ManasiPandit commited on
Commit
893c335
1 Parent(s): 4570e74

End of training

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -12,7 +12,7 @@ datasets:
12
  metrics:
13
  - wer
14
  model-index:
15
- - name: whisper-small-finetuned-common-voice-mr
16
  results:
17
  - task:
18
  name: Automatic Speech Recognition
@@ -26,19 +26,19 @@ model-index:
26
  metrics:
27
  - name: Wer
28
  type: wer
29
- value: 17.890322904635163
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
  should probably proofread and complete it, then remove this comment. -->
34
 
35
- # whisper-small-finetuned-common-voice-mr
36
 
37
  This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13.0 dataset.
38
  It achieves the following results on the evaluation set:
39
- - Loss: 0.2477
40
- - Wer Ortho: 44.0644
41
- - Wer: 17.8903
42
 
43
  ## Model description
44
 
@@ -71,7 +71,7 @@ The following hyperparameters were used during training:
71
 
72
  | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
73
  |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
74
- | 0.1801 | 1.1737 | 500 | 0.2477 | 44.0644 | 17.8903 |
75
 
76
 
77
  ### Framework versions
 
12
  metrics:
13
  - wer
14
  model-index:
15
+ - name: whisper-small-finetuned-translation-common-voice-mr
16
  results:
17
  - task:
18
  name: Automatic Speech Recognition
 
26
  metrics:
27
  - name: Wer
28
  type: wer
29
+ value: 17.817506151760156
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
  should probably proofread and complete it, then remove this comment. -->
34
 
35
+ # whisper-small-finetuned-translation-common-voice-mr
36
 
37
  This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13.0 dataset.
38
  It achieves the following results on the evaluation set:
39
+ - Loss: 0.2483
40
+ - Wer Ortho: 43.9028
41
+ - Wer: 17.8175
42
 
43
  ## Model description
44
 
 
71
 
72
  | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
73
  |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|
74
+ | 0.182 | 1.1737 | 500 | 0.2483 | 43.9028 | 17.8175 |
75
 
76
 
77
  ### Framework versions