Matjac5 commited on
Commit
8c15196
·
verified ·
1 Parent(s): 6291065

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -350
README.md DELETED
@@ -1,350 +0,0 @@
1
- ---
2
- tags:
3
- - sentence-transformers
4
- - sentence-similarity
5
- - feature-extraction
6
- - generated_from_trainer
7
- - dataset_size:2000
8
- - loss:MultipleNegativesRankingLoss
9
- base_model: Qwen/Qwen3-0.6B
10
- widget:
11
- - source_sentence: Where should you look for your yoyo if it was stolen by a bratty
12
- young person?
13
- sentences:
14
- - play tricks on
15
- - bath tub
16
- - brother's room
17
- - source_sentence: What is the opposite of ordinary?
18
- sentences:
19
- - arizona
20
- - motorbike
21
- - exceptional
22
- - source_sentence: Where might someone store guns in a loft?
23
- sentences:
24
- - hunting lodge
25
- - eat
26
- - injury
27
- - source_sentence: After being stuck indoors all day breathing fresh air would lead
28
- to what?
29
- sentences:
30
- - run programs
31
- - celebration
32
- - feeling refreshed
33
- - source_sentence: Eating breakfast in bed can make you feel what, assuming that you
34
- don't spill anything?
35
- sentences:
36
- - contentment
37
- - bathroom
38
- - slow down
39
- pipeline_tag: sentence-similarity
40
- library_name: sentence-transformers
41
- ---
42
-
43
- # SentenceTransformer based on Qwen/Qwen3-0.6B
44
-
45
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
46
-
47
- ## Model Details
48
-
49
- ### Model Description
50
- - **Model Type:** Sentence Transformer
51
- - **Base model:** [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) <!-- at revision e6de91484c29aa9480d55605af694f39b081c455 -->
52
- - **Maximum Sequence Length:** 256 tokens
53
- - **Output Dimensionality:** 1024 dimensions
54
- - **Similarity Function:** Cosine Similarity
55
- <!-- - **Training Dataset:** Unknown -->
56
- <!-- - **Language:** Unknown -->
57
- <!-- - **License:** Unknown -->
58
-
59
- ### Model Sources
60
-
61
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
63
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
-
65
- ### Full Model Architecture
66
-
67
- ```
68
- SentenceTransformer(
69
- (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: Qwen3Model
70
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
- )
72
- ```
73
-
74
- ## Usage
75
-
76
- ### Direct Usage (Sentence Transformers)
77
-
78
- First install the Sentence Transformers library:
79
-
80
- ```bash
81
- pip install -U sentence-transformers
82
- ```
83
-
84
- Then you can load this model and run inference.
85
- ```python
86
- from sentence_transformers import SentenceTransformer
87
-
88
- # Download from the 🤗 Hub
89
- model = SentenceTransformer("sentence_transformers_model_id")
90
- # Run inference
91
- sentences = [
92
- "Eating breakfast in bed can make you feel what, assuming that you don't spill anything?",
93
- 'contentment',
94
- 'slow down',
95
- ]
96
- embeddings = model.encode(sentences)
97
- print(embeddings.shape)
98
- # [3, 1024]
99
-
100
- # Get the similarity scores for the embeddings
101
- similarities = model.similarity(embeddings, embeddings)
102
- print(similarities.shape)
103
- # [3, 3]
104
- ```
105
-
106
- <!--
107
- ### Direct Usage (Transformers)
108
-
109
- <details><summary>Click to see the direct usage in Transformers</summary>
110
-
111
- </details>
112
- -->
113
-
114
- <!--
115
- ### Downstream Usage (Sentence Transformers)
116
-
117
- You can finetune this model on your own dataset.
118
-
119
- <details><summary>Click to expand</summary>
120
-
121
- </details>
122
- -->
123
-
124
- <!--
125
- ### Out-of-Scope Use
126
-
127
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
- -->
129
-
130
- <!--
131
- ## Bias, Risks and Limitations
132
-
133
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
- -->
135
-
136
- <!--
137
- ### Recommendations
138
-
139
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
- -->
141
-
142
- ## Training Details
143
-
144
- ### Training Dataset
145
-
146
- #### Unnamed Dataset
147
-
148
- * Size: 2,000 training samples
149
- * Columns: <code>sentence_0</code> and <code>sentence_1</code>
150
- * Approximate statistics based on the first 1000 samples:
151
- | | sentence_0 | sentence_1 |
152
- |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
153
- | type | string | string |
154
- | details | <ul><li>min: 5 tokens</li><li>mean: 15.43 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 1 tokens</li><li>mean: 2.07 tokens</li><li>max: 6 tokens</li></ul> |
155
- * Samples:
156
- | sentence_0 | sentence_1 |
157
- |:-------------------------------------------------------------------------------------------------------------------|:------------------------|
158
- | <code>Where are there very famous churchyard?</code> | <code>england</code> |
159
- | <code>He didn't have the attention span for reading book, so he would just what and pretend he was reading?</code> | <code>sit</code> |
160
- | <code>What is the opposite of remembering?</code> | <code>forgetting</code> |
161
- * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
162
- ```json
163
- {
164
- "scale": 20.0,
165
- "similarity_fct": "cos_sim"
166
- }
167
- ```
168
-
169
- ### Training Hyperparameters
170
- #### Non-Default Hyperparameters
171
-
172
- - `per_device_train_batch_size`: 16
173
- - `per_device_eval_batch_size`: 16
174
- - `num_train_epochs`: 2
175
- - `multi_dataset_batch_sampler`: round_robin
176
-
177
- #### All Hyperparameters
178
- <details><summary>Click to expand</summary>
179
-
180
- - `overwrite_output_dir`: False
181
- - `do_predict`: False
182
- - `eval_strategy`: no
183
- - `prediction_loss_only`: True
184
- - `per_device_train_batch_size`: 16
185
- - `per_device_eval_batch_size`: 16
186
- - `per_gpu_train_batch_size`: None
187
- - `per_gpu_eval_batch_size`: None
188
- - `gradient_accumulation_steps`: 1
189
- - `eval_accumulation_steps`: None
190
- - `torch_empty_cache_steps`: None
191
- - `learning_rate`: 5e-05
192
- - `weight_decay`: 0.0
193
- - `adam_beta1`: 0.9
194
- - `adam_beta2`: 0.999
195
- - `adam_epsilon`: 1e-08
196
- - `max_grad_norm`: 1
197
- - `num_train_epochs`: 2
198
- - `max_steps`: -1
199
- - `lr_scheduler_type`: linear
200
- - `lr_scheduler_kwargs`: {}
201
- - `warmup_ratio`: 0.0
202
- - `warmup_steps`: 0
203
- - `log_level`: passive
204
- - `log_level_replica`: warning
205
- - `log_on_each_node`: True
206
- - `logging_nan_inf_filter`: True
207
- - `save_safetensors`: True
208
- - `save_on_each_node`: False
209
- - `save_only_model`: False
210
- - `restore_callback_states_from_checkpoint`: False
211
- - `no_cuda`: False
212
- - `use_cpu`: False
213
- - `use_mps_device`: False
214
- - `seed`: 42
215
- - `data_seed`: None
216
- - `jit_mode_eval`: False
217
- - `use_ipex`: False
218
- - `bf16`: False
219
- - `fp16`: False
220
- - `fp16_opt_level`: O1
221
- - `half_precision_backend`: auto
222
- - `bf16_full_eval`: False
223
- - `fp16_full_eval`: False
224
- - `tf32`: None
225
- - `local_rank`: 0
226
- - `ddp_backend`: None
227
- - `tpu_num_cores`: None
228
- - `tpu_metrics_debug`: False
229
- - `debug`: []
230
- - `dataloader_drop_last`: False
231
- - `dataloader_num_workers`: 0
232
- - `dataloader_prefetch_factor`: None
233
- - `past_index`: -1
234
- - `disable_tqdm`: False
235
- - `remove_unused_columns`: True
236
- - `label_names`: None
237
- - `load_best_model_at_end`: False
238
- - `ignore_data_skip`: False
239
- - `fsdp`: []
240
- - `fsdp_min_num_params`: 0
241
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
242
- - `fsdp_transformer_layer_cls_to_wrap`: None
243
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
244
- - `deepspeed`: None
245
- - `label_smoothing_factor`: 0.0
246
- - `optim`: adamw_torch
247
- - `optim_args`: None
248
- - `adafactor`: False
249
- - `group_by_length`: False
250
- - `length_column_name`: length
251
- - `ddp_find_unused_parameters`: None
252
- - `ddp_bucket_cap_mb`: None
253
- - `ddp_broadcast_buffers`: False
254
- - `dataloader_pin_memory`: True
255
- - `dataloader_persistent_workers`: False
256
- - `skip_memory_metrics`: True
257
- - `use_legacy_prediction_loop`: False
258
- - `push_to_hub`: False
259
- - `resume_from_checkpoint`: None
260
- - `hub_model_id`: None
261
- - `hub_strategy`: every_save
262
- - `hub_private_repo`: None
263
- - `hub_always_push`: False
264
- - `gradient_checkpointing`: False
265
- - `gradient_checkpointing_kwargs`: None
266
- - `include_inputs_for_metrics`: False
267
- - `include_for_metrics`: []
268
- - `eval_do_concat_batches`: True
269
- - `fp16_backend`: auto
270
- - `push_to_hub_model_id`: None
271
- - `push_to_hub_organization`: None
272
- - `mp_parameters`:
273
- - `auto_find_batch_size`: False
274
- - `full_determinism`: False
275
- - `torchdynamo`: None
276
- - `ray_scope`: last
277
- - `ddp_timeout`: 1800
278
- - `torch_compile`: False
279
- - `torch_compile_backend`: None
280
- - `torch_compile_mode`: None
281
- - `include_tokens_per_second`: False
282
- - `include_num_input_tokens_seen`: False
283
- - `neftune_noise_alpha`: None
284
- - `optim_target_modules`: None
285
- - `batch_eval_metrics`: False
286
- - `eval_on_start`: False
287
- - `use_liger_kernel`: False
288
- - `eval_use_gather_object`: False
289
- - `average_tokens_across_devices`: False
290
- - `prompts`: None
291
- - `batch_sampler`: batch_sampler
292
- - `multi_dataset_batch_sampler`: round_robin
293
-
294
- </details>
295
-
296
- ### Framework Versions
297
- - Python: 3.12.3
298
- - Sentence Transformers: 4.1.0
299
- - Transformers: 4.52.2
300
- - PyTorch: 2.7.0+cu126
301
- - Accelerate: 1.7.0
302
- - Datasets: 3.6.0
303
- - Tokenizers: 0.21.1
304
-
305
- ## Citation
306
-
307
- ### BibTeX
308
-
309
- #### Sentence Transformers
310
- ```bibtex
311
- @inproceedings{reimers-2019-sentence-bert,
312
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
313
- author = "Reimers, Nils and Gurevych, Iryna",
314
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
315
- month = "11",
316
- year = "2019",
317
- publisher = "Association for Computational Linguistics",
318
- url = "https://arxiv.org/abs/1908.10084",
319
- }
320
- ```
321
-
322
- #### MultipleNegativesRankingLoss
323
- ```bibtex
324
- @misc{henderson2017efficient,
325
- title={Efficient Natural Language Response Suggestion for Smart Reply},
326
- author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
327
- year={2017},
328
- eprint={1705.00652},
329
- archivePrefix={arXiv},
330
- primaryClass={cs.CL}
331
- }
332
- ```
333
-
334
- <!--
335
- ## Glossary
336
-
337
- *Clearly define terms in order to be accessible across audiences.*
338
- -->
339
-
340
- <!--
341
- ## Model Card Authors
342
-
343
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
344
- -->
345
-
346
- <!--
347
- ## Model Card Contact
348
-
349
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
350
- -->