Update README.md
Browse files
README.md
CHANGED
|
@@ -1,9 +1,8 @@
|
|
| 1 |
```python
|
| 2 |
-
checkpoint_path = "model_checkpoint.pt"
|
| 3 |
-
|
| 4 |
if os.path.exists(checkpoint_path):
|
| 5 |
checkpoint = torch.load(checkpoint_path)
|
| 6 |
embedding_layer.load_state_dict(checkpoint['embedding_state'])
|
|
|
|
| 7 |
transformer_encoderLayer.load_state_dict(checkpoint['transformer_state'])
|
| 8 |
output_layer.load_state_dict(checkpoint['output_state'])
|
| 9 |
optimizer.load_state_dict(checkpoint['optimizer_state'])
|
|
@@ -13,12 +12,12 @@ else:
|
|
| 13 |
start_epoch = 0
|
| 14 |
print(" Чекпоинт не найден, начинаем обучение с нуля")
|
| 15 |
|
| 16 |
-
|
| 17 |
-
epochNum = 20
|
| 18 |
for epoch in range(epochNum):
|
| 19 |
optimizer.zero_grad()
|
| 20 |
epochmy = start_epoch + epoch
|
| 21 |
embedded = embedding_layer(input_ids)
|
|
|
|
| 22 |
src = embedded.transpose(0, 1)
|
| 23 |
|
| 24 |
outputTransformer = transformer_encoderLayer(src, src_key_padding_mask=(attention_mask == 0))
|
|
@@ -26,27 +25,27 @@ for epoch in range(epochNum):
|
|
| 26 |
|
| 27 |
logits = output_layer(outputTransformer)
|
| 28 |
loss = criterion(logits.view(-1, vocab_size), target_ids.view(-1))
|
|
|
|
| 29 |
loss.backward()
|
| 30 |
-
optimizer.step()
|
|
|
|
|
|
|
|
|
|
| 31 |
|
|
|
|
| 32 |
with torch.no_grad():
|
| 33 |
embedded = embedding_layer(input_ids)
|
|
|
|
| 34 |
src = embedded.transpose(0, 1)
|
| 35 |
outputTransformer = transformer_encoderLayer(src, src_key_padding_mask=(attention_mask == 0))
|
| 36 |
outputTransformer = outputTransformer.transpose(0, 1)
|
| 37 |
logits = output_layer(outputTransformer) # [batch, seq_len, vocab_size]
|
| 38 |
|
| 39 |
-
|
| 40 |
predicted_token_ids = torch.argmax(logits, dim=-1) # [batch, seq_len]
|
| 41 |
|
| 42 |
-
|
|
|
|
| 43 |
print("Predicted text:", predicted_text[0])
|
| 44 |
|
| 45 |
-
print(
|
| 46 |
-
torch.save({
|
| 47 |
-
'embedding_state': embedding_layer.state_dict(),
|
| 48 |
-
'transformer_state': transformer_encoderLayer.state_dict(),
|
| 49 |
-
'output_state': output_layer.state_dict(),
|
| 50 |
-
'optimizer_state': optimizer.state_dict(),
|
| 51 |
-
'epoch': epochmy
|
| 52 |
-
}, "model_checkpoint.pt")
|
|
|
|
| 1 |
```python
|
|
|
|
|
|
|
| 2 |
if os.path.exists(checkpoint_path):
|
| 3 |
checkpoint = torch.load(checkpoint_path)
|
| 4 |
embedding_layer.load_state_dict(checkpoint['embedding_state'])
|
| 5 |
+
pos_encoding.load_state_dict(checkpoint['pos_encoding_state'])
|
| 6 |
transformer_encoderLayer.load_state_dict(checkpoint['transformer_state'])
|
| 7 |
output_layer.load_state_dict(checkpoint['output_state'])
|
| 8 |
optimizer.load_state_dict(checkpoint['optimizer_state'])
|
|
|
|
| 12 |
start_epoch = 0
|
| 13 |
print(" Чекпоинт не найден, начинаем обучение с нуля")
|
| 14 |
|
| 15 |
+
epochNum = 10
|
|
|
|
| 16 |
for epoch in range(epochNum):
|
| 17 |
optimizer.zero_grad()
|
| 18 |
epochmy = start_epoch + epoch
|
| 19 |
embedded = embedding_layer(input_ids)
|
| 20 |
+
embedded = pos_encoding(embedded)
|
| 21 |
src = embedded.transpose(0, 1)
|
| 22 |
|
| 23 |
outputTransformer = transformer_encoderLayer(src, src_key_padding_mask=(attention_mask == 0))
|
|
|
|
| 25 |
|
| 26 |
logits = output_layer(outputTransformer)
|
| 27 |
loss = criterion(logits.view(-1, vocab_size), target_ids.view(-1))
|
| 28 |
+
before = pos_encoding.pos_embedding.weight.clone()
|
| 29 |
loss.backward()
|
| 30 |
+
optimizer.step() # обновляем веса
|
| 31 |
+
after = pos_encoding.pos_embedding.weight
|
| 32 |
+
print(f"Изменение весов pos_encoding: {(after - before).abs().sum():.6f}")
|
| 33 |
+
print("Loss:", loss.item())
|
| 34 |
|
| 35 |
+
# После обучения (или внутри цикла, чтобы смотреть динамику)
|
| 36 |
with torch.no_grad():
|
| 37 |
embedded = embedding_layer(input_ids)
|
| 38 |
+
embedded = pos_encoding(embedded)
|
| 39 |
src = embedded.transpose(0, 1)
|
| 40 |
outputTransformer = transformer_encoderLayer(src, src_key_padding_mask=(attention_mask == 0))
|
| 41 |
outputTransformer = outputTransformer.transpose(0, 1)
|
| 42 |
logits = output_layer(outputTransformer) # [batch, seq_len, vocab_size]
|
| 43 |
|
| 44 |
+
# Берём самый вероятный токен для каждого положения
|
| 45 |
predicted_token_ids = torch.argmax(logits, dim=-1) # [batch, seq_len]
|
| 46 |
|
| 47 |
+
# Переводим индексы обратно в текст
|
| 48 |
+
predicted_text = tokenizer.batch_decode(predicted_token_ids, skip_special_tokens=False)
|
| 49 |
print("Predicted text:", predicted_text[0])
|
| 50 |
|
| 51 |
+
print("Loss before backward:", loss.item())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|