MartaTT commited on
Commit
377350b
1 Parent(s): 0e5aabf

Upload 7 files

Browse files
Adapter.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c6bacac94a93d77e009d8af59eccc3896b3e44d2bb577302ac15a318a4c0d8c
3
+ size 31081753
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: codellama/CodeLlama-7b-hf
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "▁<PRE>",
4
+ "▁<MID>",
5
+ "▁<SUF>",
6
+ "▁<EOT>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "</s>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": "<unk>",
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45ccb9c8b6b561889acea59191d66986d314e7cbd6a78abc6e49b139ca91c1e6
3
+ size 500058
tokenizer_config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32007": {
30
+ "content": "▁<PRE>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32008": {
38
+ "content": "▁<SUF>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32009": {
46
+ "content": "▁<MID>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32010": {
54
+ "content": "▁<EOT>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ }
61
+ },
62
+ "additional_special_tokens": [
63
+ "▁<PRE>",
64
+ "▁<MID>",
65
+ "▁<SUF>",
66
+ "▁<EOT>"
67
+ ],
68
+ "bos_token": "<s>",
69
+ "clean_up_tokenization_spaces": false,
70
+ "eos_token": "</s>",
71
+ "eot_token": "▁<EOT>",
72
+ "fill_token": "<FILL_ME>",
73
+ "legacy": null,
74
+ "middle_token": "▁<MID>",
75
+ "model_max_length": 16384,
76
+ "pad_token": "<unk>",
77
+ "padding_side": "right",
78
+ "prefix_token": "▁<PRE>",
79
+ "sp_model_kwargs": {},
80
+ "suffix_token": "▁<SUF>",
81
+ "tokenizer_class": "CodeLlamaTokenizer",
82
+ "unk_token": "<unk>",
83
+ "use_default_system_prompt": false
84
+ }
trainer_state.json ADDED
@@ -0,0 +1,727 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.8465077877044678,
3
+ "best_model_checkpoint": "outputs/checkpoint-92",
4
+ "epoch": 1.0,
5
+ "eval_steps": 23,
6
+ "global_step": 92,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.010869565217391304,
13
+ "grad_norm": 0.23393695056438446,
14
+ "learning_rate": 0.001,
15
+ "loss": 2.6154,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.021739130434782608,
20
+ "grad_norm": 0.4464223086833954,
21
+ "learning_rate": 0.001,
22
+ "loss": 2.3194,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.03260869565217391,
27
+ "grad_norm": 1.6278090476989746,
28
+ "learning_rate": 0.001,
29
+ "loss": 2.1998,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.043478260869565216,
34
+ "grad_norm": 0.32962527871131897,
35
+ "learning_rate": 0.001,
36
+ "loss": 1.9167,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.05434782608695652,
41
+ "grad_norm": 0.4716239273548126,
42
+ "learning_rate": 0.001,
43
+ "loss": 1.7546,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.06521739130434782,
48
+ "grad_norm": 0.38779595494270325,
49
+ "learning_rate": 0.001,
50
+ "loss": 1.6069,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.07608695652173914,
55
+ "grad_norm": 0.3187870681285858,
56
+ "learning_rate": 0.001,
57
+ "loss": 1.5629,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.08695652173913043,
62
+ "grad_norm": 0.27891236543655396,
63
+ "learning_rate": 0.001,
64
+ "loss": 1.4564,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.09782608695652174,
69
+ "grad_norm": 0.2857877314090729,
70
+ "learning_rate": 0.001,
71
+ "loss": 1.4014,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.10869565217391304,
76
+ "grad_norm": 0.2176678329706192,
77
+ "learning_rate": 0.001,
78
+ "loss": 1.3423,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.11956521739130435,
83
+ "grad_norm": 0.27025488018989563,
84
+ "learning_rate": 0.001,
85
+ "loss": 1.3101,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.13043478260869565,
90
+ "grad_norm": 0.2788834571838379,
91
+ "learning_rate": 0.001,
92
+ "loss": 1.2676,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.14130434782608695,
97
+ "grad_norm": 0.24594657123088837,
98
+ "learning_rate": 0.001,
99
+ "loss": 1.3237,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.15217391304347827,
104
+ "grad_norm": 0.2215934842824936,
105
+ "learning_rate": 0.001,
106
+ "loss": 1.2517,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.16304347826086957,
111
+ "grad_norm": 0.1776692122220993,
112
+ "learning_rate": 0.001,
113
+ "loss": 1.2289,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.17391304347826086,
118
+ "grad_norm": 0.18647059798240662,
119
+ "learning_rate": 0.001,
120
+ "loss": 1.2342,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.18478260869565216,
125
+ "grad_norm": 0.2081366926431656,
126
+ "learning_rate": 0.001,
127
+ "loss": 1.2139,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.1956521739130435,
132
+ "grad_norm": 0.18122343719005585,
133
+ "learning_rate": 0.001,
134
+ "loss": 1.1598,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.20652173913043478,
139
+ "grad_norm": 0.19013595581054688,
140
+ "learning_rate": 0.001,
141
+ "loss": 1.2007,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.21739130434782608,
146
+ "grad_norm": 0.17870813608169556,
147
+ "learning_rate": 0.001,
148
+ "loss": 1.1708,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.22826086956521738,
153
+ "grad_norm": 0.19605986773967743,
154
+ "learning_rate": 0.001,
155
+ "loss": 1.0883,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.2391304347826087,
160
+ "grad_norm": 0.1825353056192398,
161
+ "learning_rate": 0.001,
162
+ "loss": 1.1113,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.25,
167
+ "grad_norm": 0.20768754184246063,
168
+ "learning_rate": 0.001,
169
+ "loss": 1.1057,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.25,
174
+ "eval_loss": 1.0819175243377686,
175
+ "eval_runtime": 39.6272,
176
+ "eval_samples_per_second": 29.55,
177
+ "eval_steps_per_second": 3.71,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.2608695652173913,
182
+ "grad_norm": 0.24947208166122437,
183
+ "learning_rate": 0.001,
184
+ "loss": 1.0427,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.2717391304347826,
189
+ "grad_norm": 0.41416075825691223,
190
+ "learning_rate": 0.001,
191
+ "loss": 1.0768,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.2826086956521739,
196
+ "grad_norm": 3.9600319862365723,
197
+ "learning_rate": 0.001,
198
+ "loss": 1.069,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.29347826086956524,
203
+ "grad_norm": 0.8276275992393494,
204
+ "learning_rate": 0.001,
205
+ "loss": 1.1223,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.30434782608695654,
210
+ "grad_norm": 0.23127484321594238,
211
+ "learning_rate": 0.001,
212
+ "loss": 1.0725,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.31521739130434784,
217
+ "grad_norm": 0.22777508199214935,
218
+ "learning_rate": 0.001,
219
+ "loss": 1.1025,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.32608695652173914,
224
+ "grad_norm": 0.23111239075660706,
225
+ "learning_rate": 0.001,
226
+ "loss": 1.0722,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.33695652173913043,
231
+ "grad_norm": 0.24532677233219147,
232
+ "learning_rate": 0.001,
233
+ "loss": 1.1259,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.34782608695652173,
238
+ "grad_norm": 0.7043253183364868,
239
+ "learning_rate": 0.001,
240
+ "loss": 1.0502,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.358695652173913,
245
+ "grad_norm": 0.22311310470104218,
246
+ "learning_rate": 0.001,
247
+ "loss": 0.9918,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.3695652173913043,
252
+ "grad_norm": 0.2729714810848236,
253
+ "learning_rate": 0.001,
254
+ "loss": 1.0666,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.3804347826086957,
259
+ "grad_norm": 0.1948792189359665,
260
+ "learning_rate": 0.001,
261
+ "loss": 0.9834,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.391304347826087,
266
+ "grad_norm": 0.17322953045368195,
267
+ "learning_rate": 0.001,
268
+ "loss": 0.9522,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.40217391304347827,
273
+ "grad_norm": 0.15274113416671753,
274
+ "learning_rate": 0.001,
275
+ "loss": 0.9644,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.41304347826086957,
280
+ "grad_norm": 0.18090985715389252,
281
+ "learning_rate": 0.001,
282
+ "loss": 0.991,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.42391304347826086,
287
+ "grad_norm": 0.1719120740890503,
288
+ "learning_rate": 0.001,
289
+ "loss": 0.9659,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.43478260869565216,
294
+ "grad_norm": 0.17336900532245636,
295
+ "learning_rate": 0.001,
296
+ "loss": 1.0173,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.44565217391304346,
301
+ "grad_norm": 0.16952969133853912,
302
+ "learning_rate": 0.001,
303
+ "loss": 0.9946,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.45652173913043476,
308
+ "grad_norm": 0.1436886191368103,
309
+ "learning_rate": 0.001,
310
+ "loss": 0.9536,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.4673913043478261,
315
+ "grad_norm": 0.16588632762432098,
316
+ "learning_rate": 0.001,
317
+ "loss": 0.9723,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.4782608695652174,
322
+ "grad_norm": 0.1483495533466339,
323
+ "learning_rate": 0.001,
324
+ "loss": 0.9297,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.4891304347826087,
329
+ "grad_norm": 0.1516825258731842,
330
+ "learning_rate": 0.001,
331
+ "loss": 0.9911,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.5,
336
+ "grad_norm": 0.16181206703186035,
337
+ "learning_rate": 0.001,
338
+ "loss": 0.9688,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.5,
343
+ "eval_loss": 0.9558140635490417,
344
+ "eval_runtime": 39.5819,
345
+ "eval_samples_per_second": 29.584,
346
+ "eval_steps_per_second": 3.714,
347
+ "step": 46
348
+ },
349
+ {
350
+ "epoch": 0.5108695652173914,
351
+ "grad_norm": 0.14223167300224304,
352
+ "learning_rate": 0.001,
353
+ "loss": 0.8418,
354
+ "step": 47
355
+ },
356
+ {
357
+ "epoch": 0.5217391304347826,
358
+ "grad_norm": 0.14156702160835266,
359
+ "learning_rate": 0.001,
360
+ "loss": 0.868,
361
+ "step": 48
362
+ },
363
+ {
364
+ "epoch": 0.532608695652174,
365
+ "grad_norm": 0.1668156236410141,
366
+ "learning_rate": 0.001,
367
+ "loss": 0.9643,
368
+ "step": 49
369
+ },
370
+ {
371
+ "epoch": 0.5434782608695652,
372
+ "grad_norm": 0.14512571692466736,
373
+ "learning_rate": 0.001,
374
+ "loss": 0.9395,
375
+ "step": 50
376
+ },
377
+ {
378
+ "epoch": 0.5543478260869565,
379
+ "grad_norm": 0.1591370701789856,
380
+ "learning_rate": 0.001,
381
+ "loss": 0.9467,
382
+ "step": 51
383
+ },
384
+ {
385
+ "epoch": 0.5652173913043478,
386
+ "grad_norm": 0.15379436314105988,
387
+ "learning_rate": 0.001,
388
+ "loss": 0.984,
389
+ "step": 52
390
+ },
391
+ {
392
+ "epoch": 0.5760869565217391,
393
+ "grad_norm": 0.15107646584510803,
394
+ "learning_rate": 0.001,
395
+ "loss": 0.924,
396
+ "step": 53
397
+ },
398
+ {
399
+ "epoch": 0.5869565217391305,
400
+ "grad_norm": 0.14596650004386902,
401
+ "learning_rate": 0.001,
402
+ "loss": 0.933,
403
+ "step": 54
404
+ },
405
+ {
406
+ "epoch": 0.5978260869565217,
407
+ "grad_norm": 0.13844196498394012,
408
+ "learning_rate": 0.001,
409
+ "loss": 0.8861,
410
+ "step": 55
411
+ },
412
+ {
413
+ "epoch": 0.6086956521739131,
414
+ "grad_norm": 0.1443144679069519,
415
+ "learning_rate": 0.001,
416
+ "loss": 0.9239,
417
+ "step": 56
418
+ },
419
+ {
420
+ "epoch": 0.6195652173913043,
421
+ "grad_norm": 0.1431627869606018,
422
+ "learning_rate": 0.001,
423
+ "loss": 0.9399,
424
+ "step": 57
425
+ },
426
+ {
427
+ "epoch": 0.6304347826086957,
428
+ "grad_norm": 0.13777939975261688,
429
+ "learning_rate": 0.001,
430
+ "loss": 0.8712,
431
+ "step": 58
432
+ },
433
+ {
434
+ "epoch": 0.6413043478260869,
435
+ "grad_norm": 0.14304274320602417,
436
+ "learning_rate": 0.001,
437
+ "loss": 0.977,
438
+ "step": 59
439
+ },
440
+ {
441
+ "epoch": 0.6521739130434783,
442
+ "grad_norm": 0.13079452514648438,
443
+ "learning_rate": 0.001,
444
+ "loss": 0.8102,
445
+ "step": 60
446
+ },
447
+ {
448
+ "epoch": 0.6630434782608695,
449
+ "grad_norm": 0.13848628103733063,
450
+ "learning_rate": 0.001,
451
+ "loss": 0.8854,
452
+ "step": 61
453
+ },
454
+ {
455
+ "epoch": 0.6739130434782609,
456
+ "grad_norm": 0.13032200932502747,
457
+ "learning_rate": 0.001,
458
+ "loss": 0.9307,
459
+ "step": 62
460
+ },
461
+ {
462
+ "epoch": 0.6847826086956522,
463
+ "grad_norm": 0.13883714377880096,
464
+ "learning_rate": 0.001,
465
+ "loss": 0.9464,
466
+ "step": 63
467
+ },
468
+ {
469
+ "epoch": 0.6956521739130435,
470
+ "grad_norm": 0.12983089685440063,
471
+ "learning_rate": 0.001,
472
+ "loss": 0.9065,
473
+ "step": 64
474
+ },
475
+ {
476
+ "epoch": 0.7065217391304348,
477
+ "grad_norm": 0.12657804787158966,
478
+ "learning_rate": 0.001,
479
+ "loss": 0.8866,
480
+ "step": 65
481
+ },
482
+ {
483
+ "epoch": 0.717391304347826,
484
+ "grad_norm": 0.14905163645744324,
485
+ "learning_rate": 0.001,
486
+ "loss": 0.9583,
487
+ "step": 66
488
+ },
489
+ {
490
+ "epoch": 0.7282608695652174,
491
+ "grad_norm": 0.1388324350118637,
492
+ "learning_rate": 0.001,
493
+ "loss": 0.7862,
494
+ "step": 67
495
+ },
496
+ {
497
+ "epoch": 0.7391304347826086,
498
+ "grad_norm": 0.13726989924907684,
499
+ "learning_rate": 0.001,
500
+ "loss": 0.8841,
501
+ "step": 68
502
+ },
503
+ {
504
+ "epoch": 0.75,
505
+ "grad_norm": 0.14547140896320343,
506
+ "learning_rate": 0.001,
507
+ "loss": 0.9234,
508
+ "step": 69
509
+ },
510
+ {
511
+ "epoch": 0.75,
512
+ "eval_loss": 0.8918075561523438,
513
+ "eval_runtime": 39.653,
514
+ "eval_samples_per_second": 29.531,
515
+ "eval_steps_per_second": 3.707,
516
+ "step": 69
517
+ },
518
+ {
519
+ "epoch": 0.7608695652173914,
520
+ "grad_norm": 0.12735989689826965,
521
+ "learning_rate": 0.001,
522
+ "loss": 0.8529,
523
+ "step": 70
524
+ },
525
+ {
526
+ "epoch": 0.7717391304347826,
527
+ "grad_norm": 0.12790235877037048,
528
+ "learning_rate": 0.001,
529
+ "loss": 0.8211,
530
+ "step": 71
531
+ },
532
+ {
533
+ "epoch": 0.782608695652174,
534
+ "grad_norm": 0.14512644708156586,
535
+ "learning_rate": 0.001,
536
+ "loss": 0.9544,
537
+ "step": 72
538
+ },
539
+ {
540
+ "epoch": 0.7934782608695652,
541
+ "grad_norm": 0.1390400230884552,
542
+ "learning_rate": 0.001,
543
+ "loss": 0.8758,
544
+ "step": 73
545
+ },
546
+ {
547
+ "epoch": 0.8043478260869565,
548
+ "grad_norm": 0.12742573022842407,
549
+ "learning_rate": 0.001,
550
+ "loss": 0.8937,
551
+ "step": 74
552
+ },
553
+ {
554
+ "epoch": 0.8152173913043478,
555
+ "grad_norm": 0.1397847682237625,
556
+ "learning_rate": 0.001,
557
+ "loss": 0.9319,
558
+ "step": 75
559
+ },
560
+ {
561
+ "epoch": 0.8260869565217391,
562
+ "grad_norm": 0.13563187420368195,
563
+ "learning_rate": 0.001,
564
+ "loss": 0.9594,
565
+ "step": 76
566
+ },
567
+ {
568
+ "epoch": 0.8369565217391305,
569
+ "grad_norm": 0.13903594017028809,
570
+ "learning_rate": 0.001,
571
+ "loss": 0.8688,
572
+ "step": 77
573
+ },
574
+ {
575
+ "epoch": 0.8478260869565217,
576
+ "grad_norm": 0.12712402641773224,
577
+ "learning_rate": 0.001,
578
+ "loss": 0.8964,
579
+ "step": 78
580
+ },
581
+ {
582
+ "epoch": 0.8586956521739131,
583
+ "grad_norm": 0.131251260638237,
584
+ "learning_rate": 0.001,
585
+ "loss": 0.858,
586
+ "step": 79
587
+ },
588
+ {
589
+ "epoch": 0.8695652173913043,
590
+ "grad_norm": 0.1342822164297104,
591
+ "learning_rate": 0.001,
592
+ "loss": 0.8941,
593
+ "step": 80
594
+ },
595
+ {
596
+ "epoch": 0.8804347826086957,
597
+ "grad_norm": 0.1401877999305725,
598
+ "learning_rate": 0.001,
599
+ "loss": 0.8575,
600
+ "step": 81
601
+ },
602
+ {
603
+ "epoch": 0.8913043478260869,
604
+ "grad_norm": 0.13211235404014587,
605
+ "learning_rate": 0.001,
606
+ "loss": 0.8475,
607
+ "step": 82
608
+ },
609
+ {
610
+ "epoch": 0.9021739130434783,
611
+ "grad_norm": 0.13683001697063446,
612
+ "learning_rate": 0.001,
613
+ "loss": 0.8534,
614
+ "step": 83
615
+ },
616
+ {
617
+ "epoch": 0.9130434782608695,
618
+ "grad_norm": 0.13229840993881226,
619
+ "learning_rate": 0.001,
620
+ "loss": 0.8567,
621
+ "step": 84
622
+ },
623
+ {
624
+ "epoch": 0.9239130434782609,
625
+ "grad_norm": 0.12229685485363007,
626
+ "learning_rate": 0.001,
627
+ "loss": 0.7974,
628
+ "step": 85
629
+ },
630
+ {
631
+ "epoch": 0.9347826086956522,
632
+ "grad_norm": 0.14769427478313446,
633
+ "learning_rate": 0.001,
634
+ "loss": 0.8962,
635
+ "step": 86
636
+ },
637
+ {
638
+ "epoch": 0.9456521739130435,
639
+ "grad_norm": 0.12334488332271576,
640
+ "learning_rate": 0.001,
641
+ "loss": 0.817,
642
+ "step": 87
643
+ },
644
+ {
645
+ "epoch": 0.9565217391304348,
646
+ "grad_norm": 0.11790772527456284,
647
+ "learning_rate": 0.001,
648
+ "loss": 0.8305,
649
+ "step": 88
650
+ },
651
+ {
652
+ "epoch": 0.967391304347826,
653
+ "grad_norm": 0.15138116478919983,
654
+ "learning_rate": 0.001,
655
+ "loss": 0.8873,
656
+ "step": 89
657
+ },
658
+ {
659
+ "epoch": 0.9782608695652174,
660
+ "grad_norm": 0.14076858758926392,
661
+ "learning_rate": 0.001,
662
+ "loss": 0.841,
663
+ "step": 90
664
+ },
665
+ {
666
+ "epoch": 0.9891304347826086,
667
+ "grad_norm": 0.15599556267261505,
668
+ "learning_rate": 0.001,
669
+ "loss": 0.9173,
670
+ "step": 91
671
+ },
672
+ {
673
+ "epoch": 1.0,
674
+ "grad_norm": 0.19630737602710724,
675
+ "learning_rate": 0.001,
676
+ "loss": 0.8713,
677
+ "step": 92
678
+ },
679
+ {
680
+ "epoch": 1.0,
681
+ "eval_loss": 0.8465077877044678,
682
+ "eval_runtime": 39.5565,
683
+ "eval_samples_per_second": 29.603,
684
+ "eval_steps_per_second": 3.716,
685
+ "step": 92
686
+ },
687
+ {
688
+ "epoch": 1.0,
689
+ "step": 92,
690
+ "total_flos": 2.3790959179333632e+17,
691
+ "train_loss": 1.0686528734538867,
692
+ "train_runtime": 1550.4974,
693
+ "train_samples_per_second": 7.55,
694
+ "train_steps_per_second": 0.059
695
+ }
696
+ ],
697
+ "logging_steps": 1,
698
+ "max_steps": 92,
699
+ "num_input_tokens_seen": 0,
700
+ "num_train_epochs": 1,
701
+ "save_steps": 23,
702
+ "stateful_callbacks": {
703
+ "EarlyStoppingCallback": {
704
+ "args": {
705
+ "early_stopping_patience": 5,
706
+ "early_stopping_threshold": 0.0
707
+ },
708
+ "attributes": {
709
+ "early_stopping_patience_counter": 0
710
+ }
711
+ },
712
+ "TrainerControl": {
713
+ "args": {
714
+ "should_epoch_stop": false,
715
+ "should_evaluate": false,
716
+ "should_log": false,
717
+ "should_save": true,
718
+ "should_training_stop": true
719
+ },
720
+ "attributes": {}
721
+ }
722
+ },
723
+ "total_flos": 2.3790959179333632e+17,
724
+ "train_batch_size": 128,
725
+ "trial_name": null,
726
+ "trial_params": null
727
+ }