Sentiment_Analysis / sentiment_analysis.py
MarieAngeA13's picture
Upload sentiment_analysis.py
6162fcf
raw
history blame
18.8 kB
# -*- coding: utf-8 -*-
"""Sentiment_analysis.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1EHgMQQJzwbNja0JVMM2DVvrVTMHIS3Vg
"""
!pip install transformers
import pandas as pd
from wordcloud import WordCloud
import seaborn as sns
import re
import string
from collections import Counter, defaultdict
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
import plotly.express as px
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from plotly.offline import plot
import matplotlib.gridspec as gridspec
from matplotlib.ticker import MaxNLocator
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
stopWords_nltk = set(stopwords.words('english'))
import re
from typing import Union, List
class CleanText():
""" clearing text except digits () . , word character """
def __init__(self, clean_pattern = r"[^A-ZĞÜŞİÖÇIa-zğüı'şöç0-9.\"',()]"):
self.clean_pattern =clean_pattern
def __call__(self, text: Union[str, list]) -> str:
if isinstance(text, str):
docs = [[text]]
if isinstance(text, list):
docs = text
text = [[re.sub(self.clean_pattern, " ", sent) for sent in sents] for sents in docs]
# Join the list of lists into a single string
text = ' '.join([' '.join(sents) for sents in text])
return text
def remove_emoji(data):
emoj = re.compile("["
u"\U0001F600-\U0001F64F" # emoticons
u"\U0001F300-\U0001F5FF" # symbols & pictographs
u"\U0001F680-\U0001F6FF" # transport & map symbols
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
u"\U00002500-\U00002BEF"
u"\U00002702-\U000027B0"
u"\U00002702-\U000027B0"
u"\U000024C2-\U0001F251"
u"\U0001f926-\U0001f937"
u"\U00010000-\U0010ffff"
u"\u2640-\u2642"
u"\u2600-\u2B55"
u"\u200d"
u"\u23cf"
u"\u23e9"
u"\u231a"
u"\ufe0f" # dingbats
u"\u3030"
"]+", re.UNICODE)
return re.sub(emoj, '', data)
def tokenize(text):
""" basic tokenize method with word character, non word character and digits """
text = re.sub(r" +", " ", str(text))
text = re.split(r"(\d+|[a-zA-ZğüşıöçĞÜŞİÖÇ]+|\W)", text)
text = list(filter(lambda x: x != '' and x != ' ', text))
sent_tokenized = ' '.join(text)
return sent_tokenized
regex = re.compile('[%s]' % re.escape(string.punctuation))
def remove_punct(text):
text = regex.sub(" ", text)
return text
clean = CleanText()
def label_encode(x):
if x == 1 or x == 2:
return 0
if x == 3:
return 1
if x == 5 or x == 4:
return 2
def label2name(x):
if x == 0:
return "Negative"
if x == 1:
return "Neutral"
if x == 2:
return "Positive"
from google.colab import files
uploaded = files.upload()
df = pd.read_csv('tripadvisor_hotel_reviews.csv')
print("df.columns: ", df.columns)
fig = px.histogram(df,
x = 'Rating',
title = 'Histogram of Review Rating',
template = 'ggplot2',
color = 'Rating',
color_discrete_sequence= px.colors.sequential.Blues_r,
opacity = 0.8,
height = 525,
width = 835,
)
fig.update_yaxes(title='Count')
fig.show()
df.info()
df["label"] = df["Rating"].apply(lambda x: label_encode(x))
df["label_name"] = df["label"].apply(lambda x: label2name(x))
df["Review"] = df["Review"].apply(lambda x: remove_punct(clean(remove_emoji(x).lower())[0][0]))
df.head()
fig = make_subplots(rows=1, cols=2, specs=[[{"type": "pie"}, {"type": "bar"}]])
colors = ['gold', 'mediumturquoise', 'lightgreen'] # darkorange
fig.add_trace(go.Pie(labels=df.label_name.value_counts().index,
values=df.label.value_counts().values), 1, 1)
fig.update_traces(hoverinfo='label+percent', textfont_size=20,
marker=dict(colors=colors, line=dict(color='#000000', width=2)))
fig.add_trace(go.Bar(x=df.label_name.value_counts().index, y=df.label.value_counts().values, marker_color = colors), 1,2)
fig.show()
import pandas as pd
import numpy as np
import os
import random
from pathlib import Path
import json
import torch
from tqdm.notebook import tqdm
from transformers import BertTokenizer
from torch.utils.data import TensorDataset
from transformers import BertForSequenceClassification
class Config():
seed_val = 17
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
epochs = 5
batch_size = 6
seq_length = 512
lr = 2e-5
eps = 1e-8
pretrained_model = 'bert-base-uncased'
test_size=0.15
random_state=42
add_special_tokens=True
return_attention_mask=True
pad_to_max_length=True
do_lower_case=False
return_tensors='pt'
config = Config()
# params will be saved after training
params = {"seed_val": config.seed_val,
"device":str(config.device),
"epochs":config.epochs,
"batch_size":config.batch_size,
"seq_length":config.seq_length,
"lr":config.lr,
"eps":config.eps,
"pretrained_model": config.pretrained_model,
"test_size":config.test_size,
"random_state":config.random_state,
"add_special_tokens":config.add_special_tokens,
"return_attention_mask":config.return_attention_mask,
"pad_to_max_length":config.pad_to_max_length,
"do_lower_case":config.do_lower_case,
"return_tensors":config.return_tensors,
}
import random
device = config.device
random.seed(config.seed_val)
np.random.seed(config.seed_val)
torch.manual_seed(config.seed_val)
torch.cuda.manual_seed_all(config.seed_val)
df.head()
from sklearn.model_selection import train_test_split
train_df_, val_df = train_test_split(df,
test_size=0.10,
random_state=config.random_state,
stratify=df.label.values)
train_df_.head()
train_df, test_df = train_test_split(train_df_,
test_size=0.10,
random_state=42,
stratify=train_df_.label.values)
print(len(train_df['label'].unique()))
print(train_df.shape)
print(len(val_df['label'].unique()))
print(val_df.shape)
print(len(test_df['label'].unique()))
print(test_df.shape)
tokenizer = BertTokenizer.from_pretrained(config.pretrained_model,
do_lower_case=config.do_lower_case)
encoded_data_train = tokenizer.batch_encode_plus(
train_df.Review.values,
add_special_tokens=config.add_special_tokens,
return_attention_mask=config.return_attention_mask,
pad_to_max_length=config.pad_to_max_length,
max_length=config.seq_length,
return_tensors=config.return_tensors
)
encoded_data_val = tokenizer.batch_encode_plus(
val_df.Review.values,
add_special_tokens=config.add_special_tokens,
return_attention_mask=config.return_attention_mask,
pad_to_max_length=config.pad_to_max_length,
max_length=config.seq_length,
return_tensors=config.return_tensors
)
input_ids_train = encoded_data_train['input_ids']
attention_masks_train = encoded_data_train['attention_mask']
labels_train = torch.tensor(train_df.label.values)
input_ids_val = encoded_data_val['input_ids']
attention_masks_val = encoded_data_val['attention_mask']
labels_val = torch.tensor(val_df.label.values)
dataset_train = TensorDataset(input_ids_train, attention_masks_train, labels_train)
dataset_val = TensorDataset(input_ids_val, attention_masks_val, labels_val)
model = BertForSequenceClassification.from_pretrained(config.pretrained_model,
num_labels=3,
output_attentions=False,
output_hidden_states=False)
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
dataloader_train = DataLoader(dataset_train,
sampler=RandomSampler(dataset_train),
batch_size=config.batch_size)
dataloader_validation = DataLoader(dataset_val,
sampler=SequentialSampler(dataset_val),
batch_size=config.batch_size)
from transformers import AdamW, get_linear_schedule_with_warmup
optimizer = AdamW(model.parameters(),
lr=config.lr,
eps=config.eps)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=0,
num_training_steps=len(dataloader_train)*config.epochs)
from sklearn.metrics import f1_score
def f1_score_func(preds, labels):
preds_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return f1_score(labels_flat, preds_flat, average='weighted')
def accuracy_per_class(preds, labels, label_dict):
label_dict_inverse = {v: k for k, v in label_dict.items()}
preds_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
for label in np.unique(labels_flat):
y_preds = preds_flat[labels_flat==label]
y_true = labels_flat[labels_flat==label]
print(f'Class: {label_dict_inverse[label]}')
print(f'Accuracy: {len(y_preds[y_preds==label])}/{len(y_true)}\n')
def evaluate(dataloader_val):
model.eval()
loss_val_total = 0
predictions, true_vals = [], []
for batch in dataloader_val:
batch = tuple(b.to(config.device) for b in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'labels': batch[2],
}
with torch.no_grad():
outputs = model(**inputs)
loss = outputs[0]
logits = outputs[1]
loss_val_total += loss.item()
logits = logits.detach().cpu().numpy()
label_ids = inputs['labels'].cpu().numpy()
predictions.append(logits)
true_vals.append(label_ids)
# calculate avareage val loss
loss_val_avg = loss_val_total/len(dataloader_val)
predictions = np.concatenate(predictions, axis=0)
true_vals = np.concatenate(true_vals, axis=0)
return loss_val_avg, predictions, true_vals
config.device
model.to(config.device)
for epoch in tqdm(range(1, config.epochs+1)):
model.train()
loss_train_total = 0
# allows you to see the progress of the training
progress_bar = tqdm(dataloader_train, desc='Epoch {:1d}'.format(epoch), leave=False, disable=False)
for batch in progress_bar:
model.zero_grad()
batch = tuple(b.to(config.device) for b in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'labels': batch[2],
}
outputs = model(**inputs)
loss = outputs[0]
loss_train_total += loss.item()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
progress_bar.set_postfix({'training_loss': '{:.3f}'.format(loss.item()/len(batch))})
torch.save(model.state_dict(), f'_BERT_epoch_{epoch}.model')
tqdm.write(f'\nEpoch {epoch}')
loss_train_avg = loss_train_total/len(dataloader_train)
tqdm.write(f'Training loss: {loss_train_avg}')
val_loss, predictions, true_vals = evaluate(dataloader_validation)
val_f1 = f1_score_func(predictions, true_vals)
tqdm.write(f'Validation loss: {val_loss}')
tqdm.write(f'F1 Score (Weighted): {val_f1}');
# save model params and other configs
with Path('params.json').open("w") as f:
json.dump(params, f, ensure_ascii=False, indent=4)
model.load_state_dict(torch.load(f'./_BERT_epoch_3.model', map_location=torch.device('cpu')))
from sklearn.metrics import classification_report
preds_flat = np.argmax(predictions, axis=1).flatten()
print(classification_report(preds_flat, true_vals))
pred_final = []
for i, row in tqdm(val_df.iterrows(), total=val_df.shape[0]):
predictions = []
review = row["Review"]
encoded_data_test_single = tokenizer.batch_encode_plus(
[review],
add_special_tokens=config.add_special_tokens,
return_attention_mask=config.return_attention_mask,
pad_to_max_length=config.pad_to_max_length,
max_length=config.seq_length,
return_tensors=config.return_tensors
)
input_ids_test = encoded_data_test_single['input_ids']
attention_masks_test = encoded_data_test_single['attention_mask']
inputs = {'input_ids': input_ids_test.to(device),
'attention_mask':attention_masks_test.to(device),
}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs[0]
logits = logits.detach().cpu().numpy()
predictions.append(logits)
predictions = np.concatenate(predictions, axis=0)
pred_final.append(np.argmax(predictions, axis=1).flatten()[0])
val_df["pred"] = pred_final
# Add control column for easier wrong and right predictions
control = val_df.pred.values == val_df.label.values
val_df["control"] = control
# filtering false predictions
val_df = val_df[val_df.control == False]
name2label = {"Negative":0,
"Neutral":1,
"Positive":2
}
label2name = {v: k for k, v in name2label.items()}
val_df["pred_name"] = val_df.pred.apply(lambda x: label2name.get(x))
from sklearn.metrics import confusion_matrix
# We create a confusion matrix to better observe the classes that the model confuses.
pred_name_values = val_df.pred_name.values
label_values = val_df.label_name.values
confmat = confusion_matrix(label_values, pred_name_values, labels=list(name2label.keys()))
confmat
df_confusion_val = pd.crosstab(label_values, pred_name_values)
df_confusion_val
df_confusion_val.to_csv("val_df_confusion.csv")
test_df.head()
encoded_data_test = tokenizer.batch_encode_plus(
test_df.Review.values,
add_special_tokens=config.add_special_tokens,
return_attention_mask=config.return_attention_mask,
pad_to_max_length=config.pad_to_max_length,
max_length=config.seq_length,
return_tensors=config.return_tensors
)
input_ids_test = encoded_data_test['input_ids']
attention_masks_test = encoded_data_test['attention_mask']
labels_test = torch.tensor(test_df.label.values)
model = BertForSequenceClassification.from_pretrained(config.pretrained_model,
num_labels=3,
output_attentions=False,
output_hidden_states=False)
model.to(config.device)
model.load_state_dict(torch.load(f'./_BERT_epoch_3.model', map_location=torch.device('cpu')))
_, predictions_test, true_vals_test = evaluate(dataloader_validation)
# accuracy_per_class(predictions, true_vals, intent2label)
def predict_sentiment(text):
# Prétraitement du texte
encoded_text = tokenizer.encode_plus(
text,
add_special_tokens=config.add_special_tokens,
return_attention_mask=config.return_attention_mask,
pad_to_max_length=config.pad_to_max_length,
max_length=config.seq_length,
return_tensors=config.return_tensors
)
# Convertir les entrées en tenseurs et les déplacer vers le bon appareil
input_ids = encoded_text['input_ids'].to(config.device)
attention_mask = encoded_text['attention_mask'].to(config.device)
# Mettre le modèle en mode d'évaluation et obtenir les prédictions
model.eval()
with torch.no_grad():
outputs = model(input_ids, attention_mask)
# Obtenir la prédiction du modèle
logits = outputs[0]
logits = logits.detach().cpu().numpy()
# Extraire la classe avec la probabilité la plus élevée
pred = np.argmax(logits, axis=1).flatten()[0]
# Convertir le label numérique en son nom correspondant
pred_name = label2name.get(pred)
return pred_name
text = "Your text here"
prediction = predict_sentiment(text)
print(f"The sentiment of the text is: {prediction}")
from sklearn.metrics import classification_report
preds_flat_test = np.argmax(predictions_test, axis=1).flatten()
print(classification_report(preds_flat_test, true_vals_test))
pred_final = []
for i, row in tqdm(test_df.iterrows(), total=test_df.shape[0]):
predictions = []
review = row["Review"]
encoded_data_test_single = tokenizer.batch_encode_plus(
[review],
add_special_tokens=config.add_special_tokens,
return_attention_mask=config.return_attention_mask,
pad_to_max_length=config.pad_to_max_length,
max_length=config.seq_length,
return_tensors=config.return_tensors
)
input_ids_test = encoded_data_test_single['input_ids']
attention_masks_test = encoded_data_test_single['attention_mask']
inputs = {'input_ids': input_ids_test.to(device),
'attention_mask':attention_masks_test.to(device),
}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs[0]
logits = logits.detach().cpu().numpy()
predictions.append(logits)
predictions = np.concatenate(predictions, axis=0)
pred_final.append(np.argmax(predictions, axis=1).flatten()[0])
# add pred into test
test_df["pred"] = pred_final
# Add control column for easier wrong and right predictions
control = test_df.pred.values == test_df.label.values
test_df["control"] = control
# filtering false predictions
test_df = test_df[test_df.control == False]
test_df["pred_name"] = test_df.pred.apply(lambda x: label2name.get(x))
from sklearn.metrics import confusion_matrix
# We create a confusion matrix to better observe the classes that the model confuses.
pred_name_values = test_df.pred_name.values
label_values = test_df.label_name.values
confmat = confusion_matrix(label_values, pred_name_values, labels=list(name2label.keys()))
confmat
df_confusion_test = pd.crosstab(label_values, pred_name_values)
df_confusion_test
import matplotlib.pyplot as plt
import seaborn as sns
# Supposons que 'confmat' est votre matrice de confusion
fig, ax = plt.subplots(figsize=(10,10)) # changez la taille selon vos besoins
sns.heatmap(confmat, annot=True, fmt='d',
xticklabels=name2label.keys(), yticklabels=name2label.keys())
plt.ylabel('Vraies valeurs')
plt.xlabel('Prédictions')
plt.show()