|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch_cluster import fps |
|
from typing import Optional |
|
import math |
|
|
|
from michelangelo.models.modules import checkpoint |
|
from michelangelo.models.modules.embedder import FourierEmbedder |
|
from michelangelo.models.modules.distributions import DiagonalGaussianDistribution |
|
from michelangelo.models.modules.transformer_blocks import ( |
|
ResidualCrossAttentionBlock, |
|
Transformer |
|
) |
|
|
|
from .tsal_base import ShapeAsLatentModule |
|
|
|
|
|
class CrossAttentionEncoder(nn.Module): |
|
|
|
def __init__(self, *, |
|
device: Optional[torch.device], |
|
dtype: Optional[torch.dtype], |
|
num_latents: int, |
|
fourier_embedder: FourierEmbedder, |
|
point_feats: int, |
|
width: int, |
|
heads: int, |
|
init_scale: float = 0.25, |
|
qkv_bias: bool = True, |
|
use_ln_post: bool = False, |
|
use_checkpoint: bool = False): |
|
|
|
super().__init__() |
|
|
|
self.use_checkpoint = use_checkpoint |
|
self.num_latents = num_latents |
|
self.fourier_embedder = fourier_embedder |
|
|
|
self.input_proj = nn.Linear(self.fourier_embedder.out_dim + point_feats, width, device=device, dtype=dtype) |
|
self.cross_attn_encoder = ResidualCrossAttentionBlock( |
|
device=device, |
|
dtype=dtype, |
|
width=width, |
|
heads=heads, |
|
init_scale=init_scale, |
|
qkv_bias=qkv_bias |
|
) |
|
if use_ln_post: |
|
self.ln_post = nn.LayerNorm(width, dtype=dtype, device=device) |
|
else: |
|
self.ln_post = None |
|
|
|
def _forward(self, pc, feats): |
|
""" |
|
|
|
Args: |
|
pc (torch.FloatTensor): [B, N, 3] |
|
feats (torch.FloatTensor or None): [B, N, C] |
|
|
|
Returns: |
|
|
|
""" |
|
|
|
B, N, _ = pc.shape |
|
batch = torch.arange(B).to(pc.device) |
|
batch = torch.repeat_interleave(batch, N) |
|
|
|
data = self.fourier_embedder(pc) |
|
if feats is not None: |
|
data = torch.cat([data, feats], dim=-1) |
|
data = self.input_proj(data) |
|
|
|
ratio = self.num_latents / N |
|
flatten_pos = pc.view(B * N, -1) |
|
flatten_data = data.view(B * N, -1) |
|
idx = fps(flatten_pos, batch, ratio=ratio) |
|
center_pos = flatten_pos[idx].view(B, self.num_latents, -1) |
|
query = flatten_data[idx].view(B, self. num_latents, -1) |
|
|
|
latents = self.cross_attn_encoder(query, data) |
|
|
|
if self.ln_post is not None: |
|
latents = self.ln_post(latents) |
|
|
|
return latents, center_pos |
|
|
|
def forward(self, pc: torch.FloatTensor, feats: Optional[torch.FloatTensor] = None): |
|
""" |
|
|
|
Args: |
|
pc (torch.FloatTensor): [B, N, 3] |
|
feats (torch.FloatTensor or None): [B, N, C] |
|
|
|
Returns: |
|
dict |
|
""" |
|
|
|
return checkpoint(self._forward, (pc, feats), self.parameters(), self.use_checkpoint) |
|
|
|
|
|
class CrossAttentionDecoder(nn.Module): |
|
|
|
def __init__(self, *, |
|
device: Optional[torch.device], |
|
dtype: Optional[torch.dtype], |
|
num_latents: int, |
|
out_channels: int, |
|
fourier_embedder: FourierEmbedder, |
|
width: int, |
|
heads: int, |
|
init_scale: float = 0.25, |
|
qkv_bias: bool = True, |
|
use_checkpoint: bool = False): |
|
|
|
super().__init__() |
|
|
|
self.use_checkpoint = use_checkpoint |
|
self.fourier_embedder = fourier_embedder |
|
|
|
self.query_proj = nn.Linear(self.fourier_embedder.out_dim, width, device=device, dtype=dtype) |
|
|
|
self.cross_attn_decoder = ResidualCrossAttentionBlock( |
|
device=device, |
|
dtype=dtype, |
|
n_data=num_latents, |
|
width=width, |
|
heads=heads, |
|
init_scale=init_scale, |
|
qkv_bias=qkv_bias |
|
) |
|
|
|
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype) |
|
self.output_proj = nn.Linear(width, out_channels, device=device, dtype=dtype) |
|
|
|
def _forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor): |
|
queries = self.query_proj(self.fourier_embedder(queries)) |
|
x = self.cross_attn_decoder(queries, latents) |
|
x = self.ln_post(x) |
|
x = self.output_proj(x) |
|
return x |
|
|
|
def forward(self, queries: torch.FloatTensor, latents: torch.FloatTensor): |
|
return checkpoint(self._forward, (queries, latents), self.parameters(), self.use_checkpoint) |
|
|
|
|
|
class ShapeAsLatentTransformer(ShapeAsLatentModule): |
|
def __init__(self, *, |
|
device: Optional[torch.device], |
|
dtype: Optional[torch.dtype], |
|
num_latents: int, |
|
point_feats: int = 0, |
|
embed_dim: int = 0, |
|
num_freqs: int = 8, |
|
include_pi: bool = True, |
|
width: int, |
|
layers: int, |
|
heads: int, |
|
init_scale: float = 0.25, |
|
qkv_bias: bool = True, |
|
use_ln_post: bool = False, |
|
use_checkpoint: bool = False): |
|
|
|
super().__init__() |
|
|
|
self.use_checkpoint = use_checkpoint |
|
|
|
self.num_latents = num_latents |
|
self.fourier_embedder = FourierEmbedder(num_freqs=num_freqs, include_pi=include_pi) |
|
|
|
init_scale = init_scale * math.sqrt(1.0 / width) |
|
self.encoder = CrossAttentionEncoder( |
|
device=device, |
|
dtype=dtype, |
|
fourier_embedder=self.fourier_embedder, |
|
num_latents=num_latents, |
|
point_feats=point_feats, |
|
width=width, |
|
heads=heads, |
|
init_scale=init_scale, |
|
qkv_bias=qkv_bias, |
|
use_ln_post=use_ln_post, |
|
use_checkpoint=use_checkpoint |
|
) |
|
|
|
self.embed_dim = embed_dim |
|
if embed_dim > 0: |
|
|
|
self.pre_kl = nn.Linear(width, embed_dim * 2, device=device, dtype=dtype) |
|
self.post_kl = nn.Linear(embed_dim, width, device=device, dtype=dtype) |
|
self.latent_shape = (num_latents, embed_dim) |
|
else: |
|
self.latent_shape = (num_latents, width) |
|
|
|
self.transformer = Transformer( |
|
device=device, |
|
dtype=dtype, |
|
n_ctx=num_latents, |
|
width=width, |
|
layers=layers, |
|
heads=heads, |
|
init_scale=init_scale, |
|
qkv_bias=qkv_bias, |
|
use_checkpoint=use_checkpoint |
|
) |
|
|
|
|
|
self.geo_decoder = CrossAttentionDecoder( |
|
device=device, |
|
dtype=dtype, |
|
fourier_embedder=self.fourier_embedder, |
|
out_channels=1, |
|
num_latents=num_latents, |
|
width=width, |
|
heads=heads, |
|
init_scale=init_scale, |
|
qkv_bias=qkv_bias, |
|
use_checkpoint=use_checkpoint |
|
) |
|
|
|
def encode(self, |
|
pc: torch.FloatTensor, |
|
feats: Optional[torch.FloatTensor] = None, |
|
sample_posterior: bool = True): |
|
""" |
|
|
|
Args: |
|
pc (torch.FloatTensor): [B, N, 3] |
|
feats (torch.FloatTensor or None): [B, N, C] |
|
sample_posterior (bool): |
|
|
|
Returns: |
|
latents (torch.FloatTensor) |
|
center_pos (torch.FloatTensor): |
|
posterior (DiagonalGaussianDistribution or None): |
|
""" |
|
|
|
latents, center_pos = self.encoder(pc, feats) |
|
|
|
posterior = None |
|
if self.embed_dim > 0: |
|
moments = self.pre_kl(latents) |
|
posterior = DiagonalGaussianDistribution(moments, feat_dim=-1) |
|
|
|
if sample_posterior: |
|
latents = posterior.sample() |
|
else: |
|
latents = posterior.mode() |
|
|
|
return latents, center_pos, posterior |
|
|
|
def decode(self, latents: torch.FloatTensor): |
|
latents = self.post_kl(latents) |
|
return self.transformer(latents) |
|
|
|
def query_geometry(self, queries: torch.FloatTensor, latents: torch.FloatTensor): |
|
logits = self.geo_decoder(queries, latents).squeeze(-1) |
|
return logits |
|
|
|
def forward(self, |
|
pc: torch.FloatTensor, |
|
feats: torch.FloatTensor, |
|
volume_queries: torch.FloatTensor, |
|
sample_posterior: bool = True): |
|
""" |
|
|
|
Args: |
|
pc (torch.FloatTensor): [B, N, 3] |
|
feats (torch.FloatTensor or None): [B, N, C] |
|
volume_queries (torch.FloatTensor): [B, P, 3] |
|
sample_posterior (bool): |
|
|
|
Returns: |
|
logits (torch.FloatTensor): [B, P] |
|
center_pos (torch.FloatTensor): [B, M, 3] |
|
posterior (DiagonalGaussianDistribution or None). |
|
|
|
""" |
|
|
|
latents, center_pos, posterior = self.encode(pc, feats, sample_posterior=sample_posterior) |
|
|
|
latents = self.decode(latents) |
|
logits = self.query_geometry(volume_queries, latents) |
|
|
|
return logits, center_pos, posterior |
|
|