MajorBehrad commited on
Commit
9b91ce4
·
1 Parent(s): c0771c9

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.20 +/- 0.08
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:101e4545e6875c5a3f79e0c45da343c290177540195ebbadca39ab9260b962a1
3
+ size 107035
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2c05fa5d30>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f2c05fa89c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1694129815235547733,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWdcNvwoC/b4Pb4M/9CyVPoUIw7nI6OU+ocGxvdRrXb3I+ym+huMbP+go5j4VDR09lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAy4KQvlPTlb07GNA/ww2iv+vfND8nmEq9P9Wyv3E4H77xY0O/V0NwP+fwvT90aDa/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABZ1w2/CgL9vg9vgz8qPQk/lJBYvgNbAED0LJU+hQjDucjo5T42MvI+9xhAulG1wT6hwbG91Gtdvcj7Kb42ENi/AK7vvGd3rL+G4xs/6CjmPhUNHT1GwGw9rFjWPw+1y7+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-5.5406719e-01 -4.9415618e-01 1.0268267e+00]\n [ 2.9135859e-01 -3.7199646e-04 4.4904160e-01]\n [-8.6795099e-02 -5.4057911e-02 -1.6599953e-01]\n [ 6.0894048e-01 4.4953084e-01 3.8342554e-02]]",
34
+ "desired_goal": "[[-0.28224787 -0.07315698 1.6257395 ]\n [-1.266045 0.7065417 -0.04946151]\n [-1.3971328 -0.15548874 -0.76324373]\n [ 0.9385275 1.4839143 -0.7125313 ]]",
35
+ "observation": "[[-5.5406719e-01 -4.9415618e-01 1.0268267e+00 5.3608954e-01\n -2.1148902e-01 2.0055549e+00]\n [ 2.9135859e-01 -3.7199646e-04 4.4904160e-01 4.7303933e-01\n -7.3279388e-04 3.7833646e-01]\n [-8.6795099e-02 -5.4057911e-02 -1.6599953e-01 -1.6879947e+00\n -2.9257774e-02 -1.3473939e+00]\n [ 6.0894048e-01 4.4953084e-01 3.8342554e-02 5.7800554e-02\n 1.6745811e+00 -1.5914630e+00]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeaYKPjaVBr5leTA+gizZPW2yd7zgIek9zq+bvVtrlT1jYeQ90fXVOmM8DL58lRk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.13540067 -0.13142857 0.17233808]\n [ 0.10604192 -0.01511822 0.11383414]\n [-0.07601891 0.07295867 0.11151388]\n [ 0.00163239 -0.1369491 0.1499843 ]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8hg9eQdS2qMAWyUSwOMAXSUR0CdEvQxvegtdX2UKGgGR7/NhTfixVyWaAdLA2gIR0CdE82R7qptdX2UKGgGR7/h2dNFjNILaAdLCGgIR0CdEpLfDUExdX2UKGgGR7/R8Yht+CsfaAdLA2gIR0CdE2vlEJBxdX2UKGgGR7+7CyhSLqD9aAdLAmgIR0CdEwMdcSoPdX2UKGgGR7++jvd/J/5MaAdLAmgIR0CdE+Dl5nlGdX2UKGgGR7/JE74i5d4WaAdLA2gIR0CdEqzlLeyidX2UKGgGR7/JCswL3K0VaAdLA2gIR0CdE4Y1YQrddX2UKGgGR7/MTviLl3hXaAdLA2gIR0CdEx1pj+aSdX2UKGgGR7+yhQFcIJJHaAdLAmgIR0CdErupjtojdX2UKGgGR7/U/z8P4EfUaAdLBGgIR0CdE/4aP0ZndX2UKGgGR7+bHEMspXp4aAdLAWgIR0CdEsMn7YTTdX2UKGgGR7/KmIj4YaYNaAdLA2gIR0CdE6EQ5FPSdX2UKGgGR7/NSpiqhlDnaAdLA2gIR0CdEziliz9kdX2UKGgGR7/Q7V8Ti83/aAdLA2gIR0CdFBfW+XZ5dX2UKGgGR7/N3SKFZgXuaAdLA2gIR0CdEt2f029+dX2UKGgGR7/Po9s7+1jRaAdLA2gIR0CdE7ZydWhidX2UKGgGR7/RSDRMN+b3aAdLA2gIR0CdE03r2QGOdX2UKGgGR7/VdpqREF4caAdLA2gIR0CdFDD6WPcSdX2UKGgGR7/Smw7kn1FpaAdLA2gIR0CdEvW6K+BZdX2UKGgGR7/LKPn0TURWaAdLA2gIR0CdE85UtI07dX2UKGgGR7/SjHn2ZiNLaAdLA2gIR0CdE2VkMCtBdX2UKGgGR7/DEJjUd7v5aAdLAmgIR0CdEwMpgCwKdX2UKGgGR7/V+n62v0ROaAdLA2gIR0CdFEUlAu7IdX2UKGgGR7/F6UJOWSlnaAdLA2gIR0CdE+LwWnCPdX2UKGgGR7/DASnLq2SdaAdLAmgIR0CdFFbIcR16dX2UKGgGR7/VuXeFcpsoaAdLBGgIR0CdE4UjcEeRdX2UKGgGR7/fsOXmeUY9aAdLBGgIR0CdEyMLWqcWdX2UKGgGR7/St0V8CxNZaAdLA2gIR0CdE/vFFUhndX2UKGgGR7/Cs7uDzyz5aAdLAmgIR0CdE5LGaQV9dX2UKGgGR7/ImTkhib2EaAdLA2gIR0CdFGt7KJVKdX2UKGgGR7/C7J4jbBXTaAdLAmgIR0CdFHw1zhgmdX2UKGgGR7/Q/ZM+NcW1aAdLA2gIR0CdFBNmUW2xdX2UKGgGR7/PcY64lQdkaAdLA2gIR0CdE6p2ECeVdX2UKGgGR7/V9US7GvOhaAdLBGgIR0CdE0JmNBGAdX2UKGgGR7/Sz8P4EfT1aAdLA2gIR0CdFCilBQendX2UKGgGR7/R9GI9C/oJaAdLA2gIR0CdE7/QSi/PdX2UKGgGR7/Ut5le4TbnaAdLBGgIR0CdFJjhUBGQdX2UKGgGR7/YR/EwWWQfaAdLBGgIR0CdE14tHxz8dX2UKGgGR7+j2alUIcBEaAdLAWgIR0CdFKSpBHCodX2UKGgGR7+1zfaYeDFqaAdLAmgIR0CdFDyCFsYVdX2UKGgGR7/Ca2nbZezEaAdLAmgIR0CdE9ObAk9mdX2UKGgGR7+78IiTt9hJaAdLAmgIR0CdFEo1UEPldX2UKGgGR7/KoBq9GqgiaAdLA2gIR0CdE3hCMPz4dX2UKGgGR7/T+GGmDUVjaAdLA2gIR0CdFLpfhMrVdX2UKGgGR7/VAymALApKaAdLA2gIR0CdE+jFQ2uQdX2UKGgGR7+/klu3trsTaAdLAmgIR0CdE4Xrt3OfdX2UKGgGR7/Q08eS0Sh8aAdLA2gIR0CdFGO5J9RadX2UKGgGR7/PPBzmwJPZaAdLA2gIR0CdFNMZgogFdX2UKGgGR7/JEQXhwVCYaAdLA2gIR0CdFAEh7mdRdX2UKGgGR7+/nV5KODJ2aAdLAmgIR0CdFHElE7W/dX2UKGgGR7/MD1XeWOZLaAdLA2gIR0CdE58YAKfGdX2UKGgGR7+y7BfrrxAjaAdLAmgIR0CdFA8HfMwDdX2UKGgGR7/SyZ8a4tpVaAdLA2gIR0CdFOgTRIBjdX2UKGgGR7+hKHwgDA8CaAdLAWgIR0CdFPNUfgaWdX2UKGgGR7/N60pmVZ9vaAdLA2gIR0CdFIqCYkVvdX2UKGgGR7/F0dzXBguzaAdLAmgIR0CdFCGRmseXdX2UKGgGR7/MLUCq6vq1aAdLA2gIR0CdE7kZ75VPdX2UKGgGR7/NMewLVnVYaAdLA2gIR0CdFQhnanJldX2UKGgGR7/WSwGGEf1ZaAdLA2gIR0CdFJ+RoysTdX2UKGgGR7/FcKw6hg3MaAdLA2gIR0CdFDchC+lCdX2UKGgGR7/NJZGKAJ9iaAdLA2gIR0CdE85LAYYSdX2UKGgGR7+0zVMEidJ8aAdLAmgIR0CdFRwnYxtYdX2UKGgGR7/OnQ6ZH/cWaAdLA2gIR0CdFLn8baRIdX2UKGgGR7/SHVwxWT5gaAdLA2gIR0CdE+fWMCLddX2UKGgGR7/bQnx8UmD2aAdLBGgIR0CdFFfQrtmddX2UKGgGR7+z1kDp1RtQaAdLAmgIR0CdFMfKp1ifdX2UKGgGR7+h5kbxVhkRaAdLAWgIR0CdFF7V8Ti9dX2UKGgGR7/hHrpqynk1aAdLBGgIR0CdFTfWtlqbdX2UKGgGR7/P0lqrR0EHaAdLA2gIR0CdE/1EVnEmdX2UKGgGR7/CWgvlEJBxaAdLAmgIR0CdFNrrxAjZdX2UKGgGR7/WIQvpQk5ZaAdLA2gIR0CdFHfsNUfgdX2UKGgGR7+xuyeI2wV1aAdLAmgIR0CdFA8Gs3hodX2UKGgGR7+3cdo371qWaAdLAmgIR0CdFOgx8D0UdX2UKGgGR7/Vv3rUsnRcaAdLBGgIR0CdFVgpSaVldX2UKGgGR7/RBeHBUJfIaAdLA2gIR0CdFCNKAavSdX2UKGgGR7/Lv73wkPc0aAdLA2gIR0CdFQDVH4GmdX2UKGgGR7/YdupCKJl8aAdLBGgIR0CdFJhN/OMVdX2UKGgGR7/U2mHgxagVaAdLA2gIR0CdFXDxsl9jdX2UKGgGR7+zho/RmbsoaAdLAmgIR0CdFQ6WgOBldX2UKGgGR7+8FMZgogFHaAdLAmgIR0CdFKYZEUj+dX2UKGgGR7/b5wwTM7lraAdLBGgIR0CdFENedCmedX2UKGgGR7/MjBVMmF8HaAdLA2gIR0CdFYVUuL75dX2UKGgGR7+1CKJl8PWhaAdLAmgIR0CdFRyU9pyqdX2UKGgGR7/OtvGZNO/MaAdLA2gIR0CdFL8K5TZQdX2UKGgGR7++Lfk3juKGaAdLAmgIR0CdFFY5ksjFdX2UKGgGR7/CNgBtDUmVaAdLAmgIR0CdFZglF+d9dX2UKGgGR7+2jSG8EmpmaAdLAmgIR0CdFS+3H7xedX2UKGgGR7/Ap5NXYDkmaAdLAmgIR0CdFGOObRWtdX2UKGgGR7+0Ao5PuXu3aAdLAmgIR0CdFTyuIRAbdX2UKGgGR7/UiQkona37aAdLA2gIR0CdFaxQBPsSdX2UKGgGR7/dMKkVN5+paAdLBGgIR0CdFNp/gBLgdX2UKGgGR7+46U7jkuHvaAdLAmgIR0CdFHGi5/b1dX2UKGgGR7+pkXk5p8F7aAdLAWgIR0CdFHvkili0dX2UKGgGR7/TaLXL/0dzaAdLA2gIR0CdFVSyt3fRdX2UKGgGR7/EZk078vVWaAdLAmgIR0CdFOu0kWykdX2UKGgGR7/SQgLZzxPPaAdLA2gIR0CdFcTC+De1dX2UKGgGR7/BykKu0TlDaAdLAmgIR0CdFPkvboKVdX2UKGgGR7/SMQEpy6tlaAdLA2gIR0CdFJBsANobdX2UKGgGR7/HY5ksjFAFaAdLA2gIR0CdFWmV7hNudWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVqgMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoGyiWAwAAAAAAAAABAQGUaB9LA4WUaCN0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgbKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoI3SUUpSMBGhpZ2iUaBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgVSwOFlGgjdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFWgYaBsolgMAAAAAAAAAAQEBlGgfSwOFlGgjdJRSlGgmaBsolgMAAAAAAAAAAQEBlGgfSwOFlGgjdJRSlGgrSwOFlGgtaBsolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgVSwOFlGgjdJRSlGgyaBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgVSwOFlGgjdJRSlGg3jAUtMTAuMJRoOYwEMTAuMJRoO051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhoGyiWBgAAAAAAAAABAQEBAQGUaB9LBoWUaCN0lFKUaCZoGyiWBgAAAAAAAAABAQEBAQGUaB9LBoWUaCN0lFKUaCtLBoWUaC1oGyiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCN0lFKUaDJoGyiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCN0lFKUaDeMBS0xMC4wlGg5jAQxMC4wlGg7TnVidWgrTmgQTmg7TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVlwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgMAAAAAAAAAAQEBlGgUSwOFlGgYdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoECiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUaBh0lFKUjARoaWdolGgQKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoCksDhZRoGHSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL21ham9yL2FuYWNvbmRhMy9lbnZzL1JMQ291cnNlL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9tYWpvci9hbmFjb25kYTMvZW52cy9STENvdXJzZS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80bd65ca866da8e057646e8a0ebf4818ec2862909844b4d2f685c0658b1ad39b
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fbcdd47f28e8efd1e3fd07784d2a17803ffd4eae1acfa169cb4944a435b00b3
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.2.0-26-generic-x86_64-with-glibc2.35 # 26~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Jul 13 16:27:29 UTC 2
2
+ - Python: 3.9.17
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.3
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2c05fa5d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2c05fa89c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694129815235547733, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAWdcNvwoC/b4Pb4M/9CyVPoUIw7nI6OU+ocGxvdRrXb3I+ym+huMbP+go5j4VDR09lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAy4KQvlPTlb07GNA/ww2iv+vfND8nmEq9P9Wyv3E4H77xY0O/V0NwP+fwvT90aDa/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABZ1w2/CgL9vg9vgz8qPQk/lJBYvgNbAED0LJU+hQjDucjo5T42MvI+9xhAulG1wT6hwbG91Gtdvcj7Kb42ENi/AK7vvGd3rL+G4xs/6CjmPhUNHT1GwGw9rFjWPw+1y7+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-5.5406719e-01 -4.9415618e-01 1.0268267e+00]\n [ 2.9135859e-01 -3.7199646e-04 4.4904160e-01]\n [-8.6795099e-02 -5.4057911e-02 -1.6599953e-01]\n [ 6.0894048e-01 4.4953084e-01 3.8342554e-02]]", "desired_goal": "[[-0.28224787 -0.07315698 1.6257395 ]\n [-1.266045 0.7065417 -0.04946151]\n [-1.3971328 -0.15548874 -0.76324373]\n [ 0.9385275 1.4839143 -0.7125313 ]]", "observation": "[[-5.5406719e-01 -4.9415618e-01 1.0268267e+00 5.3608954e-01\n -2.1148902e-01 2.0055549e+00]\n [ 2.9135859e-01 -3.7199646e-04 4.4904160e-01 4.7303933e-01\n -7.3279388e-04 3.7833646e-01]\n [-8.6795099e-02 -5.4057911e-02 -1.6599953e-01 -1.6879947e+00\n -2.9257774e-02 -1.3473939e+00]\n [ 6.0894048e-01 4.4953084e-01 3.8342554e-02 5.7800554e-02\n 1.6745811e+00 -1.5914630e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeaYKPjaVBr5leTA+gizZPW2yd7zgIek9zq+bvVtrlT1jYeQ90fXVOmM8DL58lRk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13540067 -0.13142857 0.17233808]\n [ 0.10604192 -0.01511822 0.11383414]\n [-0.07601891 0.07295867 0.11151388]\n [ 0.00163239 -0.1369491 0.1499843 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8hg9eQdS2qMAWyUSwOMAXSUR0CdEvQxvegtdX2UKGgGR7/NhTfixVyWaAdLA2gIR0CdE82R7qptdX2UKGgGR7/h2dNFjNILaAdLCGgIR0CdEpLfDUExdX2UKGgGR7/R8Yht+CsfaAdLA2gIR0CdE2vlEJBxdX2UKGgGR7+7CyhSLqD9aAdLAmgIR0CdEwMdcSoPdX2UKGgGR7++jvd/J/5MaAdLAmgIR0CdE+Dl5nlGdX2UKGgGR7/JE74i5d4WaAdLA2gIR0CdEqzlLeyidX2UKGgGR7/JCswL3K0VaAdLA2gIR0CdE4Y1YQrddX2UKGgGR7/MTviLl3hXaAdLA2gIR0CdEx1pj+aSdX2UKGgGR7+yhQFcIJJHaAdLAmgIR0CdErupjtojdX2UKGgGR7/U/z8P4EfUaAdLBGgIR0CdE/4aP0ZndX2UKGgGR7+bHEMspXp4aAdLAWgIR0CdEsMn7YTTdX2UKGgGR7/KmIj4YaYNaAdLA2gIR0CdE6EQ5FPSdX2UKGgGR7/NSpiqhlDnaAdLA2gIR0CdEziliz9kdX2UKGgGR7/Q7V8Ti83/aAdLA2gIR0CdFBfW+XZ5dX2UKGgGR7/N3SKFZgXuaAdLA2gIR0CdEt2f029+dX2UKGgGR7/Po9s7+1jRaAdLA2gIR0CdE7ZydWhidX2UKGgGR7/RSDRMN+b3aAdLA2gIR0CdE03r2QGOdX2UKGgGR7/VdpqREF4caAdLA2gIR0CdFDD6WPcSdX2UKGgGR7/Smw7kn1FpaAdLA2gIR0CdEvW6K+BZdX2UKGgGR7/LKPn0TURWaAdLA2gIR0CdE85UtI07dX2UKGgGR7/SjHn2ZiNLaAdLA2gIR0CdE2VkMCtBdX2UKGgGR7/DEJjUd7v5aAdLAmgIR0CdEwMpgCwKdX2UKGgGR7/V+n62v0ROaAdLA2gIR0CdFEUlAu7IdX2UKGgGR7/F6UJOWSlnaAdLA2gIR0CdE+LwWnCPdX2UKGgGR7/DASnLq2SdaAdLAmgIR0CdFFbIcR16dX2UKGgGR7/VuXeFcpsoaAdLBGgIR0CdE4UjcEeRdX2UKGgGR7/fsOXmeUY9aAdLBGgIR0CdEyMLWqcWdX2UKGgGR7/St0V8CxNZaAdLA2gIR0CdE/vFFUhndX2UKGgGR7/Cs7uDzyz5aAdLAmgIR0CdE5LGaQV9dX2UKGgGR7/ImTkhib2EaAdLA2gIR0CdFGt7KJVKdX2UKGgGR7/C7J4jbBXTaAdLAmgIR0CdFHw1zhgmdX2UKGgGR7/Q/ZM+NcW1aAdLA2gIR0CdFBNmUW2xdX2UKGgGR7/PcY64lQdkaAdLA2gIR0CdE6p2ECeVdX2UKGgGR7/V9US7GvOhaAdLBGgIR0CdE0JmNBGAdX2UKGgGR7/Sz8P4EfT1aAdLA2gIR0CdFCilBQendX2UKGgGR7/R9GI9C/oJaAdLA2gIR0CdE7/QSi/PdX2UKGgGR7/Ut5le4TbnaAdLBGgIR0CdFJjhUBGQdX2UKGgGR7/YR/EwWWQfaAdLBGgIR0CdE14tHxz8dX2UKGgGR7+j2alUIcBEaAdLAWgIR0CdFKSpBHCodX2UKGgGR7+1zfaYeDFqaAdLAmgIR0CdFDyCFsYVdX2UKGgGR7/Ca2nbZezEaAdLAmgIR0CdE9ObAk9mdX2UKGgGR7+78IiTt9hJaAdLAmgIR0CdFEo1UEPldX2UKGgGR7/KoBq9GqgiaAdLA2gIR0CdE3hCMPz4dX2UKGgGR7/T+GGmDUVjaAdLA2gIR0CdFLpfhMrVdX2UKGgGR7/VAymALApKaAdLA2gIR0CdE+jFQ2uQdX2UKGgGR7+/klu3trsTaAdLAmgIR0CdE4Xrt3OfdX2UKGgGR7/Q08eS0Sh8aAdLA2gIR0CdFGO5J9RadX2UKGgGR7/PPBzmwJPZaAdLA2gIR0CdFNMZgogFdX2UKGgGR7/JEQXhwVCYaAdLA2gIR0CdFAEh7mdRdX2UKGgGR7+/nV5KODJ2aAdLAmgIR0CdFHElE7W/dX2UKGgGR7/MD1XeWOZLaAdLA2gIR0CdE58YAKfGdX2UKGgGR7+y7BfrrxAjaAdLAmgIR0CdFA8HfMwDdX2UKGgGR7/SyZ8a4tpVaAdLA2gIR0CdFOgTRIBjdX2UKGgGR7+hKHwgDA8CaAdLAWgIR0CdFPNUfgaWdX2UKGgGR7/N60pmVZ9vaAdLA2gIR0CdFIqCYkVvdX2UKGgGR7/F0dzXBguzaAdLAmgIR0CdFCGRmseXdX2UKGgGR7/MLUCq6vq1aAdLA2gIR0CdE7kZ75VPdX2UKGgGR7/NMewLVnVYaAdLA2gIR0CdFQhnanJldX2UKGgGR7/WSwGGEf1ZaAdLA2gIR0CdFJ+RoysTdX2UKGgGR7/FcKw6hg3MaAdLA2gIR0CdFDchC+lCdX2UKGgGR7/NJZGKAJ9iaAdLA2gIR0CdE85LAYYSdX2UKGgGR7+0zVMEidJ8aAdLAmgIR0CdFRwnYxtYdX2UKGgGR7/OnQ6ZH/cWaAdLA2gIR0CdFLn8baRIdX2UKGgGR7/SHVwxWT5gaAdLA2gIR0CdE+fWMCLddX2UKGgGR7/bQnx8UmD2aAdLBGgIR0CdFFfQrtmddX2UKGgGR7+z1kDp1RtQaAdLAmgIR0CdFMfKp1ifdX2UKGgGR7+h5kbxVhkRaAdLAWgIR0CdFF7V8Ti9dX2UKGgGR7/hHrpqynk1aAdLBGgIR0CdFTfWtlqbdX2UKGgGR7/P0lqrR0EHaAdLA2gIR0CdE/1EVnEmdX2UKGgGR7/CWgvlEJBxaAdLAmgIR0CdFNrrxAjZdX2UKGgGR7/WIQvpQk5ZaAdLA2gIR0CdFHfsNUfgdX2UKGgGR7+xuyeI2wV1aAdLAmgIR0CdFA8Gs3hodX2UKGgGR7+3cdo371qWaAdLAmgIR0CdFOgx8D0UdX2UKGgGR7/Vv3rUsnRcaAdLBGgIR0CdFVgpSaVldX2UKGgGR7/RBeHBUJfIaAdLA2gIR0CdFCNKAavSdX2UKGgGR7/Lv73wkPc0aAdLA2gIR0CdFQDVH4GmdX2UKGgGR7/YdupCKJl8aAdLBGgIR0CdFJhN/OMVdX2UKGgGR7/U2mHgxagVaAdLA2gIR0CdFXDxsl9jdX2UKGgGR7+zho/RmbsoaAdLAmgIR0CdFQ6WgOBldX2UKGgGR7+8FMZgogFHaAdLAmgIR0CdFKYZEUj+dX2UKGgGR7/b5wwTM7lraAdLBGgIR0CdFENedCmedX2UKGgGR7/MjBVMmF8HaAdLA2gIR0CdFYVUuL75dX2UKGgGR7+1CKJl8PWhaAdLAmgIR0CdFRyU9pyqdX2UKGgGR7/OtvGZNO/MaAdLA2gIR0CdFL8K5TZQdX2UKGgGR7++Lfk3juKGaAdLAmgIR0CdFFY5ksjFdX2UKGgGR7/CNgBtDUmVaAdLAmgIR0CdFZglF+d9dX2UKGgGR7+2jSG8EmpmaAdLAmgIR0CdFS+3H7xedX2UKGgGR7/Ap5NXYDkmaAdLAmgIR0CdFGOObRWtdX2UKGgGR7+0Ao5PuXu3aAdLAmgIR0CdFTyuIRAbdX2UKGgGR7/UiQkona37aAdLA2gIR0CdFaxQBPsSdX2UKGgGR7/dMKkVN5+paAdLBGgIR0CdFNp/gBLgdX2UKGgGR7+46U7jkuHvaAdLAmgIR0CdFHGi5/b1dX2UKGgGR7+pkXk5p8F7aAdLAWgIR0CdFHvkili0dX2UKGgGR7/TaLXL/0dzaAdLA2gIR0CdFVSyt3fRdX2UKGgGR7/EZk078vVWaAdLAmgIR0CdFOu0kWykdX2UKGgGR7/SQgLZzxPPaAdLA2gIR0CdFcTC+De1dX2UKGgGR7/BykKu0TlDaAdLAmgIR0CdFPkvboKVdX2UKGgGR7/SMQEpy6tlaAdLA2gIR0CdFJBsANobdX2UKGgGR7/HY5ksjFAFaAdLA2gIR0CdFWmV7hNudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVqgMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoGyiWAwAAAAAAAAABAQGUaB9LA4WUaCN0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgbKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoI3SUUpSMBGhpZ2iUaBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgVSwOFlGgjdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFWgYaBsolgMAAAAAAAAAAQEBlGgfSwOFlGgjdJRSlGgmaBsolgMAAAAAAAAAAQEBlGgfSwOFlGgjdJRSlGgrSwOFlGgtaBsolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgVSwOFlGgjdJRSlGgyaBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgVSwOFlGgjdJRSlGg3jAUtMTAuMJRoOYwEMTAuMJRoO051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhoGyiWBgAAAAAAAAABAQEBAQGUaB9LBoWUaCN0lFKUaCZoGyiWBgAAAAAAAAABAQEBAQGUaB9LBoWUaCN0lFKUaCtLBoWUaC1oGyiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCN0lFKUaDJoGyiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCN0lFKUaDeMBS0xMC4wlGg5jAQxMC4wlGg7TnVidWgrTmgQTmg7TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolgMAAAAAAAAAAQEBlGgUSwOFlGgYdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoECiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUaBh0lFKUjARoaWdolGgQKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoCksDhZRoGHSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYS9ob21lL21ham9yL2FuYWNvbmRhMy9lbnZzL1JMQ291cnNlL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGEvaG9tZS9tYWpvci9hbmFjb25kYTMvZW52cy9STENvdXJzZS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.2.0-26-generic-x86_64-with-glibc2.35 # 26~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Jul 13 16:27:29 UTC 2", "Python": "3.9.17", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.22.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (659 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.20376450167968868, "std_reward": 0.08250546621795989, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-07T20:09:05.555546"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47a2ca204297c531eb98218f26341274ead9024a3f93e5de97837978de9df8c3
3
+ size 2610