MarkChen1214
commited on
Commit
·
b14041c
1
Parent(s):
e660a62
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.15 +/- 0.08
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25ba8377529792c2d3052a3732d2902a918f1599687c30705a46610d2bdf1055
|
3 |
+
size 108128
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c1e6e599cf0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c1e6e59d400>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 100000,
|
23 |
+
"_total_timesteps": 100000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1699752460314688847,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAf3YMP2Vmqb0Zk5O/t+yLPo6UBj8xYzQ8Q+qnvkJBHj6Rmpo+PU09vg+7Bb3yehg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxq3YP9ozQL84YQU/2JT9P2amQT+2qEi/8sbLPqOepT+J1Ty/7HwNvzzjXb67zRg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB/dgw/ZWapvRmTk7+UCas+VBxYvy9JJL237Is+jpQGPzFjNDzvNq6+JipgP2eOy79D6qe+QkEePpGamj7w0CLA/+bwP+/dsr89TT2+D7sFvfJ6GD+Ba6k9o0DKu74cyj2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.5486831 -0.08271483 -1.1529266 ]\n [ 0.27329037 0.52570426 0.01100998]\n [-0.32795915 0.15454581 0.3019605 ]\n [-0.18486495 -0.0326491 0.595626 ]]",
|
34 |
+
"desired_goal": "[[ 1.6928031 -0.7507912 0.5210147 ]\n [ 1.9811049 0.7564453 -0.7838243 ]\n [ 0.3980022 1.2939037 -0.7376333 ]\n [-0.5526874 -0.21668714 0.5968892 ]]",
|
35 |
+
"observation": "[[ 0.5486831 -0.08271483 -1.1529266 0.33405745 -0.84418225 -0.04010886]\n [ 0.27329037 0.52570426 0.01100998 -0.34026286 0.87564313 -1.5902833 ]\n [-0.32795915 0.15454581 0.3019605 -2.5440025 1.8820494 -1.3973979 ]\n [-0.18486495 -0.0326491 0.595626 0.08272458 -0.00617226 0.09868763]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApUrRvS8a1jyGSU0+EIVBvQ+yfb2R6gw+rtM0PbBlmD2nbYk+Q/zRvP3PNz3m4Jc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.10219315 0.02613553 0.20047578]\n [-0.04724604 -0.06193739 0.13761355]\n [ 0.04414719 0.0744127 0.2684147 ]\n [-0.02563298 0.04487609 0.07415943]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9nCP6sQumKMAWyUSwSMAXSUR0B13osSTQmedX2UKGgGR7/3IKx9oexOaAdLDmgIR0B12O/Yao/BdX2UKGgGR7/bg5BC2MKkaAdLBGgIR0B11imelKsddX2UKGgGR7+gEMb3oLXuaAdLAWgIR0B11lMi8nNQdX2UKGgGR7/gF4cFQl8gaAdLBGgIR0B13zaEi+tbdX2UKGgGR7/Y3WnTAnD0aAdLBGgIR0B12ayTpxFRdX2UKGgGR7+2EkB0ZFXraAdLAmgIR0B135xHXmNjdX2UKGgGR7/SK7I1cdHUaAdLA2gIR0B14BBw++uedX2UKGgGR7/ZQTVUdaMaaAdLBGgIR0B12ktWdVebdX2UKGgGR7/PDVpblijMaAdLA2gIR0B14J6IFeOXdX2UKGgGR8ADje0ojOcEaAdLFGgIR0B13dgE2YOUdX2UKGgGR7/1g/keZG8VaAdLC2gIR0B12DWUbDMvdX2UKGgGR7+7x+az/p+uaAdLAmgIR0B14O938n/ldX2UKGgGR7/VNhE0BOpLaAdLBGgIR0B13o5QxesxdX2UKGgGR7/aaRp1zQu3aAdLBGgIR0B12PK7qY7adX2UKGgGR7/aB9Cu2Zy/aAdLBGgIR0B14bm/336AdX2UKGgGR7/C5hBqsU7CaAdLAmgIR0B14iC17Y03dX2UKGgGR7/1i1E3Kji5aAdLC2gIR0B13FsDW9UTdX2UKGgGR7/W4nWrfcesaAdLBGgIR0B132gCfYjCdX2UKGgGR7/Z/ZM+NcW1aAdLBGgIR0B12co7V8TjdX2UKGgGR7++inHeaa1DaAdLAmgIR0B14oWk8A7xdX2UKGgGR7/N9a2WpqASaAdLA2gIR0B13OdlNDc/dX2UKGgGR7+/yRSxZ+x4aAdLAmgIR0B12iAOJ+DwdX2UKGgGR7+utr9ETg2qaAdLAmgIR0B14tv2oNutdX2UKGgGR7/coQWepXIVaAdLBGgIR0B14C36Q/5ddX2UKGgGR7/CmICU5dWyaAdLAmgIR0B13VZcLSeAdX2UKGgGR7+o24uscQyzaAdLAWgIR0B13X/CIk7fdX2UKGgGR7/G/yGzru6VaAdLA2gIR0B143CWNWELdX2UKGgGR7/XIMSbpeNUaAdLBGgIR0B12uVlf7aadX2UKGgGR7/Oer+5vtMPaAdLA2gIR0B13gKgIyCWdX2UKGgGR7+5agVXV9WqaAdLAmgIR0B12zrQgLZ0dX2UKGgGR7/HmGucMEzPaAdLA2gIR0B15A2OyVv/dX2UKGgGR7/hqhL5AQg+aAdLBmgIR0B14UrDqGDddX2UKGgGR7/BVU+9rXUZaAdLAmgIR0B13nI4lyBDdX2UKGgGR7/IuTRplBhQaAdLA2gIR0B129FDv3JxdX2UKGgGR7/GunMt9QXRaAdLA2gIR0B15IrZrYXgdX2UKGgGR7+khs67ulXSaAdLAWgIR0B12/rt3OfNdX2UKGgGR7/IH/LkjopyaAdLA2gIR0B14caUA1ejdX2UKGgGR7/Ec3EQ5FPSaAdLAmgIR0B13GF6AvtddX2UKGgGR7/O4FRpDeCTaAdLA2gIR0B15RtvXK8tdX2UKGgGR7/NjKgZjx0/aAdLA2gIR0B14lwdbPhRdX2UKGgGR7+7LyMDOkckaAdLAmgIR0B13L446wMZdX2UKGgGR7+lxIatLcsUaAdLAWgIR0B13OTeO4oadX2UKGgGR7/PwG4ZuQ6qaAdLA2gIR0B15aAd4mkWdX2UKGgGR7+8vRJEpiI+aAdLAmgIR0B14rM8ox5+dX2UKGgGR7/Tdd3Sro4daAdLA2gIR0B15jim2sq8dX2UKGgGR7/PaPCEYfnwaAdLA2gIR0B140wXZXdTdX2UKGgGR7/17jghr30xaAdLC2gIR0B14HPVurIYdX2UKGgGR7/chStNi6QOaAdLBGgIR0B13axC6YmcdX2UKGgGR7+olQdjoZAIaAdLAWgIR0B14KtihFmWdX2UKGgGR7+1KraM72csaAdLAmgIR0B147Rx95QhdX2UKGgGR7/YL0jC53C9aAdLBGgIR0B15yTJQtSRdX2UKGgGR7/OqQRwqAjIaAdLA2gIR0B14V5jYqXodX2UKGgGR7+hhOP/7zkIaAdLAWgIR0B14Ypc5bQkdX2UKGgGR7/Hvegte2NOaAdLA2gIR0B156fukUKzdX2UKGgGR7/opIczZYgaaAdLB2gIR0B13yN1hb4bdX2UKGgGR7/lRMN+b3GoaAdLBWgIR0B14oUJv5xjdX2UKGgGR7/SdGy5Zr57aAdLA2gIR0B137/aQFLWdX2UKGgGR7/szX8O09haaAdLCWgIR0B15Yvh60IDdX2UKGgGR7+lapxWDHwPaAdLAWgIR0B15btjTa0ydX2UKGgGR7/KevpyIYWMaAdLA2gIR0B14yWOZLIxdX2UKGgGR7/SVj7Q9ic5aAdLBGgIR0B14IaDPGADdX2UKGgGR7/ojHGS6lLwaAdLCGgIR0B16UDxLCemdX2UKGgGR7/TE61b7j1gaAdLA2gIR0B146ATZg5SdX2UKGgGR7/NsqJ/G2kSaAdLA2gIR0B14Qe1a4c4dX2UKGgGR7/U0Gu9vjwQaAdLA2gIR0B16doUSIxhdX2UKGgGR7/nGGM4tHx0aAdLCGgIR0B15zhWHUMHdX2UKGgGR7/LTYNAkcCHaAdLA2gIR0B14ZXiiqQzdX2UKGgGR7/L7/n4fwI/aAdLA2gIR0B16lBPbfxddX2UKGgGR7+3znRsuWa+aAdLAmgIR0B154jmjj7zdX2UKGgGR7/BGViWmgrZaAdLAmgIR0B14eilBQendX2UKGgGR7/pUKJEYwZgaAdLB2gIR0B15PRCx/utdX2UKGgGR7/KuieumrKeaAdLA2gIR0B16uNvOyE+dX2UKGgGR7+8j/uLJjlQaAdLAmgIR0B14lFTefqYdX2UKGgGR7+12V3Ux20RaAdLAmgIR0B15UFyJbdKdX2UKGgGR7+5p9JBgNPQaAdLAmgIR0B16zBLwnYydX2UKGgGR7+38tPHktEoaAdLAmgIR0B14p69kBjndX2UKGgGR7/cnAIppeu3aAdLBWgIR0B16HKq4pc5dX2UKGgGR7/KFr2xptaZaAdLA2gIR0B15fo7muDBdX2UKGgGR7+8rmQr+YMOaAdLAmgIR0B14zrpqynldX2UKGgGR7/I4tpVS4vwaAdLA2gIR0B16/cxj8UFdX2UKGgGR7/L5aePJaJRaAdLA2gIR0B15n/Ot4iYdX2UKGgGR7/LF2FFlTWHaAdLA2gIR0B17HAxi5NHdX2UKGgGR7/YHD7655JLaAdLBWgIR0B16YPTXrdFdX2UKGgGR7+9qQA+6iCbaAdLAmgIR0B15ul+EytWdX2UKGgGR7/hhIvrWy1NaAdLBmgIR0B15E42jwhGdX2UKGgGR7/JpBX0XgtOaAdLA2gIR0B16h1SwW30dX2UKGgGR7+nw9aEBbOeaAdLAWgIR0B15HvmYBvKdX2UKGgGR7/Rpj+aScLCaAdLA2gIR0B1526bvw3HdX2UKGgGR7/AIMz/IbOvaAdLAmgIR0B16nm8ujASdX2UKGgGR7/jqnvUjLSvaAdLB2gIR0B17dHf/FR6dX2UKGgGR7+9B4Uvf0mMaAdLAmgIR0B16uWeHzpYdX2UKGgGR7/cbIcR15jZaAdLBGgIR0B15UbvPToddX2UKGgGR7+2r6tT1kDqaAdLAmgIR0B17isLfDUFdX2UKGgGR7/BHnU2DQJHaAdLAmgIR0B16z7el9BsdX2UKGgGR7/DM10knkT6aAdLAmgIR0B166U4aP0adX2UKGgGR7/rSsS00FbFaAdLB2gIR0B16M6RyOrAdX2UKGgGR7+4ep4rz5GjaAdLAmgIR0B16/XCj1wpdX2UKGgGR7/GLH+6y0KJaAdLA2gIR0B16UPQOWjXdX2UKGgGR7/ozo+wC8vmaAdLCGgIR0B15qL876pHdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 5000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:118420647676543dacf2019fa450f8cf8acba45b56bf396272e84042339c3717
|
3 |
+
size 45167
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:423294098d2c0b4a91f473c6f2046337e35c2ca7dc29b3dbf240cdcb95ed64ca
|
3 |
+
size 46447
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c1e6e599cf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c1e6e59d400>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699752460314688847, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAf3YMP2Vmqb0Zk5O/t+yLPo6UBj8xYzQ8Q+qnvkJBHj6Rmpo+PU09vg+7Bb3yehg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAxq3YP9ozQL84YQU/2JT9P2amQT+2qEi/8sbLPqOepT+J1Ty/7HwNvzzjXb67zRg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB/dgw/ZWapvRmTk7+UCas+VBxYvy9JJL237Is+jpQGPzFjNDzvNq6+JipgP2eOy79D6qe+QkEePpGamj7w0CLA/+bwP+/dsr89TT2+D7sFvfJ6GD+Ba6k9o0DKu74cyj2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.5486831 -0.08271483 -1.1529266 ]\n [ 0.27329037 0.52570426 0.01100998]\n [-0.32795915 0.15454581 0.3019605 ]\n [-0.18486495 -0.0326491 0.595626 ]]", "desired_goal": "[[ 1.6928031 -0.7507912 0.5210147 ]\n [ 1.9811049 0.7564453 -0.7838243 ]\n [ 0.3980022 1.2939037 -0.7376333 ]\n [-0.5526874 -0.21668714 0.5968892 ]]", "observation": "[[ 0.5486831 -0.08271483 -1.1529266 0.33405745 -0.84418225 -0.04010886]\n [ 0.27329037 0.52570426 0.01100998 -0.34026286 0.87564313 -1.5902833 ]\n [-0.32795915 0.15454581 0.3019605 -2.5440025 1.8820494 -1.3973979 ]\n [-0.18486495 -0.0326491 0.595626 0.08272458 -0.00617226 0.09868763]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApUrRvS8a1jyGSU0+EIVBvQ+yfb2R6gw+rtM0PbBlmD2nbYk+Q/zRvP3PNz3m4Jc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10219315 0.02613553 0.20047578]\n [-0.04724604 -0.06193739 0.13761355]\n [ 0.04414719 0.0744127 0.2684147 ]\n [-0.02563298 0.04487609 0.07415943]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9nCP6sQumKMAWyUSwSMAXSUR0B13osSTQmedX2UKGgGR7/3IKx9oexOaAdLDmgIR0B12O/Yao/BdX2UKGgGR7/bg5BC2MKkaAdLBGgIR0B11imelKsddX2UKGgGR7+gEMb3oLXuaAdLAWgIR0B11lMi8nNQdX2UKGgGR7/gF4cFQl8gaAdLBGgIR0B13zaEi+tbdX2UKGgGR7/Y3WnTAnD0aAdLBGgIR0B12ayTpxFRdX2UKGgGR7+2EkB0ZFXraAdLAmgIR0B135xHXmNjdX2UKGgGR7/SK7I1cdHUaAdLA2gIR0B14BBw++uedX2UKGgGR7/ZQTVUdaMaaAdLBGgIR0B12ktWdVebdX2UKGgGR7/PDVpblijMaAdLA2gIR0B14J6IFeOXdX2UKGgGR8ADje0ojOcEaAdLFGgIR0B13dgE2YOUdX2UKGgGR7/1g/keZG8VaAdLC2gIR0B12DWUbDMvdX2UKGgGR7+7x+az/p+uaAdLAmgIR0B14O938n/ldX2UKGgGR7/VNhE0BOpLaAdLBGgIR0B13o5QxesxdX2UKGgGR7/aaRp1zQu3aAdLBGgIR0B12PK7qY7adX2UKGgGR7/aB9Cu2Zy/aAdLBGgIR0B14bm/336AdX2UKGgGR7/C5hBqsU7CaAdLAmgIR0B14iC17Y03dX2UKGgGR7/1i1E3Kji5aAdLC2gIR0B13FsDW9UTdX2UKGgGR7/W4nWrfcesaAdLBGgIR0B132gCfYjCdX2UKGgGR7/Z/ZM+NcW1aAdLBGgIR0B12co7V8TjdX2UKGgGR7++inHeaa1DaAdLAmgIR0B14oWk8A7xdX2UKGgGR7/N9a2WpqASaAdLA2gIR0B13OdlNDc/dX2UKGgGR7+/yRSxZ+x4aAdLAmgIR0B12iAOJ+DwdX2UKGgGR7+utr9ETg2qaAdLAmgIR0B14tv2oNutdX2UKGgGR7/coQWepXIVaAdLBGgIR0B14C36Q/5ddX2UKGgGR7/CmICU5dWyaAdLAmgIR0B13VZcLSeAdX2UKGgGR7+o24uscQyzaAdLAWgIR0B13X/CIk7fdX2UKGgGR7/G/yGzru6VaAdLA2gIR0B143CWNWELdX2UKGgGR7/XIMSbpeNUaAdLBGgIR0B12uVlf7aadX2UKGgGR7/Oer+5vtMPaAdLA2gIR0B13gKgIyCWdX2UKGgGR7+5agVXV9WqaAdLAmgIR0B12zrQgLZ0dX2UKGgGR7/HmGucMEzPaAdLA2gIR0B15A2OyVv/dX2UKGgGR7/hqhL5AQg+aAdLBmgIR0B14UrDqGDddX2UKGgGR7/BVU+9rXUZaAdLAmgIR0B13nI4lyBDdX2UKGgGR7/IuTRplBhQaAdLA2gIR0B129FDv3JxdX2UKGgGR7/GunMt9QXRaAdLA2gIR0B15IrZrYXgdX2UKGgGR7+khs67ulXSaAdLAWgIR0B12/rt3OfNdX2UKGgGR7/IH/LkjopyaAdLA2gIR0B14caUA1ejdX2UKGgGR7/Ec3EQ5FPSaAdLAmgIR0B13GF6AvtddX2UKGgGR7/O4FRpDeCTaAdLA2gIR0B15RtvXK8tdX2UKGgGR7/NjKgZjx0/aAdLA2gIR0B14lwdbPhRdX2UKGgGR7+7LyMDOkckaAdLAmgIR0B13L446wMZdX2UKGgGR7+lxIatLcsUaAdLAWgIR0B13OTeO4oadX2UKGgGR7/PwG4ZuQ6qaAdLA2gIR0B15aAd4mkWdX2UKGgGR7+8vRJEpiI+aAdLAmgIR0B14rM8ox5+dX2UKGgGR7/Tdd3Sro4daAdLA2gIR0B15jim2sq8dX2UKGgGR7/PaPCEYfnwaAdLA2gIR0B140wXZXdTdX2UKGgGR7/17jghr30xaAdLC2gIR0B14HPVurIYdX2UKGgGR7/chStNi6QOaAdLBGgIR0B13axC6YmcdX2UKGgGR7+olQdjoZAIaAdLAWgIR0B14KtihFmWdX2UKGgGR7+1KraM72csaAdLAmgIR0B147Rx95QhdX2UKGgGR7/YL0jC53C9aAdLBGgIR0B15yTJQtSRdX2UKGgGR7/OqQRwqAjIaAdLA2gIR0B14V5jYqXodX2UKGgGR7+hhOP/7zkIaAdLAWgIR0B14Ypc5bQkdX2UKGgGR7/Hvegte2NOaAdLA2gIR0B156fukUKzdX2UKGgGR7/opIczZYgaaAdLB2gIR0B13yN1hb4bdX2UKGgGR7/lRMN+b3GoaAdLBWgIR0B14oUJv5xjdX2UKGgGR7/SdGy5Zr57aAdLA2gIR0B137/aQFLWdX2UKGgGR7/szX8O09haaAdLCWgIR0B15Yvh60IDdX2UKGgGR7+lapxWDHwPaAdLAWgIR0B15btjTa0ydX2UKGgGR7/KevpyIYWMaAdLA2gIR0B14yWOZLIxdX2UKGgGR7/SVj7Q9ic5aAdLBGgIR0B14IaDPGADdX2UKGgGR7/ojHGS6lLwaAdLCGgIR0B16UDxLCemdX2UKGgGR7/TE61b7j1gaAdLA2gIR0B146ATZg5SdX2UKGgGR7/NsqJ/G2kSaAdLA2gIR0B14Qe1a4c4dX2UKGgGR7/U0Gu9vjwQaAdLA2gIR0B16doUSIxhdX2UKGgGR7/nGGM4tHx0aAdLCGgIR0B15zhWHUMHdX2UKGgGR7/LTYNAkcCHaAdLA2gIR0B14ZXiiqQzdX2UKGgGR7/L7/n4fwI/aAdLA2gIR0B16lBPbfxddX2UKGgGR7+3znRsuWa+aAdLAmgIR0B154jmjj7zdX2UKGgGR7/BGViWmgrZaAdLAmgIR0B14eilBQendX2UKGgGR7/pUKJEYwZgaAdLB2gIR0B15PRCx/utdX2UKGgGR7/KuieumrKeaAdLA2gIR0B16uNvOyE+dX2UKGgGR7+8j/uLJjlQaAdLAmgIR0B14lFTefqYdX2UKGgGR7+12V3Ux20RaAdLAmgIR0B15UFyJbdKdX2UKGgGR7+5p9JBgNPQaAdLAmgIR0B16zBLwnYydX2UKGgGR7+38tPHktEoaAdLAmgIR0B14p69kBjndX2UKGgGR7/cnAIppeu3aAdLBWgIR0B16HKq4pc5dX2UKGgGR7/KFr2xptaZaAdLA2gIR0B15fo7muDBdX2UKGgGR7+8rmQr+YMOaAdLAmgIR0B14zrpqynldX2UKGgGR7/I4tpVS4vwaAdLA2gIR0B16/cxj8UFdX2UKGgGR7/L5aePJaJRaAdLA2gIR0B15n/Ot4iYdX2UKGgGR7/LF2FFlTWHaAdLA2gIR0B17HAxi5NHdX2UKGgGR7/YHD7655JLaAdLBWgIR0B16YPTXrdFdX2UKGgGR7+9qQA+6iCbaAdLAmgIR0B15ul+EytWdX2UKGgGR7/hhIvrWy1NaAdLBmgIR0B15E42jwhGdX2UKGgGR7/JpBX0XgtOaAdLA2gIR0B16h1SwW30dX2UKGgGR7+nw9aEBbOeaAdLAWgIR0B15HvmYBvKdX2UKGgGR7/Rpj+aScLCaAdLA2gIR0B1526bvw3HdX2UKGgGR7/AIMz/IbOvaAdLAmgIR0B16nm8ujASdX2UKGgGR7/jqnvUjLSvaAdLB2gIR0B17dHf/FR6dX2UKGgGR7+9B4Uvf0mMaAdLAmgIR0B16uWeHzpYdX2UKGgGR7/cbIcR15jZaAdLBGgIR0B15UbvPToddX2UKGgGR7+2r6tT1kDqaAdLAmgIR0B17isLfDUFdX2UKGgGR7/BHnU2DQJHaAdLAmgIR0B16z7el9BsdX2UKGgGR7/DM10knkT6aAdLAmgIR0B166U4aP0adX2UKGgGR7/rSsS00FbFaAdLB2gIR0B16M6RyOrAdX2UKGgGR7+4ep4rz5GjaAdLAmgIR0B16/XCj1wpdX2UKGgGR7/GLH+6y0KJaAdLA2gIR0B16UPQOWjXdX2UKGgGR7/ozo+wC8vmaAdLCGgIR0B15qL876pHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (759 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.15447603333741428, "std_reward": 0.08298421416428153, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-12T01:34:57.970428"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2abaf8fea43de665e07e458f0cca34ccc93a2c7a51d02c47c3fb4f8795e7fa84
|
3 |
+
size 2623
|