Image-preprocessor / handler.py
oscarfu0501's picture
Update handler.py
90c8d6d verified
raw
history blame
3.22 kB
from typing import Dict, List, Any
import urllib.request
import numpy as np
import cv2
import base64
from ultralytics import YOLO
import os
class EndpointHandler:
def __init__(self, path='.'): # pass api key to model
current_directory = os.getcwd()
print("Current working directory:", current_directory)
files_and_directories = os.listdir()
# Print each file and directory
for item in files_and_directories:
print(item)
self.model = YOLO("./best.pt")
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
inputs = data.get("inputs")
isurl = inputs.get("isurl")
path = inputs.get("path")
model = self.model
########################### Load Image #################################
if(isurl): # for url set isurl = 1
print("checkpoint 2-1")
req = urllib.request.urlopen(path)
print("checkpoint 2-2")
arr = np.asarray(bytearray(req.read()), dtype=np.uint8)
print("checkpoint 2-3")
img = cv2.imdecode(arr, -1) # 'Load it as it is'
else: # for image file
img = cv2.imread(path)
print("checkpoint 2")
###########################################################################
########################### Model Detection #################################
# change model_id to use a different model
# can try:
# clothing-detection-s4ioc/6 //good
# clothing-segmentation-dataset/1
# t-shirts-detector/1
# mainmodel/2
#result = self.CLIENT.infer(path, model_id="mainmodel/2")
result = model(img)
#annotated_frame = result[0].plot()
detections = result[0].boxes
#print(result[0].boxes.xyxy)
#cv2.imshow("YOLOv8 Inference", annotated_frame)
# print(result)
#cv2.waitKey(0)
#detections = sv.Detections.from_inference(result)
# print(detections)
print("checkpoint 3")
###########################################################################
########################### Data proccessing #################################
# only pass the first detection
# change 1 -> to len(detections.xyxy) to pass all photos
if(detections.xyxy.size == 0):
return "Not Found"
else:
x1, y1, x2, y2 = int(detections.xyxy[0][0]), int(detections.xyxy[0][1]), int(detections.xyxy[0][2]), int(detections.xyxy[0][3])
clothes = img[y1: y2, x1: x2]
retval , buffer = cv2.imencode('.jpg', clothes)
cv2.imwrite("result.jpg", clothes)
# create base 64 object
jpg_as_text = base64.b64encode(buffer)
print("checkpoint 4")
###########################################################################
return jpg_as_text
###########################################################################
# test run
# Model = Image_detect()
# test file image
# print(Model("test_images/test6.jpg", 0))
#test url
# print(Model("http://10.10.2.100/cam-lo.jpg", 1))