marcos995 commited on
Commit
393a344
1 Parent(s): eff371e

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.26 +/- 0.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3070f7011717a72d7e9ae8917c86620240d68c32204900ee7150e8494376913f
3
+ size 106832
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79c4516a1000>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x79c4516a43c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1695469181852185874,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsSEFP6AS4j4ukxk/MskLv7kL2j5EoZI+yX9vP8R35T6sYV0+NiAOv/Ff477M3JQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7YioPwcdYD/4YM4/tae+v4YZWT9jFaY+RN1eP/zruz+reKG/UO2gvxgmx751lI4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACxIQU/oBLiPi6TGT+vx84/HZvFP8QXjT8yyQu/uQvaPkShkj4HqUi/TGvPP6NlXz/Jf28/xHflPqxhXT7tWso/5t/NPzuqlb82IA6/8V/jvszclD6Mxlm/EcjFv0TxYT+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.52004534 0.44154835 0.59990203]\n [-0.54603875 0.4258707 0.2863866 ]\n [ 0.9355436 0.44817936 0.2161929 ]\n [-0.555179 -0.44409135 0.29074705]]",
34
+ "desired_goal": "[[ 1.3166786 0.8754429 1.6123343 ]\n [-1.489493 0.8480457 0.32438192]\n [ 0.87056375 1.4681392 -1.261495 ]\n [-1.2572422 -0.3889625 1.1139055 ]]",
35
+ "observation": "[[ 0.52004534 0.44154835 0.59990203 1.6154689 1.5437962 1.1022878 ]\n [-0.54603875 0.4258707 0.2863866 -0.78382915 1.620462 0.8726446 ]\n [ 0.9355436 0.44817936 0.2161929 1.5808998 1.6083953 -1.1692575 ]\n [-0.555179 -0.44409135 0.29074705 -0.85068583 -1.545168 0.8825877 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9jm0u049Hr0NKmM+RduGOybCUDynirg9cU5KPcq4Fj5JsD8+9yf0vapMFr4ndZc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.00550007 -0.03863268 0.2218401 ]\n [ 0.00411549 0.0127416 0.09010821]\n [ 0.04939121 0.14718929 0.18719591]\n [-0.11921685 -0.14677683 0.29581568]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6Z9Vmz0HyGMAWyUSwGMAXSUR0ClRu7ZvkzXdX2UKGgGR7/KfdRBNVR2aAdLA2gIR0ClR7NFrl/6dX2UKGgGR7+8kv9LpRoAaAdLAmgIR0ClRvnAAQxvdX2UKGgGR7/ZxNZeRgZ1aAdLBGgIR0ClRzxW912adX2UKGgGR7/WyGzru6VdaAdLBGgIR0ClR3zBZZB+dX2UKGgGR7/Cw+MZP2wnaAdLAmgIR0ClRwI+4b0fdX2UKGgGR7/Q+QU5+6RRaAdLA2gIR0ClR8GozeoDdX2UKGgGR7/PCwbEP1+RaAdLA2gIR0ClR0p7kXDWdX2UKGgGR7/PkT6BRQ7+aAdLA2gIR0ClRxKpcX3ydX2UKGgGR7/INx2jfvWpaAdLA2gIR0ClR9CONo8IdX2UKGgGR7/ah9LHuJDWaAdLBGgIR0ClR5HObAk+dX2UKGgGR7/OIX0oScslaAdLA2gIR0ClR1qu8scydX2UKGgGR7/RR8c+7lJZaAdLA2gIR0ClRyB+fAbidX2UKGgGR7/LsByS3b22aAdLA2gIR0ClR594/u9fdX2UKGgGR7/M0EX+ERJ3aAdLBGgIR0ClR+S925hCdX2UKGgGR7/ROxB3Roh7aAdLA2gIR0ClR2nARChOdX2UKGgGR7+/iCJ40Mw2aAdLAmgIR0ClRytqHoHLdX2UKGgGR7/EAq/dqL0jaAdLA2gIR0ClR68PWhAXdX2UKGgGR7/HFGXokiUxaAdLA2gIR0ClR/IvSMLndX2UKGgGR7/HRRdhRZU2aAdLA2gIR0ClR3ciwB5pdX2UKGgGR7/P9JjDsMRZaAdLA2gIR0ClRzjbzshQdX2UKGgGR7+lilSCOFQEaAdLAWgIR0ClRz0VafSQdX2UKGgGR7/AV6eGwiaBaAdLAmgIR0ClR/1Drqt6dX2UKGgGR7/WhFVktmL+aAdLA2gIR0ClR76BRQ7+dX2UKGgGR7/SP6be/Ho6aAdLA2gIR0ClR4a4Ds+ndX2UKGgGR7+8+wC8vmHQaAdLAmgIR0ClR8d8iOebdX2UKGgGR7/LcqOLiuMdaAdLA2gIR0ClR012icoZdX2UKGgGR7/Y6r/82rGSaAdLBGgIR0ClSBAaef7KdX2UKGgGR7/JKMefZmI1aAdLA2gIR0ClR5UUO/cndX2UKGgGR7/BGkvboKUnaAdLAmgIR0ClR1bPIGQkdX2UKGgGR7/azTnaFmFraAdLBGgIR0ClR9yfUWl/dX2UKGgGR7+2Ei+tbLU1aAdLAmgIR0ClR2J5/smfdX2UKGgGR7/PQO4G2TgVaAdLA2gIR0ClSCCB5HEudX2UKGgGR7/QufmLcbiqaAdLBGgIR0ClR6px3mmtdX2UKGgGR7+1Ge+VTrE+aAdLAmgIR0ClSComXw9adX2UKGgGR7/IIrvsqrimaAdLA2gIR0ClR+tp22XtdX2UKGgGR7+KRQrMC9ytaAdLAWgIR0ClR69If8uSdX2UKGgGR7/Tz90ihWYGaAdLA2gIR0ClR3Dz7MxHdX2UKGgGR7+yGxlg+hXbaAdLAmgIR0ClR/aJAMUidX2UKGgGR7+0JJGvwEyMaAdLAmgIR0ClR3wPiDNAdX2UKGgGR7/IvicXm/34aAdLA2gIR0ClR77x3FDOdX2UKGgGR7+U29+PRzBAaAdLAWgIR0ClR8Me4kNXdX2UKGgGR7/AW2w3YL9daAdLAmgIR0ClR4TKLbYcdX2UKGgGR7/F/WDpTuOTaAdLA2gIR0ClSASWAwwkdX2UKGgGR7+nmLcbiqACaAdLAWgIR0ClR8hsANobdX2UKGgGR7/exGUfPompaAdLBmgIR0ClSEpPIn0DdX2UKGgGR7+8iJO32EkCaAdLAmgIR0ClR9NSQ5mzdX2UKGgGR7/KWkadc0LuaAdLA2gIR0ClR5UcGTs6dX2UKGgGR7+hgLJCBwuNaAdLAWgIR0ClR9gAQxvfdX2UKGgGR7/QZNfw7T2GaAdLA2gIR0ClSFhkiD/VdX2UKGgGR7/eHrQgLZzxaAdLBGgIR0ClSBovBacJdX2UKGgGR7/BCiRGMGX5aAdLAmgIR0ClR6C/wiJPdX2UKGgGR7+kbNr0rbxmaAdLAWgIR0ClSF/I8yN5dX2UKGgGR7+yl+EytV7yaAdLAmgIR0ClR+VNg0CSdX2UKGgGR7+128qWkaddaAdLAmgIR0ClSGyc0+C9dX2UKGgGR7/JArQPZqVRaAdLA2gIR0ClSC4Zl4C7dX2UKGgGR7+2L/CIk7fYaAdLAmgIR0ClR/IfKZDzdX2UKGgGR7+dwR5C4SYgaAdLAWgIR0ClSHI3BHkMdX2UKGgGR7/S7DEWIoE0aAdLBGgIR0ClR7kHdGiIdX2UKGgGR7+j9bX6InBtaAdLAWgIR0ClR73MyJsPdX2UKGgGR7/Ii35N47iiaAdLA2gIR0ClSD1RUFSsdX2UKGgGR7/JrUsnRb8naAdLA2gIR0ClSAFTFVDKdX2UKGgGR7/W5HVf/m1ZaAdLA2gIR0ClSIQOFxn4dX2UKGgGR7+oQxvegte2aAdLAWgIR0ClSEWJzkp7dX2UKGgGR7+4hwEQoTf0aAdLAmgIR0ClSFDMFEApdX2UKGgGR7/YLpiZv1lHaAdLBGgIR0ClR9a0x/NJdX2UKGgGR7/KQ7tAs053aAdLA2gIR0ClSJUO3DvWdX2UKGgGR7/Ot9QXQ+lkaAdLBGgIR0ClSBpIDoyLdX2UKGgGR7/Mlgtvn8sMaAdLA2gIR0ClSGJPRArydX2UKGgGR7+8U+LWI42kaAdLAmgIR0ClSCZFXq7idX2UKGgGR7/UenQ6ZH/caAdLA2gIR0ClR+f7aZhKdX2UKGgGR7/WwPiDM/yHaAdLBGgIR0ClSKp66asqdX2UKGgGR7/DmFJxvNu+aAdLAmgIR0ClR/ESVW0adX2UKGgGR7/S2wFC9h7WaAdLBGgIR0ClSHRS5y2hdX2UKGgGR7/cIVuaWom5aAdLBGgIR0ClSDiTlkpadX2UKGgGR7/P0Cih37k5aAdLA2gIR0ClSLptJnQIdX2UKGgGR7++dsi0OVgQaAdLAmgIR0ClSH/2K2rodX2UKGgGR7/S690zTF2naAdLA2gIR0ClSMeK8+RpdX2UKGgGR7/Qogmqo60ZaAdLBGgIR0ClSEyYoiLVdX2UKGgGR7/QPlMh5gPVaAdLA2gIR0ClSI1lGwzMdX2UKGgGR7/k6rvLHMlkaAdLCGgIR0ClSBpf6XSjdX2UKGgGR7/YQkHD7655aAdLBGgIR0ClSN1VYISldX2UKGgGR7/NRqGlANXpaAdLA2gIR0ClSJ6sQumKdX2UKGgGR7/V4Cp3os7NaAdLBGgIR0ClSGLKFIuodX2UKGgGR7/Ozu4PPLPlaAdLA2gIR0ClSCkiMYMwdX2UKGgGR7+oQYk3S8aoaAdLAWgIR0ClSC2p6yB1dX2UKGgGR7/Qnjhky1u0aAdLA2gIR0ClSK/+bVjJdX2UKGgGR7/Lc6eXiR4haAdLA2gIR0ClSHQnx8UmdX2UKGgGR7/YcfNiYsunaAdLBGgIR0ClSPRGlQ/HdX2UKGgGR7/Dps41gpjMaAdLAmgIR0ClSDr8R+SbdX2UKGgGR7/QOf/WDpTuaAdLA2gIR0ClSL9mxt52dX2UKGgGR7/L1/Ue+23KaAdLA2gIR0ClSINrj5sTdX2UKGgGR7/O8h9srNGFaAdLA2gIR0ClSQNDc/MXdX2UKGgGR7/AghbGFSKnaAdLAmgIR0ClSI8POIIodX2UKGgGR7/UeumrKeTWaAdLBGgIR0ClSFEy+HrRdX2UKGgGR7/RgK4QSSNgaAdLA2gIR0ClSNBbwBo3dX2UKGgGR7/cN2ki2UjcaAdLBGgIR0ClSReg+QlsdX2UKGgGR7+9wm3OObRXaAdLAmgIR0ClSNjbSJCTdX2UKGgGR7/PUb1h9b5eaAdLA2gIR0ClSJ0XHim3dX2UKGgGR7/GkO7QLNOeaAdLA2gIR0ClSF7VjI7vdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b71f3a003774eb3f12c5f0a16127cf04022cd874edf20c7487eb3b425027aeb
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c46b4e78b41fc4341cdd4f0395bc870e7d317ac2cd4122330b2d0d53e7098ca1
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79c4516a1000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79c4516a43c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695469181852185874, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsSEFP6AS4j4ukxk/MskLv7kL2j5EoZI+yX9vP8R35T6sYV0+NiAOv/Ff477M3JQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7YioPwcdYD/4YM4/tae+v4YZWT9jFaY+RN1eP/zruz+reKG/UO2gvxgmx751lI4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACxIQU/oBLiPi6TGT+vx84/HZvFP8QXjT8yyQu/uQvaPkShkj4HqUi/TGvPP6NlXz/Jf28/xHflPqxhXT7tWso/5t/NPzuqlb82IA6/8V/jvszclD6Mxlm/EcjFv0TxYT+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.52004534 0.44154835 0.59990203]\n [-0.54603875 0.4258707 0.2863866 ]\n [ 0.9355436 0.44817936 0.2161929 ]\n [-0.555179 -0.44409135 0.29074705]]", "desired_goal": "[[ 1.3166786 0.8754429 1.6123343 ]\n [-1.489493 0.8480457 0.32438192]\n [ 0.87056375 1.4681392 -1.261495 ]\n [-1.2572422 -0.3889625 1.1139055 ]]", "observation": "[[ 0.52004534 0.44154835 0.59990203 1.6154689 1.5437962 1.1022878 ]\n [-0.54603875 0.4258707 0.2863866 -0.78382915 1.620462 0.8726446 ]\n [ 0.9355436 0.44817936 0.2161929 1.5808998 1.6083953 -1.1692575 ]\n [-0.555179 -0.44409135 0.29074705 -0.85068583 -1.545168 0.8825877 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9jm0u049Hr0NKmM+RduGOybCUDynirg9cU5KPcq4Fj5JsD8+9yf0vapMFr4ndZc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00550007 -0.03863268 0.2218401 ]\n [ 0.00411549 0.0127416 0.09010821]\n [ 0.04939121 0.14718929 0.18719591]\n [-0.11921685 -0.14677683 0.29581568]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6Z9Vmz0HyGMAWyUSwGMAXSUR0ClRu7ZvkzXdX2UKGgGR7/KfdRBNVR2aAdLA2gIR0ClR7NFrl/6dX2UKGgGR7+8kv9LpRoAaAdLAmgIR0ClRvnAAQxvdX2UKGgGR7/ZxNZeRgZ1aAdLBGgIR0ClRzxW912adX2UKGgGR7/WyGzru6VdaAdLBGgIR0ClR3zBZZB+dX2UKGgGR7/Cw+MZP2wnaAdLAmgIR0ClRwI+4b0fdX2UKGgGR7/Q+QU5+6RRaAdLA2gIR0ClR8GozeoDdX2UKGgGR7/PCwbEP1+RaAdLA2gIR0ClR0p7kXDWdX2UKGgGR7/PkT6BRQ7+aAdLA2gIR0ClRxKpcX3ydX2UKGgGR7/INx2jfvWpaAdLA2gIR0ClR9CONo8IdX2UKGgGR7/ah9LHuJDWaAdLBGgIR0ClR5HObAk+dX2UKGgGR7/OIX0oScslaAdLA2gIR0ClR1qu8scydX2UKGgGR7/RR8c+7lJZaAdLA2gIR0ClRyB+fAbidX2UKGgGR7/LsByS3b22aAdLA2gIR0ClR594/u9fdX2UKGgGR7/M0EX+ERJ3aAdLBGgIR0ClR+S925hCdX2UKGgGR7/ROxB3Roh7aAdLA2gIR0ClR2nARChOdX2UKGgGR7+/iCJ40Mw2aAdLAmgIR0ClRytqHoHLdX2UKGgGR7/EAq/dqL0jaAdLA2gIR0ClR68PWhAXdX2UKGgGR7/HFGXokiUxaAdLA2gIR0ClR/IvSMLndX2UKGgGR7/HRRdhRZU2aAdLA2gIR0ClR3ciwB5pdX2UKGgGR7/P9JjDsMRZaAdLA2gIR0ClRzjbzshQdX2UKGgGR7+lilSCOFQEaAdLAWgIR0ClRz0VafSQdX2UKGgGR7/AV6eGwiaBaAdLAmgIR0ClR/1Drqt6dX2UKGgGR7/WhFVktmL+aAdLA2gIR0ClR76BRQ7+dX2UKGgGR7/SP6be/Ho6aAdLA2gIR0ClR4a4Ds+ndX2UKGgGR7+8+wC8vmHQaAdLAmgIR0ClR8d8iOebdX2UKGgGR7/LcqOLiuMdaAdLA2gIR0ClR012icoZdX2UKGgGR7/Y6r/82rGSaAdLBGgIR0ClSBAaef7KdX2UKGgGR7/JKMefZmI1aAdLA2gIR0ClR5UUO/cndX2UKGgGR7/BGkvboKUnaAdLAmgIR0ClR1bPIGQkdX2UKGgGR7/azTnaFmFraAdLBGgIR0ClR9yfUWl/dX2UKGgGR7+2Ei+tbLU1aAdLAmgIR0ClR2J5/smfdX2UKGgGR7/PQO4G2TgVaAdLA2gIR0ClSCCB5HEudX2UKGgGR7/QufmLcbiqaAdLBGgIR0ClR6px3mmtdX2UKGgGR7+1Ge+VTrE+aAdLAmgIR0ClSComXw9adX2UKGgGR7/IIrvsqrimaAdLA2gIR0ClR+tp22XtdX2UKGgGR7+KRQrMC9ytaAdLAWgIR0ClR69If8uSdX2UKGgGR7/Tz90ihWYGaAdLA2gIR0ClR3Dz7MxHdX2UKGgGR7+yGxlg+hXbaAdLAmgIR0ClR/aJAMUidX2UKGgGR7+0JJGvwEyMaAdLAmgIR0ClR3wPiDNAdX2UKGgGR7/IvicXm/34aAdLA2gIR0ClR77x3FDOdX2UKGgGR7+U29+PRzBAaAdLAWgIR0ClR8Me4kNXdX2UKGgGR7/AW2w3YL9daAdLAmgIR0ClR4TKLbYcdX2UKGgGR7/F/WDpTuOTaAdLA2gIR0ClSASWAwwkdX2UKGgGR7+nmLcbiqACaAdLAWgIR0ClR8hsANobdX2UKGgGR7/exGUfPompaAdLBmgIR0ClSEpPIn0DdX2UKGgGR7+8iJO32EkCaAdLAmgIR0ClR9NSQ5mzdX2UKGgGR7/KWkadc0LuaAdLA2gIR0ClR5UcGTs6dX2UKGgGR7+hgLJCBwuNaAdLAWgIR0ClR9gAQxvfdX2UKGgGR7/QZNfw7T2GaAdLA2gIR0ClSFhkiD/VdX2UKGgGR7/eHrQgLZzxaAdLBGgIR0ClSBovBacJdX2UKGgGR7/BCiRGMGX5aAdLAmgIR0ClR6C/wiJPdX2UKGgGR7+kbNr0rbxmaAdLAWgIR0ClSF/I8yN5dX2UKGgGR7+yl+EytV7yaAdLAmgIR0ClR+VNg0CSdX2UKGgGR7+128qWkaddaAdLAmgIR0ClSGyc0+C9dX2UKGgGR7/JArQPZqVRaAdLA2gIR0ClSC4Zl4C7dX2UKGgGR7+2L/CIk7fYaAdLAmgIR0ClR/IfKZDzdX2UKGgGR7+dwR5C4SYgaAdLAWgIR0ClSHI3BHkMdX2UKGgGR7/S7DEWIoE0aAdLBGgIR0ClR7kHdGiIdX2UKGgGR7+j9bX6InBtaAdLAWgIR0ClR73MyJsPdX2UKGgGR7/Ii35N47iiaAdLA2gIR0ClSD1RUFSsdX2UKGgGR7/JrUsnRb8naAdLA2gIR0ClSAFTFVDKdX2UKGgGR7/W5HVf/m1ZaAdLA2gIR0ClSIQOFxn4dX2UKGgGR7+oQxvegte2aAdLAWgIR0ClSEWJzkp7dX2UKGgGR7+4hwEQoTf0aAdLAmgIR0ClSFDMFEApdX2UKGgGR7/YLpiZv1lHaAdLBGgIR0ClR9a0x/NJdX2UKGgGR7/KQ7tAs053aAdLA2gIR0ClSJUO3DvWdX2UKGgGR7/Ot9QXQ+lkaAdLBGgIR0ClSBpIDoyLdX2UKGgGR7/Mlgtvn8sMaAdLA2gIR0ClSGJPRArydX2UKGgGR7+8U+LWI42kaAdLAmgIR0ClSCZFXq7idX2UKGgGR7/UenQ6ZH/caAdLA2gIR0ClR+f7aZhKdX2UKGgGR7/WwPiDM/yHaAdLBGgIR0ClSKp66asqdX2UKGgGR7/DmFJxvNu+aAdLAmgIR0ClR/ESVW0adX2UKGgGR7/S2wFC9h7WaAdLBGgIR0ClSHRS5y2hdX2UKGgGR7/cIVuaWom5aAdLBGgIR0ClSDiTlkpadX2UKGgGR7/P0Cih37k5aAdLA2gIR0ClSLptJnQIdX2UKGgGR7++dsi0OVgQaAdLAmgIR0ClSH/2K2rodX2UKGgGR7/S690zTF2naAdLA2gIR0ClSMeK8+RpdX2UKGgGR7/Qogmqo60ZaAdLBGgIR0ClSEyYoiLVdX2UKGgGR7/QPlMh5gPVaAdLA2gIR0ClSI1lGwzMdX2UKGgGR7/k6rvLHMlkaAdLCGgIR0ClSBpf6XSjdX2UKGgGR7/YQkHD7655aAdLBGgIR0ClSN1VYISldX2UKGgGR7/NRqGlANXpaAdLA2gIR0ClSJ6sQumKdX2UKGgGR7/V4Cp3os7NaAdLBGgIR0ClSGLKFIuodX2UKGgGR7/Ozu4PPLPlaAdLA2gIR0ClSCkiMYMwdX2UKGgGR7+oQYk3S8aoaAdLAWgIR0ClSC2p6yB1dX2UKGgGR7/Qnjhky1u0aAdLA2gIR0ClSK/+bVjJdX2UKGgGR7/Lc6eXiR4haAdLA2gIR0ClSHQnx8UmdX2UKGgGR7/YcfNiYsunaAdLBGgIR0ClSPRGlQ/HdX2UKGgGR7/Dps41gpjMaAdLAmgIR0ClSDr8R+SbdX2UKGgGR7/QOf/WDpTuaAdLA2gIR0ClSL9mxt52dX2UKGgGR7/L1/Ue+23KaAdLA2gIR0ClSINrj5sTdX2UKGgGR7/O8h9srNGFaAdLA2gIR0ClSQNDc/MXdX2UKGgGR7/AghbGFSKnaAdLAmgIR0ClSI8POIIodX2UKGgGR7/UeumrKeTWaAdLBGgIR0ClSFEy+HrRdX2UKGgGR7/RgK4QSSNgaAdLA2gIR0ClSNBbwBo3dX2UKGgGR7/cN2ki2UjcaAdLBGgIR0ClSReg+QlsdX2UKGgGR7+9wm3OObRXaAdLAmgIR0ClSNjbSJCTdX2UKGgGR7/PUb1h9b5eaAdLA2gIR0ClSJ0XHim3dX2UKGgGR7/GkO7QLNOeaAdLA2gIR0ClSF7VjI7vdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (702 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.25810203589499, "std_reward": 0.059805538350789715, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-23T12:29:31.075429"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ba41d181c05e2175b17867445d5559f22b488c35e637992c92105808ac638db
3
+ size 2623