95689] Rollout worker 7 uses device cpu
10
+ [2023-09-25 20:15:19,760][95689] In synchronous mode, we only accumulate one batch. Setting num_batches_to_accumulate to 1
11
+ [2023-09-25 20:15:19,806][95689] Using GPUs [0] for process 0 (actually maps to GPUs [0])
12
+ [2023-09-25 20:15:19,806][95689] InferenceWorker_p0-w0: min num requests: 1
13
+ [2023-09-25 20:15:19,810][95689] Using GPUs [1] for process 1 (actually maps to GPUs [1])
14
+ [2023-09-25 20:15:19,810][95689] InferenceWorker_p1-w0: min num requests: 1
15
+ [2023-09-25 20:15:19,834][95689] Starting all processes...
16
+ [2023-09-25 20:15:19,834][95689] Starting process learner_proc0
17
+ [2023-09-25 20:15:21,428][95689] Starting process learner_proc1
18
+ [2023-09-25 20:15:21,431][96647] Using GPUs [0] for process 0 (actually maps to GPUs [0])
19
+ [2023-09-25 20:15:21,431][96647] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
20
+ [2023-09-25 20:15:21,449][96647] Num visible devices: 1
21
+ [2023-09-25 20:15:21,465][96647] Starting seed is not provided
22
+ [2023-09-25 20:15:21,465][96647] Using GPUs [0] for process 0 (actually maps to GPUs [0])
23
+ [2023-09-25 20:15:21,465][96647] Initializing actor-critic model on device cuda:0
24
+ [2023-09-25 20:15:21,466][96647] RunningMeanStd input shape: (4, 84, 84)
25
+ [2023-09-25 20:15:21,466][96647] RunningMeanStd input shape: (1,)
26
+ [2023-09-25 20:15:21,477][96647] ConvEncoder: input_channels=4
27
+ [2023-09-25 20:15:21,635][96647] Conv encoder output size: 512
28
+ [2023-09-25 20:15:21,637][96647] Created Actor Critic model with architecture:
29
+ [2023-09-25 20:15:21,637][96647] ActorCriticSharedWeights(
30
+ (obs_normalizer): ObservationNormalizer(
31
+ (running_mean_std): RunningMeanStdDictInPlace(
32
+ (running_mean_std): ModuleDict(
33
+ (obs): RunningMeanStdInPlace()
34
+ )
35
+ )
36
+ )
37
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
38
+ (encoder): MultiInputEncoder(
39
+ (encoders): ModuleDict(
40
+ (obs): ConvEncoder(
41
+ (enc): RecursiveScriptModule(
42
+ original_name=ConvEncoderImpl
43
+ (conv_head): RecursiveScriptModule(
44
+ original_name=Sequential
45
+ (0): RecursiveScriptModule(original_name=Conv2d)
46
+ (1): RecursiveScriptModule(original_name=ReLU)
47
+ (2): RecursiveScriptModule(original_name=Conv2d)
48
+ (3): RecursiveScriptModule(original_name=ReLU)
49
+ (4): RecursiveScriptModule(original_name=Conv2d)
50
+ (5): RecursiveScriptModule(original_name=ReLU)
51
+ )
52
+ (mlp_layers): RecursiveScriptModule(
53
+ original_name=Sequential
54
+ (0): RecursiveScriptModule(original_name=Linear)
55
+ (1): RecursiveScriptModule(original_name=ReLU)
56
+ )
57
+ )
58
+ )
59
+ )
60
+ )
61
+ (core): ModelCoreIdentity()
62
+ (decoder): MlpDecoder(
63
+ (mlp): Identity()
64
+ )
65
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
66
+ (action_parameterization): ActionParameterizationDefault(
67
+ (distribution_linear): Linear(in_features=512, out_features=9, bias=True)
68
+ )
69
+ )
70
+ [2023-09-25 20:15:22,224][96647] Using optimizer <class 'torch.optim.adam.Adam'>
71
+ [2023-09-25 20:15:22,225][96647] No checkpoints found
72
+ [2023-09-25 20:15:22,225][96647] Did not load from checkpoint, starting from scratch!
73
+ [2023-09-25 20:15:22,225][96647] Initialized policy 0 weights for model version 0
74
+ [2023-09-25 20:15:22,226][96647] LearnerWorker_p0 finished initialization!
75
+ [2023-09-25 20:15:22,227][96647] Using GPUs [0] for process 0 (actually maps to GPUs [0])
76
+ [2023-09-25 20:15:23,053][95689] Starting all processes...
77
+ [2023-09-25 20:15:23,057][96710] Using GPUs [1] for process 1 (actually maps to GPUs [1])
78
+ [2023-09-25 20:15:23,057][96710] Set environment var CUDA_VISIBLE_DEVICES to '1' (GPU indices [1]) for learning process 1
79
+ [2023-09-25 20:15:23,061][95689] Starting process inference_proc0-0
80
+ [2023-09-25 20:15:23,061][95689] Starting process inference_proc1-0
81
+ [2023-09-25 20:15:23,061][95689] Starting process rollout_proc0
82
+ [2023-09-25 20:15:23,075][96710] Num visible devices: 1
83
+ [2023-09-25 20:15:23,061][95689] Starting process rollout_proc1
84
+ [2023-09-25 20:15:23,062][95689] Starting process rollout_proc2
85
+ [2023-09-25 20:15:23,092][96710] Starting seed is not provided
86
+ [2023-09-25 20:15:23,092][96710] Using GPUs [0] for process 1 (actually maps to GPUs [1])
87
+ [2023-09-25 20:15:23,092][96710] Initializing actor-critic model on device cuda:0
88
+ [2023-09-25 20:15:23,093][96710] RunningMeanStd input shape: (4, 84, 84)
89
+ [2023-09-25 20:15:23,062][95689] Starting process rollout_proc3
90
+ [2023-09-25 20:15:23,093][96710] RunningMeanStd input shape: (1,)
91
+ [2023-09-25 20:15:23,063][95689] Starting process rollout_proc4
92
+ [2023-09-25 20:15:23,066][95689] Starting process rollout_proc5
93
+ [2023-09-25 20:15:23,067][95689] Starting process rollout_proc6
94
+ [2023-09-25 20:15:23,067][95689] Starting process rollout_proc7
95
+ [2023-09-25 20:15:23,105][96710] ConvEncoder: input_channels=4
96
+ [2023-09-25 20:15:23,358][96710] Conv encoder output size: 512
97
+ [2023-09-25 20:15:23,360][96710] Created Actor Critic model with architecture:
98
+ [2023-09-25 20:15:23,361][96710] ActorCriticSharedWeights(
99
+ (obs_normalizer): ObservationNormalizer(
100
+ (running_mean_std): RunningMeanStdDictInPlace(
101
+ (running_mean_std): ModuleDict(
102
+ (obs): RunningMeanStdInPlace()
103
+ )
104
+ )
105
+ )
106
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
107
+ (encoder): MultiInputEncoder(
108
+ (encoders): ModuleDict(
109
+ (obs): ConvEncoder(
110
+ (enc): RecursiveScriptModule(
111
+ original_name=ConvEncoderImpl
112
+ (conv_head): RecursiveScriptModule(
113
+ original_name=Sequential
114
+ (0): RecursiveScriptModule(original_name=Conv2d)
115
+ (1): RecursiveScriptModule(original_name=ReLU)
116
+ (2): RecursiveScriptModule(original_name=Conv2d)
117
+ (3): RecursiveScriptModule(original_name=ReLU)
118
+ (4): RecursiveScriptModule(original_name=Conv2d)
119
+ (5): RecursiveScriptModule(original_name=ReLU)
120
+ )
121
+ (mlp_layers): RecursiveScriptModule(
122
+ original_name=Sequential
123
+ (0): RecursiveScriptModule(original_name=Linear)
124
+ (1): RecursiveScriptModule(original_name=ReLU)
125
+ )
126
+ )
127
+ )
128
+ )
129
+ )
130
+ (core): ModelCoreIdentity()
131
+ (decoder): MlpDecoder(
132
+ (mlp): Identity()
133
+ )
134
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
135
+ (action_parameterization): ActionParameterizationDefault(
136
+ (distribution_linear): Linear(in_features=512, out_features=9, bias=True)
137
+ )
138
+ )
139
+ [2023-09-25 20:15:23,963][96710] Using optimizer <class 'torch.optim.adam.Adam'>
140
+ [2023-09-25 20:15:23,964][96710] No checkpoints found
141
+ [2023-09-25 20:15:23,964][96710] Did not load from checkpoint, starting from scratch!
142
+ [2023-09-25 20:15:23,964][96710] Initialized policy 1 weights for model version 0
143
+ [2023-09-25 20:15:23,966][96710] LearnerWorker_p1 finished initialization!
144
+ [2023-09-25 20:15:23,966][96710] Using GPUs [0] for process 1 (actually maps to GPUs [1])
145
+ [2023-09-25 20:15:24,995][96848] Using GPUs [0] for process 0 (actually maps to GPUs [0])
146
+ [2023-09-25 20:15:24,995][96848] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
147
+ [2023-09-25 20:15:25,013][96848] Num visible devices: 1
148
+ [2023-09-25 20:15:25,039][96885] Worker 3 uses CPU cores [12, 13, 14, 15]
149
+ [2023-09-25 20:15:25,063][96887] Worker 5 uses CPU cores [20, 21, 22, 23]
150
+ [2023-09-25 20:15:25,085][96882] Worker 1 uses CPU cores [4, 5, 6, 7]
151
+ [2023-09-25 20:15:25,089][96849] Using GPUs [1] for process 1 (actually maps to GPUs [1])
152
+ [2023-09-25 20:15:25,089][96849] Set environment var CUDA_VISIBLE_DEVICES to '1' (GPU indices [1]) for inference process 1
153
+ [2023-09-25 20:15:25,109][96849] Num visible devices: 1
154
+ [2023-09-25 20:15:25,110][96886] Worker 4 uses CPU cores [16, 17, 18, 19]
155
+ [2023-09-25 20:15:25,130][96888] Worker 6 uses CPU cores [24, 25, 26, 27]
156
+ [2023-09-25 20:15:25,160][96889] Worker 7 uses CPU cores [28, 29, 30, 31]
157
+ [2023-09-25 20:15:25,210][96868] Worker 0 uses CPU cores [0, 1, 2, 3]
158
+ [2023-09-25 20:15:25,262][96884] Worker 2 uses CPU cores [8, 9, 10, 11]
159
+ [2023-09-25 20:15:25,632][96848] RunningMeanStd input shape: (4, 84, 84)
160
+ [2023-09-25 20:15:25,632][96848] RunningMeanStd input shape: (1,)
161
+ [2023-09-25 20:15:25,642][96848] ConvEncoder: input_channels=4
162
+ [2023-09-25 20:15:25,710][95689] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan, 1: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
163
+ [2023-09-25 20:15:25,727][96849] RunningMeanStd input shape: (4, 84, 84)
164
+ [2023-09-25 20:15:25,728][96849] RunningMeanStd input shape: (1,)
165
+ [2023-09-25 20:15:25,739][96849] ConvEncoder: input_channels=4
166
+ [2023-09-25 20:15:25,742][96848] Conv encoder output size: 512
167
+ [2023-09-25 20:15:25,747][95689] Inference worker 0-0 is ready!
168
+ [2023-09-25 20:15:25,838][96849] Conv encoder output size: 512
169
+ [2023-09-25 20:15:25,843][95689] Inference worker 1-0 is ready!
170
+ [2023-09-25 20:15:25,844][95689] All inference workers are ready! Signal rollout workers to start!
171
+ [2023-09-25 20:15:26,302][96886] Decorrelating experience for 0 frames...
172
+ [2023-09-25 20:15:26,306][96884] Decorrelating experience for 0 frames...
173
+ [2023-09-25 20:15:26,306][96889] Decorrelating experience for 0 frames...
174
+ [2023-09-25 20:15:26,307][96882] Decorrelating experience for 0 frames...
175
+ [2023-09-25 20:15:26,307][96888] Decorrelating experience for 0 frames...
176
+ [2023-09-25 20:15:26,309][96868] Decorrelating experience for 0 frames...
177
+ [2023-09-25 20:15:26,310][96885] Decorrelating experience for 0 frames...
178
+ [2023-09-25 20:15:26,312][96887] Decorrelating experience for 0 frames...
179
+ [2023-09-25 20:15:30,710][95689] Fps is (10 sec: 1638.4, 60 sec: 1638.4, 300 sec: 1638.4). Total num frames: 8192. Throughput: 0: 204.8, 1: 204.8. Samples: 2048. Policy #0 lag: (min: 4.0, avg: 4.0, max: 4.0)
180
+ [2023-09-25 20:15:35,710][95689] Fps is (10 sec: 3276.8, 60 sec: 3276.8, 300 sec: 3276.8). Total num frames: 32768. Throughput: 0: 398.0, 1: 406.3. Samples: 8043. Policy #0 lag: (min: 15.0, avg: 15.0, max: 15.0)
181
+ [2023-09-25 20:15:35,711][95689] Avg episode reward: [(0, '2.667'), (1, '7.000')]
182
+ [2023-09-25 20:15:39,794][95689] Heartbeat connected on Batcher_0
183
+ [2023-09-25 20:15:39,797][95689] Heartbeat connected on LearnerWorker_p0
184
+ [2023-09-25 20:15:39,800][95689] Heartbeat connected on Batcher_1
185
+ [2023-09-25 20:15:39,802][95689] Heartbeat connected on LearnerWorker_p1
186
+ [2023-09-25 20:15:39,809][95689] Heartbeat connected on InferenceWorker_p0-w0
187
+ [2023-09-25 20:15:39,812][95689] Heartbeat connected on InferenceWorker_p1-w0
188
+ [2023-09-25 20:15:39,813][95689] Heartbeat connected on RolloutWorker_w0
189
+ [2023-09-25 20:15:39,818][95689] Heartbeat connected on RolloutWorker_w1
190
+ [2023-09-25 20:15:39,819][95689] Heartbeat connected on RolloutWorker_w2
191
+ [2023-09-25 20:15:39,822][95689] Heartbeat connected on RolloutWorker_w3
192
+ [2023-09-25 20:15:39,826][95689] Heartbeat connected on RolloutWorker_w4
193
+ [2023-09-25 20:15:39,827][95689] Heartbeat connected on RolloutWorker_w5
194
+ [2023-09-25 20:15:39,830][95689] Heartbeat connected on RolloutWorker_w6
195
+ [2023-09-25 20:15:39,835][95689] Heartbeat connected on RolloutWorker_w7
196
+ [2023-09-25 20:15:40,710][95689] Fps is (10 sec: 5734.3, 60 sec: 4369.1, 300 sec: 4369.1). Total num frames: 65536. Throughput: 0: 414.1, 1: 419.9. Samples: 12511. Policy #0 lag: (min: 14.0, avg: 14.0, max: 14.0)
197
+ [2023-09-25 20:15:40,711][95689] Avg episode reward: [(0, '2.611'), (1, '4.600')]
198
+ [2023-09-25 20:15:42,747][96848] Updated weights for policy 0, policy_version 160 (0.0018)
199
+ [2023-09-25 20:15:42,748][96849] Updated weights for policy 1, policy_version 160 (0.0017)
200
+ [2023-09-25 20:15:45,710][95689] Fps is (10 sec: 6553.6, 60 sec: 4915.2, 300 sec: 4915.2). Total num frames: 98304. Throughput: 0: 563.0, 1: 563.2. Samples: 22524. Policy #0 lag: (min: 15.0, avg: 15.0, max: 15.0)
201
+ [2023-09-25 20:15:45,711][95689] Avg episode reward: [(0, '2.586'), (1, '4.250')]
202
+ [2023-09-25 20:15:50,710][95689] Fps is (10 sec: 6553.6, 60 sec: 5242.9, 300 sec: 5242.9). Total num frames: 131072. Throughput: 0: 638.3, 1: 641.1. Samples: 31985. Policy #0 lag: (min: 13.0, avg: 13.0, max: 13.0)
203
+ [2023-09-25 20:15:50,711][95689] Avg episode reward: [(0, '2.686'), (1, '4.310')]
204
+ [2023-09-25 20:15:55,667][96849] Updated weights for policy 1, policy_version 320 (0.0017)
205
+ [2023-09-25 20:15:55,667][96848] Updated weights for policy 0, policy_version 320 (0.0017)
206
+ [2023-09-25 20:15:55,710][95689] Fps is (10 sec: 6553.6, 60 sec: 5461.3, 300 sec: 5461.3). Total num frames: 163840. Throughput: 0: 613.2, 1: 614.4. Samples: 36827. Policy #0 lag: (min: 4.0, avg: 4.0, max: 4.0)
207
+ [2023-09-25 20:15:55,711][95689] Avg episode reward: [(0, '2.628'), (1, '3.974')]
208
+ [2023-09-25 20:16:00,710][95689] Fps is (10 sec: 5734.4, 60 sec: 5383.3, 300 sec: 5383.3). Total num frames: 188416. Throughput: 0: 656.8, 1: 659.3. Samples: 46063. Policy #0 lag: (min: 15.0, avg: 15.0, max: 15.0)
209
+ [2023-09-25 20:16:00,711][95689] Avg episode reward: [(0, '2.648'), (1, '3.857')]
210
+ [2023-09-25 20:16:05,710][95689] Fps is (10 sec: 5734.4, 60 sec: 5529.6, 300 sec: 5529.6). Total num frames: 221184. Throughput: 0: 693.5, 1: 695.9. Samples: 55579. Policy #0 lag: (min: 7.0, avg: 7.0, max: 7.0)
211
+ [2023-09-25 20:16:05,711][95689] Avg episode reward: [(0, '2.633'), (1, '3.614')]
212
+ [2023-09-25 20:16:05,869][96647] Saving new best policy, reward=2.633!
213
+ [2023-09-25 20:16:05,899][96710] Saving new best policy, reward=3.614!
214
+ [2023-09-25 20:16:08,456][96849] Updated weights for policy 1, policy_version 480 (0.0016)
215
+ [2023-09-25 20:16:08,457][96848] Updated weights for policy 0, policy_version 480 (0.0018)
216
+ [2023-09-25 20:16:10,710][95689] Fps is (10 sec: 6553.7, 60 sec: 5643.4, 300 sec: 5643.4). Total num frames: 253952. Throughput: 0: 671.6, 1: 674.6. Samples: 60581. Policy #0 lag: (min: 12.0, avg: 12.0, max: 12.0)
217
+ [2023-09-25 20:16:10,711][95689] Avg episode reward: [(0, '2.697'), (1, '3.672')]
218
+ [2023-09-25 20:16:10,711][96647] Saving new best policy, reward=2.697!
219
+ [2023-09-25 20:16:10,711][96710] Saving new best policy, reward=3.672!
220
+ [2023-09-25 20:16:15,710][95689] Fps is (10 sec: 6553.6, 60 sec: 5734.4, 300 sec: 5734.4). Total num frames: 286720. Throughput: 0: 751.0, 1: 752.4. Samples: 69703. Policy #0 lag: (min: 8.0, avg: 8.0, max: 8.0)
221
+ [2023-09-25 20:16:15,711][95689] Avg episode reward: [(0, '2.747'), (1, '3.533')]
222
+ [2023-09-25 20:16:15,712][96647] Saving new best policy, reward=2.747!
223
+ [2023-09-25 20:16:20,710][95689] Fps is (10 sec: 6553.4, 60 sec: 5808.9, 300 sec: 5808.9). Total num frames: 319488. Throughput: 0: 790.7, 1: 790.0. Samples: 79176. Policy #0 lag: (min: 15.0, avg: 15.0, max: 15.0)
224
+ [2023-09-25 20:16:20,711][95689] Avg episode reward: [(0, '2.695'), (1, '3.565')]
225
+ [2023-09-25 20:16:21,656][96849] Updated weights for policy 1, policy_version 640 (0.0019)
226
+ [2023-09-25 20:16:21,656][96848] Updated weights for policy 0, policy_version 640 (0.0017)
227
+ [2023-09-25 20:16:25,710][95689] Fps is (10 sec: 6553.6, 60 sec: 5870.9, 300 sec: 5870.9). Total num frames: 352256. Throughput: 0: 794.9, 1: 793.0. Samples: 83968. Policy #0 lag: (min: 15.0, avg: 15.0, max: 15.0)
228
+ [2023-09-25 20:16:25,711][95689] Avg episode reward: [(0, '2.814'), (1, '3.484')]
229
+ [2023-09-25 20:16:25,712][96647] Saving new best policy, reward=2.814!
230
+ [2023-09-25 20:16:30,710][95689] Fps is (10 sec: 6144.1, 60 sec: 6212.3, 300 sec: 5860.4). Total num frames: 380928. Throughput: 0: 786.3, 1: 789.4. Samples: 93429. Policy #0 lag: (min: 15.0, avg: 15.0, max: 15.0)
231
+ [2023-09-25 20:16:30,711][95689] Avg episode reward: [(0, '2.966'), (1, '3.390')]
232
+ [2023-09-25 20:16:30,731][96647] Saving new best policy, reward=2.966!
233
+ [2023-09-25 20:16:34,554][96849] Updated weights for policy 1, policy_version 800 (0.0014)
234
+ [2023-09-25 20:16:34,555][96848] Updated weights for policy 0, policy_version 800 (0.0018)
235
+ [2023-09-25 20:16:35,710][95689] Fps is (10 sec: 5734.4, 60 sec: 6280.5, 300 sec: 5851.4). Total num frames: 409600. Throughput: 0: 787.2, 1: 788.1. Samples: 102873. Policy #0 lag: (min: 15.0, avg: 15.0, max: 15.0)
236
+ [2023-09-25 20:16:35,711][95689] Avg episode reward: [(0, '2.927'), (1, '3.360')]
237
+ [2023-09-25 20:16:40,710][95689] Fps is (10 sec: 6144.0, 60 sec: 6280.5, 300 sec: 5898.2). Total num frames: 442368. Throughput: 0: 790.2, 1: 790.4. Samples: 107958. Policy #0 lag: (min: 6.0, avg: 6.0, max: 6.0)
238
+ [2023-09-25 20:16:40,711][95689] Avg episode reward: [(0, '2.860'), (1, '3.280')]
239
+ [2023-09-25 20:16:41,784][95689] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 95689], exiting...
240
+ [2023-09-25 20:16:41,784][96885] Stopping RolloutWorker_w3...
241
+ [2023-09-25 20:16:41,784][96884] Stopping RolloutWorker_w2...
242
+ [2023-09-25 20:16:41,784][96886] Stopping RolloutWorker_w4...
243
+ [2023-09-25 20:16:41,784][96882] Stopping RolloutWorker_w1...
244
+ [2023-09-25 20:16:41,785][96868] Stopping RolloutWorker_w0...
245
+ [2023-09-25 20:16:41,785][96885] Loop rollout_proc3_evt_loop terminating...
246
+ [2023-09-25 20:16:41,784][95689] Runner profile tree view:
247
+ main_loop: 81.9507
248
+ [2023-09-25 20:16:41,785][96884] Loop rollout_proc2_evt_loop terminating...
249
+ [2023-09-25 20:16:41,785][96868] Loop rollout_proc0_evt_loop terminating...
250
+ [2023-09-25 20:16:41,785][96886] Loop rollout_proc4_evt_loop terminating...
251
+ [2023-09-25 20:16:41,785][96882] Loop rollout_proc1_evt_loop terminating...
252
+ [2023-09-25 20:16:41,785][95689] Collected {0: 225280, 1: 225280}, FPS: 5497.9
253
+ [2023-09-25 20:16:41,785][96888] Stopping RolloutWorker_w6...
254
+ [2023-09-25 20:16:41,785][96889] Stopping RolloutWorker_w7...
255
+ [2023-09-25 20:16:41,785][96888] Loop rollout_proc6_evt_loop terminating...
256
+ [2023-09-25 20:16:41,785][96710] Stopping Batcher_1...
257
+ [2023-09-25 20:16:41,785][96887] Stopping RolloutWorker_w5...
258
+ [2023-09-25 20:16:41,785][96889] Loop rollout_proc7_evt_loop terminating...
259
+ [2023-09-25 20:16:41,786][96887] Loop rollout_proc5_evt_loop terminating...
260
+ [2023-09-25 20:16:41,785][96647] Stopping Batcher_0...
261
+ [2023-09-25 20:16:41,786][96710] Loop batcher_evt_loop terminating...
262
+ [2023-09-25 20:16:41,786][96647] Loop batcher_evt_loop terminating...
263
+ [2023-09-25 20:16:41,787][96710] Saving ./train_atari/atari_beamrider/checkpoint_p1/checkpoint_000000880_225280.pth...
264
+ [2023-09-25 20:16:41,787][96647] Saving ./train_atari/atari_beamrider/checkpoint_p0/checkpoint_000000880_225280.pth...
265
+ [2023-09-25 20:16:41,800][96849] Weights refcount: 2 0
266
+ [2023-09-25 20:16:41,800][96848] Weights refcount: 2 0
267
+ [2023-09-25 20:16:41,801][96849] Stopping InferenceWorker_p1-w0...
268
+ [2023-09-25 20:16:41,801][96848] Stopping InferenceWorker_p0-w0...
269
+ [2023-09-25 20:16:41,801][96849] Loop inference_proc1-0_evt_loop terminating...
270
+ [2023-09-25 20:16:41,801][96848] Loop inference_proc0-0_evt_loop terminating...
271
+ [2023-09-25 20:16:41,824][96710] Stopping LearnerWorker_p1...
272
+ [2023-09-25 20:16:41,824][96710] Loop learner_proc1_evt_loop terminating...
273
+ [2023-09-25 20:16:41,825][96647] Stopping LearnerWorker_p0...
274
+ [2023-09-25 20:16:41,825][96647] Loop learner_proc0_evt_loop terminating...