Toy_GPTs_LLMs_for_CPU_Educational / Gettysburg_GPT2_v1.4final.py
MartialTerran's picture
Create Gettysburg_GPT2_v1.4final.py
7cde109 verified
raw
history blame
26.4 kB
#This script runs and computes loss down to under 0.001 at epoch 101, then after epoch 110 the loss rises up again. Then at epoch 150 the loss goes downward again. Next version will report the particular words that are causing the error/loss.
# # The tokenize method now uses the last special token in the self.special_tokens list (which is assumed to be the padding token <pad> in this case) as the default token for unknown words.
#text separate_punctuation focuses solely on separating the defined punctuation marks from words.
#Carriage returns [unntested] are treated as a distinct case and are replaced with the <cr> token after a punctuation-separate step.
# The detokenizer does not yet auto-remove spaces preceding punctuations. This is because tokens are defined without leading spaces, and spaces are autoappended to all tokens in detokenizer.
# It's possible to increase training_input_seq_len over epochs. However, directly modifying training_input_seq_len inside the Dataset class after it's created isn't ideal. A better approach is to control the sequence length during batch creation within the DataLoader. You can achieve this using a custom collate_fn ?
print("loading libraries")
import os # to get filename of this script
import datetime
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torch.optim as optim
from torch.optim.lr_scheduler import ReduceLROnPlateau # Import the learning rate scheduler
import math
import inspect
#import string # replaced with self.punctuation_list = ['.', ',', '/', '\\', '[', ']', '<', '?', '>', '-']] # Specific list of punctuations
print("done loading libraries")
print("Hardcoding Memorized_Speech = Gettysburg Address") #(for simplicity in this toy example)
Memorized_Speech = """
Four score and seven years ago our fathers brought forth on this continent, a new nation, conceived in Liberty, and dedicated to the proposition that all men are created equal.
Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived and so dedicated, can long endure. We are met on a great battle-field of that war. We have come to dedicate a portion of that field, as a final resting place for those who here gave their lives that that nation might live. It is altogether fitting and proper that we should do this.
But, in a larger sense, we can not dedicate - we can not consecrate - we can not hallow-this ground. The brave men, living and dead, who struggled here, have consecrated it, far above our poor power to add or detract. The world will little note, nor long remember what we say here, but it can never forget what they did here. It is for us the living, rather, to be dedicated here to the unfinished work which they who fought here have thus far so nobly advanced. It is rather for us to be here dedicated to the great task remaining before us - that from these honored dead we take increased devotion to that cause for which they gave the last full measure of devotion - that we here highly resolve that these dead shall not have died in vain - that this nation, under God, shall have a new birth of freedom - and that government of the people, by the people, for the people, shall not perish from the earth.
"""
print(f'Length of Memorized_Speech = {len(Memorized_Speech)} characters, as follows:')
print(Memorized_Speech)
# Add special tokens here. "<pad>" is also used for unknown words. The carriage-return specialtoken will be auto-inserted into the received text before tokenization. But tabs and newlines are not implemented/supported.
# Hyperparameters
hyperparameters = {
"vocab_size": 152, # Estimated vocabulary size for Gettysburg Address + special tokens
"special_tokens": ["<FreetheLLM>", "<cr>", "<pad>"],
"n_embd": 512, # Embedding dimension
"n_layer": 4, # Number of layers
"n_head": 16, # Number of attention heads
"n_inner": 4 * 512, # Inner dimension of feedforward network (4 times n_embd)
"max_sequence_len": 264, # Maximum sequence length
"epochs": 200, # Number of training epochs
"learning_rate": 1e-3, # [Initial] Learning rate
"batch_size": 1, # Batch size (since the dataset is small)
"dropout": 0.2 # Dropout probability
}
# More Script/Training parameters:
min_training_input_seq_len = 32
Early_stopping_loss = 0.003
Per_token_loss_threshold = 0.5
# Adjust this Per_token_loss_threshold as needed # Per-Token Loss: torch.nn.CrossEntropyLoss with reduction='none' is used to get the loss for each individual token. Reshaping Loss: The per-token loss is reshaped to have the same dimensions as target_seq for easier indexing. Threshold for Error Tokens: A threshold is defined to filter tokens with significant errors. You can adjust this threshold value (e.g., 0.5) based on your observations. Identifying Error Tokens: The code iterates through the per-token loss, and tokens with loss values above the threshold are identified.
def print_with_line(message):
frame = inspect.currentframe().f_back # needs import inspect
line_number = frame.f_lineno
print(f"{message} at script line {line_number}")
# --- Tokenizer and Detokenizer ---
class Tokenizer:
def __init__(self, text, special_tokens, vocab_size_hyperparameter):
self.special_tokens = special_tokens
self.cr_token = special_tokens[1]
#self.punctuation = string.punctuation # Store punctuation characters
self.punctuation_list = ['.', ',', '/', '\\', '[', ']', '<', '?', '>', '-'] # Specific list of punctuations
estimated_vocab_size = vocab_size_hyperparameter #hyperparameters["vocab_size"]
# Preprocess text to separate existing punctuation from words, and then auto-inserts <cr> special tokens at carriage returns.
text = self.separate_punctuation(text)
in_text_words = []
in_text_punctuations = []
for candidate in text.split(): # Split into tokens (space-separated words and punctuation; includes words attached to punctuation)
cleaned_words = ''.join(c for c in candidate if c not in self.punctuation_list) #strip punctuation from words
if cleaned_words:
in_text_words.append(cleaned_words.lower())
for char in candidate: # Iterate through each character in the candidates
if char in self.punctuation_list:
in_text_punctuations.append(char) # Add in-text punctuation as separate tokens
# Ensure unique and sorted word and punctuation tokens
in_text_words = list(set(in_text_words))
in_text_words.sort()
in_text_punctuations = list(set(in_text_punctuations))
in_text_punctuations.sort()
self.vocab = self.special_tokens + in_text_punctuations + in_text_words # Vocab starts with special tokens, then punctuation, then whole words.
self.vocab_size = len(self.vocab) # Calculate vocabulary size dynamically
# Alert if vocab_size is different from a predefined hyperparameter estimate (optional)
if self.vocab_size != estimated_vocab_size:
print(f"Warning: Calculated vocab_size ({self.vocab_size}) differs from estimated size ({estimated_vocab_size}).")
self.word_to_index = {word: i for i, word in enumerate(self.vocab)}
self.index_to_word = {i: word for i, word in enumerate(self.vocab)}
def separate_punctuation(self, text): # text passed to the tokenize method is also preprocessed to have separated punctuation before tokenization #separate_punctuation(self, text) method, as currently implemented, does not directly affect carriage returns (\r) in the original text.
#Adds spaces around punctuation to separate them from words.
for char in self.punctuation_list:
text = text.replace(char, f' {char} ')
#Replace carriage returns (backslash-r) in the input text with a special token (e.g., <cr>).
text = text.replace('\r', f' {self.cr_token} ') # Replace \r with <cr> token and pad with spaces.
#print(f"Carriage-Return's special token inserted as {self.cr_token}")
return text
def tokenize(self, text):
# Apply punctuation separation before tokenizing
text = self.separate_punctuation(text)
words = text.lower().split() #preserves special tokens like the auto-inserted <cr>
token_ids = []
for word in words:
if word in self.word_to_index:
token_ids.append(self.word_to_index[word])
else:
#token_ids.append(self.word_to_index['<pad>'])
token_ids.append(self.word_to_index[self.special_tokens[-1]]) # Use last special token as default (e.g., <pad>) # The tokenize method now uses the last special token in the self.special_tokens list (which is assumed to be the padding token <pad> in this case) as the default token for unknown words.
return token_ids
def detokenize(self, tokens):
return " ".join([self.index_to_word[token] for token in tokens if token in self.index_to_word])
# --- GPT-2 Model ---
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config["n_embd"] % config["n_head"] == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config["n_embd"], 3 * config["n_embd"])
# output projection
self.c_proj = nn.Linear(config["n_embd"], config["n_embd"])
# regularization
self.attn_dropout = nn.Dropout(0.1)
self.resid_dropout = nn.Dropout(0.1)
self.n_head = config["n_head"]
self.n_embd = config["n_embd"]
self.register_buffer("bias", torch.tril(torch.ones(config["max_sequence_len"], config["max_sequence_len"]))
.view(1, 1, config["max_sequence_len"], config["max_sequence_len"]))
def forward(self, x):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k ,v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
att = torch.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.resid_dropout(self.c_proj(y))
return y
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config["n_embd"])
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config["n_embd"])
self.mlp = nn.Sequential(
nn.Linear(config["n_embd"], config["n_inner"]),
nn.GELU(),
nn.Linear(config["n_inner"], config["n_embd"]),
nn.Dropout(0.1),
)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class ToyGPT2(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.token_embedding_table = nn.Embedding(config["vocab_size"], config["n_embd"])
self.position_embedding_table = nn.Embedding(config["max_sequence_len"], config["n_embd"])
self.blocks = nn.Sequential(*[Block(config) for _ in range(config["n_layer"])])
self.ln_f = nn.LayerNorm(config["n_embd"]) # final layer norm
self.lm_head = nn.Linear(config["n_embd"], config["vocab_size"])
# Initialize weights to be small for better training
self.apply(self._init_weights)
# Tie the weights of the embedding and the output layer
self.lm_head.weight = self.token_embedding_table.weight
def _init_weights(self, module):
#if isinstance(module, nn.Linear):
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
#print("isinstance(module, nn.Linear) and module.bias is not None")
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
#print("torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)")
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B,T,C)
pos_emb = self.position_embedding_table(torch.arange(T, device=idx.device)) # (T,C)
x = tok_emb + pos_emb # (B,T,C)
x = self.blocks(x) # (B,T,C)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = nn.functional.cross_entropy(logits, targets)
return logits, loss
def generate(self, input_ids, max_new_tokens, temperature=1.0):
self.eval() # Set model to evaluation mode
with torch.no_grad(): # Disable gradient calculation during generation
for _ in range(max_new_tokens):
# Limit input_ids to the last max_sequence_len tokens
input_ids_truncated = input_ids[:, -self.config["max_sequence_len"]:]
# Get logits from the model
logits, _ = self(input_ids_truncated) # No need for loss during generation
# Focus on the logits for the last time step (next token prediction)
logits = logits[:, -1, :] / temperature
# Apply softmax to get probabilities
probs = torch.softmax(logits, dim=-1)
# Sample the next token
next_token = torch.multinomial(probs, num_samples=1)
# Append next token to input sequence
input_ids = torch.cat((input_ids, next_token), dim=1)
self.train() # Return model to training mode
return input_ids
# --- Dataset ---
class Dataset(Dataset):
def __init__(self, data, tokenizer, seq_len):
self.tokenizer = tokenizer
self.seq_len = seq_len
print_with_line("# Tokenize the entire data")
self.tokens = self.tokenizer.tokenize(data)
print(f"DEBUG: Total tokens: {len(self.tokens)} in Dataset(") # Add this line
# Calculate token counts
self.token_counts = self._calculate_token_counts() # Store counts in the object
# Create input-target pairs
self.data = []
for i in range(0, len(self.tokens) - seq_len - 1, seq_len):
input_seq = self.tokens[i:i + seq_len]
target_seq = self.tokens[i + 1:i + seq_len + 1]
self.data.append((torch.tensor(input_seq), torch.tensor(target_seq)))
print(f"DEBUG: Number of data samples created in class Dataset(Dataset): {len(self.data)}") # Add this line
# Print token-vocabulary information
print_with_line("# Print token-vocabulary information:")
self.print_vocabulary_info() # Call the new method
def _calculate_token_counts(self):
#Calculates the frequency of each token in self.tokens.
counts = {}
for token in self.tokens:
if token in counts:
counts[token] += 1
print(f"token {token} count has been incremented to {counts[token]}")
else:
counts[token] = 1
return counts
def print_vocabulary_info(self):
print_with_line("# Print token-vocabulary information:")
for token_id in range(self.tokenizer.vocab_size): # Iterate through indices
token = self.tokenizer.index_to_word[token_id] # Get token string from index
count = self.token_counts.get(token_id, 0) # Correct: token_id is an integer ID # Get count, default to 0 if not found
#print(f" Token {token_id}: '{token}' occurs {count} times in the dataset")
print(f" Token {token_id}:'{token}' \t\t occurs {count} times in the dataset")
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx] # Return the pre-processed tensor pairs
# --- Trainer ---
class Trainer:
def __init__(self, model, tokenizer, train_loader, hyperparameters, device):
self.model = model
self.tokenizer = tokenizer
self.train_loader = train_loader # notice this change
self.hyperparameters = hyperparameters
self.Per_token_loss_threshold = Per_token_loss_threshold # Assign global to instance
self.Early_stopping_loss = Early_stopping_loss # Set Early stopping loss
self.device = device # Store the device
self.optimizer = optim.AdamW(self.model.parameters(), lr=hyperparameters["learning_rate"])
self.scheduler = ReduceLROnPlateau(self.optimizer, mode='min', factor=0.99, patience=10)
# mode='min': Indicates that you want to minimize the loss.
# factor=0.1: The factor by which the learning rate is reduced (e.g., 0.1 means reduce to 10%).
# patience=10: Number of epochs with no improvement after which the learning rate will be reduced.
# verbose=True: Prints a message when the learning rate is adjusted.
# Step the Scheduler: Call self.scheduler.step(average_loss) after calculating average_loss. This tells the scheduler to update the learning rate based on the current loss.
# Automated Adjustment: The scheduler automatically adjusts the learning rate, removing the need for manual tuning during training.
# Improved Convergence: Can help the model converge more smoothly and potentially reach a better solution.
# Reduced Fluctuations: Helps reduce the fluctuations in the loss.
def train(self):
self.model.train() # Set model to training mode
for epoch in range(self.hyperparameters["epochs"]):
total_loss = 0
for batch_idx, (input_seq, target_seq) in enumerate(self.train_loader): # Use enumerate to get batch index # Directly use the loaded batches
input_seq = input_seq.to(self.device) # Move to device
target_seq = target_seq.to(self.device) # Move to device
self.optimizer.zero_grad()
logits, loss = self.model(input_seq, targets=target_seq) # logits are the raw predictions
# <DISABLED the non-working feature>
"""
# Per-token loss calculation (using cross-entropy as an example)
loss_fn = torch.nn.CrossEntropyLoss(reduction='none') # 'none' to get per-token loss
per_token_loss = loss_fn(logits.view(-1, logits.size(-1)), target_seq.view(-1))
per_token_loss = per_token_loss.view(target_seq.size()) # Reshape to match target_seq shape
# Move error reporting INSIDE the batch loop
if loss.item() < 0.01: # Check loss for current batch
print("Tokens with significant errors (per-token loss > threshold): [feature not working]")
for i in range(target_seq.size(0)): # Iterate over elements in the batch
for token_idx in range(target_seq.size(1)):
if per_token_loss[i, token_idx] > self.Per_token_loss_threshold:
target_token_id = target_seq[i, token_idx].item()
target_word = self.tokenizer.index_to_word[target_token_id]
print(f" Batch item {i}, Token {token_idx}: Word '{target_word}' (ID: {target_token_id}), Loss: {per_token_loss[i, token_idx].item():.4f}")
"""
# <DISABLED the non-working feature>
loss.backward()
self.optimizer.step()
total_loss += loss.item()
average_loss = total_loss / len(self.train_loader) # Consider number of batches
print(f"Epoch {epoch+1}/{self.hyperparameters['epochs']}, Loss: {average_loss:.4f}")
if loss < 0.01: # Check loss for current batch
print(" LOSS IS BELOW 0.01")
if loss < 0.001: # Check loss for current batch
print(" LOSS IS BELOW 0.001")
self.scheduler.step(average_loss) # Update the lossrate-scheduler with the current loss
# Check if the learning rate has changed and print it
current_lr = self.optimizer.param_groups[0]['lr']
last_lr = self.scheduler.get_last_lr()[0] # Get the last learning rate
if current_lr != last_lr:
print(f"Learning rate reduced to {last_lr:.6f}")
if(epoch%100 ==0):
current_lr = self.optimizer.param_groups[0]['lr'] # Get the current learning rate from the optimizer
print(f"Epoch {epoch + 1}: Current learning rate: {current_lr:.6f}") #current_lr Retrieval: Inside the if (epoch % 100 == 0) block, the current learning rate is obtained using self.optimizer.param_groups[0]['lr']. This is the standard way to access the learning rate of the first (and often only) parameter group in PyTorch optimizers.
#self.save_checkpoint(f"model_checkpoint_epoch_{epoch+1}.pth")
self.save_checkpoint(f"model_checkpoint_epoch_{epoch + 1}.pth", epoch, average_loss) # Pass epoch and average_loss
# Early stopping condition
if average_loss < self.Early_stopping_loss:
print(f"Early stopping: Average loss {average_loss:.4f} is below the threshold ({self.Early_stopping_loss}).")
self.save_checkpoint(f"model_checkpoint_early_stop.pth", epoch, average_loss) # Save checkpoint
break # Exit the training loop
def save_checkpoint(self, path, epoch, average_loss):
# Get the current script's filename
script_filename = os.path.basename(__file__) # Get filename from the current script path
# Get the current date and time
current_datetime = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
# Construct the new filename
base_filename, extension = os.path.splitext(path) # Split original filename
new_filename = f"{base_filename}_{script_filename}_{current_datetime}{extension}"
torch.save({
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'loss': average_loss,
'hyperparameters': self.hyperparameters
}, new_filename)
# --- Main Execution ---
def main():
# Determine device (GPU if available, else CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
print_with_line("# Initialize tokenizer")
#tokenizer = Tokenizer(Memorized_Speech)
tokenizer = Tokenizer(Memorized_Speech, hyperparameters["special_tokens"], hyperparameters["vocab_size"]) # The special_tokens list is now defined in the hyperparameters dictionary.
print(f"Vocabulary Size: {tokenizer.vocab_size}")
print_with_line("# Prepare dataset")
#dataset = Dataset(Memorized_Speech, tokenizer, hyperparameters["max_sequence_len"])
dataset = Dataset(Memorized_Speech, tokenizer, min_training_input_seq_len) # Common values of min_training_input_seq_len for smaller models or experiments are 32, 64, 128, or 256.
train_loader = DataLoader(dataset, batch_size=hyperparameters["batch_size"])
print_with_line("# Initialize model")
print(f"HyperParamters = {hyperparameters}")
model = ToyGPT2(hyperparameters).to(device)
print_with_line("# Initialize trainer")
trainer = Trainer(model, tokenizer, train_loader, hyperparameters, device)
print_with_line("# Train the model")
trainer.train()
print("") # space
print_with_line("# --- Inference Examples ---")
model.eval()
# Example 1: Recite the Gettysburg Address
print_with_line("# Example 1: Recite the Gettysburg Address")
start_text = "four score"
start_tokens = torch.tensor(tokenizer.tokenize(start_text)).unsqueeze(0).to(device)
print("Prompt:", start_text)
generated_tokens = model.generate(start_tokens, max_new_tokens=len(dataset.tokens)-len(start_tokens), temperature=1.0) # Generate a completion for the whole dataset
generated_text = tokenizer.detokenize(generated_tokens.squeeze().tolist())
print("\nResponse:\n", generated_text)
print("") # space
# Example 2: Free text generation after encountering <FreetheLLM> #### Eventually, modify to request user text inxlusinf only Gettysburg vocabulary]
print_with_line("# Example 2: Free text generation after encountering <FreetheLLM>")
start_text = "we here highly resolve that these dead shall not have died in vain and that this nation under god shall have a new "
special_token = tokenizer.special_tokens[0] # Get the <FreetheLLM> token
start_text += special_token # Append the special token directly to the string
print("Prompt:", start_text)
start_tokens = torch.tensor(tokenizer.tokenize(start_text)).unsqueeze(0).to(device) # Tokenize the combined string
generated_tokens = model.generate(start_tokens, max_new_tokens=100, temperature=1.0)
generated_text = tokenizer.detokenize(generated_tokens.squeeze().tolist())
print("\nFreestyle Generation:\n", generated_text)
if __name__ == "__main__":
main()