Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.65 +/- 21.81
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe1e2a771f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe1e2a77280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe1e2a77310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe1e2a773a0>", "_build": "<function ActorCriticPolicy._build at 0x7fe1e2a77430>", "forward": "<function ActorCriticPolicy.forward at 0x7fe1e2a774c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe1e2a77550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe1e2a775e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe1e2a77670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe1e2a77700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe1e2a77790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe1e2a77820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe1e2a73810>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677887739845810104, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1VoDxIOZm6lWjxMwZqIy18JgS7ElSyswAAgD8AAIA/zVi0PIGqu7wmLa483EPGu/PZJr5apZq8AACAPwAAgD9NjHa9Kbw5ujuh9jZRkIIyVfUNO+QeELYAAIA/AACAP6aXWr6KX+Y+kdmAPpD8W772rq49dv+/PQAAAAAAAAAAgFHEvdxocj5q65C9Ujynvm2hdr5GfhE+AAAAAAAAAADzqTG+ZFDXPgP7FT4krIa+ra9fPfw7Sb0AAAAAAAAAAAAORL5leZ0/osgBvzRaBb8aa7G++urRvQAAAAAAAAAA4ERmPlwCtj8OiyI/u4XGvpD1qj6owoM+AAAAAAAAAADNBoK8MME5Pw6B77zbprO+cj2gvLfRQb0AAAAAAAAAACYXl70paDy6SwZdur0fzrWy+Y46Ld+AOQAAAAAAAIA/murWvMNdILrKxzU3EVtaMtBTgzvqRFm2AACAPwAAgD9m3Wi9SOGxuL1MvrrCaQ+2FYUMPFCQ5zkAAIA/AACAPzOysr1I35W6yHKONpTtXDLNQ6U6iqmrtQAAgD8AAIA/Zvn0PFyvdLo1PPy0XjGVsF9xJztNqGY0AACAPwAAgD8aDVW9uDObP4ieU74+TbG+nHGdvBO2y70AAAAAAAAAAJopwTrqsMg+rtWDvfeCdr4jgZK88jRCPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjZjZ5/FWcUCUhpRSlIwBbJRNzgGMAXSUR0Cep1uYhMakdX2UKGgGaAloD0MI2QWDa+7OZUCUhpRSlGgVTegDaBZHQJ6scwyqMm51fZQoaAZoCWgPQwhVih2NQ1dzQJSGlFKUaBVNVgFoFkdAnrTC1y/9HnV9lChoBmgJaA9DCNXpQNZTlmVAlIaUUpRoFU3oA2gWR0Ceuhs0pEx7dX2UKGgGaAloD0MIsp/FUiSJZkCUhpRSlGgVTegDaBZHQJ7P7wLE1l51fZQoaAZoCWgPQwjqBgq8k9FMQJSGlFKUaBVLyGgWR0Ce0JeN1hb4dX2UKGgGaAloD0MIuoeE732/bkCUhpRSlGgVTd8BaBZHQJ7RmS7oSth1fZQoaAZoCWgPQwgk7rH0ISlxQJSGlFKUaBVNpQNoFkdAntItxp+MInV9lChoBmgJaA9DCDkmi/sPL2VAlIaUUpRoFU3oA2gWR0Ce0+Jhvze5dX2UKGgGaAloD0MIq1yo/GvvbkCUhpRSlGgVTSYDaBZHQJ7WXcGkep51fZQoaAZoCWgPQwhGlzeHKyJwQJSGlFKUaBVNiwJoFkdAntigaR6ni3V9lChoBmgJaA9DCMB63LeafHJAlIaUUpRoFU3SAmgWR0Ce2ZVFQVKxdX2UKGgGaAloD0MIAp60cFnhMkCUhpRSlGgVS9NoFkdAntn2ZuyeI3V9lChoBmgJaA9DCFsmw/H8o2NAlIaUUpRoFU3oA2gWR0Ce2/OwPiDNdX2UKGgGaAloD0MIqWqCqHvQaECUhpRSlGgVTegDaBZHQJ7c/MdLg4x1fZQoaAZoCWgPQwiqfqXzIXdyQJSGlFKUaBVNLgJoFkdAnt0YQe3hGnV9lChoBmgJaA9DCD/9Z82PnmZAlIaUUpRoFU3oA2gWR0Ce3mX1rZandX2UKGgGaAloD0MIo5V7gVmNPUCUhpRSlGgVS+FoFkdAnuBE7CBPK3V9lChoBmgJaA9DCEyo4PACiWJAlIaUUpRoFU3oA2gWR0Ce4NhkRSP2dX2UKGgGaAloD0MI9ntinWoucECUhpRSlGgVTV0DaBZHQJ7mXxsl9jR1fZQoaAZoCWgPQwi4ByEgX9NxQJSGlFKUaBVNCQJoFkdAnuyNZaFEiXV9lChoBmgJaA9DCMtIvafyC25AlIaUUpRoFU2xAWgWR0Ce7YKlHjIadX2UKGgGaAloD0MInGwDd6AAUkCUhpRSlGgVS85oFkdAnvwaWom5UnV9lChoBmgJaA9DCEHxY8ydc3JAlIaUUpRoFU3OAWgWR0Ce/PjbBXS0dX2UKGgGaAloD0MIK6Im+rxTckCUhpRSlGgVTXgDaBZHQJ79MVclgMN1fZQoaAZoCWgPQwjcgTrlEUdwQJSGlFKUaBVN5gJoFkdAnwOXS4OMEXV9lChoBmgJaA9DCNjYJaq3+3BAlIaUUpRoFU2bA2gWR0CfBFOLiuMddX2UKGgGaAloD0MIayxhbUzFcUCUhpRSlGgVTfUCaBZHQJ8EyWVu76J1fZQoaAZoCWgPQwiIS447JVliQJSGlFKUaBVN6ANoFkdAnwaVZPl+3HV9lChoBmgJaA9DCK8FvTcGmmFAlIaUUpRoFU3oA2gWR0CfByJAdGRWdX2UKGgGaAloD0MIc4HLY02LZkCUhpRSlGgVTegDaBZHQJ8bnFaSs8x1fZQoaAZoCWgPQwgmyAioMJtxQJSGlFKUaBVNJQNoFkdAnx0r/GVAzHV9lChoBmgJaA9DCKmluRWCWnBAlIaUUpRoFU1+AWgWR0CfIfGsV+I/dX2UKGgGaAloD0MIKeyi6EFHcUCUhpRSlGgVS/ZoFkdAnyH9+1Bt13V9lChoBmgJaA9DCGagMv79C21AlIaUUpRoFU3LA2gWR0CfJJfnwG4adX2UKGgGaAloD0MIJeZZSSsNYkCUhpRSlGgVTegDaBZHQJ8k2PsAvL51fZQoaAZoCWgPQwji6Crd3fxmQJSGlFKUaBVN6ANoFkdAnyjvJ/5Ly3V9lChoBmgJaA9DCCFWf4RhdHBAlIaUUpRoFU1gAWgWR0CfKY+De0ojdX2UKGgGaAloD0MINe1imulEcECUhpRSlGgVTUsBaBZHQJ8rYtEofCB1fZQoaAZoCWgPQwhywK4mT6pwQJSGlFKUaBVNIQJoFkdAnyxvDLr5ZnV9lChoBmgJaA9DCGUXDK65hmVAlIaUUpRoFU3oA2gWR0CfLNxLkCFLdX2UKGgGaAloD0MI/0EkQw5RcECUhpRSlGgVTfwCaBZHQJ8tVQhwEQp1fZQoaAZoCWgPQwiZm29Et7pwQJSGlFKUaBVNrQNoFkdAnzDfjS5RTHV9lChoBmgJaA9DCJaX/E/+NHFAlIaUUpRoFU1/AWgWR0CfOUDst03gdX2UKGgGaAloD0MIcqWeBWGWckCUhpRSlGgVTUkBaBZHQJ85X4k/r0J1fZQoaAZoCWgPQwj7A+W2/a5yQJSGlFKUaBVNAwNoFkdAnzo5NO/L1XV9lChoBmgJaA9DCFqD91W5fXJAlIaUUpRoFU2fAWgWR0CfOsgam4y5dX2UKGgGaAloD0MI1ZKOcrCXckCUhpRSlGgVTQ0CaBZHQJ864PPLPld1fZQoaAZoCWgPQwhmwcQfxZVxQJSGlFKUaBVNDgFoFkdAnzxEyP+4snV9lChoBmgJaA9DCGH+CpkrXnJAlIaUUpRoFU0fAWgWR0CfPMlWwNb1dX2UKGgGaAloD0MI8Q7wpEVkcECUhpRSlGgVTaUCaBZHQJ8+FJmNBGB1fZQoaAZoCWgPQwj+DG/WYP5xQJSGlFKUaBVNNwFoFkdAnz5dMj/uLXV9lChoBmgJaA9DCDApPj6hx2xAlIaUUpRoFU1qAWgWR0CfPx8UVSGbdX2UKGgGaAloD0MIuCHGa15qb0CUhpRSlGgVTbMBaBZHQJ9AzXjENvx1fZQoaAZoCWgPQwjBcoQMZMZtQJSGlFKUaBVN2QFoFkdAn0HL7oB7u3V9lChoBmgJaA9DCFgAUwYOzVRAlIaUUpRoFUvHaBZHQJ9CiFWXC0p1fZQoaAZoCWgPQwgjaqLPh0lxQJSGlFKUaBVNVQNoFkdAn0LIRujynXV9lChoBmgJaA9DCOHSMeeZZ3FAlIaUUpRoFU0ZAWgWR0CfRCo9LYf5dX2UKGgGaAloD0MIIVor2pxKcECUhpRSlGgVTTMDaBZHQJ9En876pHZ1fZQoaAZoCWgPQwiOPuYDAnNRQJSGlFKUaBVNBQFoFkdAn0Ze4smOVHV9lChoBmgJaA9DCG743XTLxm9AlIaUUpRoFU1QAWgWR0CfR8elbeMydX2UKGgGaAloD0MIfbPNjWnWbkCUhpRSlGgVTZMBaBZHQJ9MmowVTJh1fZQoaAZoCWgPQwiJm1PJwK5xQJSGlFKUaBVNDgFoFkdAn2ClYuCf6HV9lChoBmgJaA9DCC8xlulXznBAlIaUUpRoFU0zA2gWR0CfYdrsSkCWdX2UKGgGaAloD0MIJ1DEIgYtbUCUhpRSlGgVTYYBaBZHQJ9h/C53C9B1fZQoaAZoCWgPQwgMVwdA3NlvQJSGlFKUaBVNiwJoFkdAn2MMJpnHvXV9lChoBmgJaA9DCFth+l5DVVVAlIaUUpRoFUuuaBZHQJ9k/dl/Yrd1fZQoaAZoCWgPQwg0K9uHPCBwQJSGlFKUaBVNmQFoFkdAn2UPVZs9CHV9lChoBmgJaA9DCLPw9bVuzHFAlIaUUpRoFU0sAmgWR0CfZc6reZXudX2UKGgGaAloD0MIPnYXKGlFckCUhpRSlGgVTZYBaBZHQJ9ngjcEeQx1fZQoaAZoCWgPQwgUe2gfK9dwQJSGlFKUaBVNWAJoFkdAn2lsHGCI13V9lChoBmgJaA9DCBi0kIBRc3FAlIaUUpRoFU2CAWgWR0CfaaKvFFUidX2UKGgGaAloD0MIHlTiOoagc0CUhpRSlGgVTZYBaBZHQJ9qUDgZTAF1fZQoaAZoCWgPQwj6eyk86JRyQJSGlFKUaBVNiQFoFkdAn2zuRDCxeXV9lChoBmgJaA9DCGLYYUx6AXFAlIaUUpRoFU2XAWgWR0CfbQkKu0TldX2UKGgGaAloD0MIb4Jvmv4YckCUhpRSlGgVTaYBaBZHQJ9w7Mr3Cbd1fZQoaAZoCWgPQwiWJM/1fVlyQJSGlFKUaBVNJwFoFkdAn3K1PacqfHV9lChoBmgJaA9DCBqH+l3YZnFAlIaUUpRoFU0nAWgWR0CfdUfgaWHDdX2UKGgGaAloD0MIu9QI/UwBcECUhpRSlGgVTYABaBZHQJ94IAq/dqN1fZQoaAZoCWgPQwgJibSNf4FyQJSGlFKUaBVNcQFoFkdAn3jJ13dKunV9lChoBmgJaA9DCL1zKEPVHHBAlIaUUpRoFU18AWgWR0CfedjpcHGCdX2UKGgGaAloD0MIB+xq8pRlcUCUhpRSlGgVTXIBaBZHQJ99EymALAp1fZQoaAZoCWgPQwjyQjo8BKNvQJSGlFKUaBVNiQNoFkdAn3242jwhGHV9lChoBmgJaA9DCMeePZdponFAlIaUUpRoFU3TAWgWR0CfgKysS00FdX2UKGgGaAloD0MICoLHt/fTcECUhpRSlGgVTTIBaBZHQJ+BJTUAks11fZQoaAZoCWgPQwh7Mv/oGy1wQJSGlFKUaBVNBQJoFkdAn4Fo2S+xnnV9lChoBmgJaA9DCGWp9X7jWXBAlIaUUpRoFU3mAWgWR0CfgZ6zE74jdX2UKGgGaAloD0MIp7Io7CIMbUCUhpRSlGgVTakBaBZHQJ+Bnp8neBR1fZQoaAZoCWgPQwiN0M/U655wQJSGlFKUaBVNagFoFkdAn4TmqxTsIHV9lChoBmgJaA9DCOpYpfRM10ZAlIaUUpRoFUvWaBZHQJ+FonJDE3t1fZQoaAZoCWgPQwgIyQImcP5uQJSGlFKUaBVNRQFoFkdAn4XId+5OJ3V9lChoBmgJaA9DCFwBhXq6LnBAlIaUUpRoFU1JAWgWR0Cfh0ouPFNtdX2UKGgGaAloD0MI+UuL+qQjcUCUhpRSlGgVTREBaBZHQJ+LfVtoBaN1fZQoaAZoCWgPQwiqudxgqB9uQJSGlFKUaBVNaQNoFkdAn4uJTyauwHV9lChoBmgJaA9DCL5QwHawiG9AlIaUUpRoFU2xAmgWR0Cfi7NliBoVdX2UKGgGaAloD0MIBYnt7gHPb0CUhpRSlGgVTQ0BaBZHQJ+L0NH6Mzd1fZQoaAZoCWgPQwh5QNmUq5pxQJSGlFKUaBVNkgFoFkdAn42B+z+m33V9lChoBmgJaA9DCOxph7+mC2hAlIaUUpRoFU3oA2gWR0Cfj19/jKgadX2UKGgGaAloD0MI9Pxpo7ricUCUhpRSlGgVS/poFkdAn49rHuJDV3V9lChoBmgJaA9DCK8nui58WGZAlIaUUpRoFU3oA2gWR0Cfj8EYwZfldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9b475fa164eeb936c4698ca44179a7d3537e74a49030a839e31a581ffcac836
|
3 |
+
size 147412
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe1e2a771f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe1e2a77280>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe1e2a77310>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe1e2a773a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe1e2a77430>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe1e2a774c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe1e2a77550>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe1e2a775e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe1e2a77670>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe1e2a77700>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe1e2a77790>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe1e2a77820>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fe1e2a73810>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677887739845810104,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1VoDxIOZm6lWjxMwZqIy18JgS7ElSyswAAgD8AAIA/zVi0PIGqu7wmLa483EPGu/PZJr5apZq8AACAPwAAgD9NjHa9Kbw5ujuh9jZRkIIyVfUNO+QeELYAAIA/AACAP6aXWr6KX+Y+kdmAPpD8W772rq49dv+/PQAAAAAAAAAAgFHEvdxocj5q65C9Ujynvm2hdr5GfhE+AAAAAAAAAADzqTG+ZFDXPgP7FT4krIa+ra9fPfw7Sb0AAAAAAAAAAAAORL5leZ0/osgBvzRaBb8aa7G++urRvQAAAAAAAAAA4ERmPlwCtj8OiyI/u4XGvpD1qj6owoM+AAAAAAAAAADNBoK8MME5Pw6B77zbprO+cj2gvLfRQb0AAAAAAAAAACYXl70paDy6SwZdur0fzrWy+Y46Ld+AOQAAAAAAAIA/murWvMNdILrKxzU3EVtaMtBTgzvqRFm2AACAPwAAgD9m3Wi9SOGxuL1MvrrCaQ+2FYUMPFCQ5zkAAIA/AACAPzOysr1I35W6yHKONpTtXDLNQ6U6iqmrtQAAgD8AAIA/Zvn0PFyvdLo1PPy0XjGVsF9xJztNqGY0AACAPwAAgD8aDVW9uDObP4ieU74+TbG+nHGdvBO2y70AAAAAAAAAAJopwTrqsMg+rtWDvfeCdr4jgZK88jRCPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjZjZ5/FWcUCUhpRSlIwBbJRNzgGMAXSUR0Cep1uYhMakdX2UKGgGaAloD0MI2QWDa+7OZUCUhpRSlGgVTegDaBZHQJ6scwyqMm51fZQoaAZoCWgPQwhVih2NQ1dzQJSGlFKUaBVNVgFoFkdAnrTC1y/9HnV9lChoBmgJaA9DCNXpQNZTlmVAlIaUUpRoFU3oA2gWR0Ceuhs0pEx7dX2UKGgGaAloD0MIsp/FUiSJZkCUhpRSlGgVTegDaBZHQJ7P7wLE1l51fZQoaAZoCWgPQwjqBgq8k9FMQJSGlFKUaBVLyGgWR0Ce0JeN1hb4dX2UKGgGaAloD0MIuoeE732/bkCUhpRSlGgVTd8BaBZHQJ7RmS7oSth1fZQoaAZoCWgPQwgk7rH0ISlxQJSGlFKUaBVNpQNoFkdAntItxp+MInV9lChoBmgJaA9DCDkmi/sPL2VAlIaUUpRoFU3oA2gWR0Ce0+Jhvze5dX2UKGgGaAloD0MIq1yo/GvvbkCUhpRSlGgVTSYDaBZHQJ7WXcGkep51fZQoaAZoCWgPQwhGlzeHKyJwQJSGlFKUaBVNiwJoFkdAntigaR6ni3V9lChoBmgJaA9DCMB63LeafHJAlIaUUpRoFU3SAmgWR0Ce2ZVFQVKxdX2UKGgGaAloD0MIAp60cFnhMkCUhpRSlGgVS9NoFkdAntn2ZuyeI3V9lChoBmgJaA9DCFsmw/H8o2NAlIaUUpRoFU3oA2gWR0Ce2/OwPiDNdX2UKGgGaAloD0MIqWqCqHvQaECUhpRSlGgVTegDaBZHQJ7c/MdLg4x1fZQoaAZoCWgPQwiqfqXzIXdyQJSGlFKUaBVNLgJoFkdAnt0YQe3hGnV9lChoBmgJaA9DCD/9Z82PnmZAlIaUUpRoFU3oA2gWR0Ce3mX1rZandX2UKGgGaAloD0MIo5V7gVmNPUCUhpRSlGgVS+FoFkdAnuBE7CBPK3V9lChoBmgJaA9DCEyo4PACiWJAlIaUUpRoFU3oA2gWR0Ce4NhkRSP2dX2UKGgGaAloD0MI9ntinWoucECUhpRSlGgVTV0DaBZHQJ7mXxsl9jR1fZQoaAZoCWgPQwi4ByEgX9NxQJSGlFKUaBVNCQJoFkdAnuyNZaFEiXV9lChoBmgJaA9DCMtIvafyC25AlIaUUpRoFU2xAWgWR0Ce7YKlHjIadX2UKGgGaAloD0MInGwDd6AAUkCUhpRSlGgVS85oFkdAnvwaWom5UnV9lChoBmgJaA9DCEHxY8ydc3JAlIaUUpRoFU3OAWgWR0Ce/PjbBXS0dX2UKGgGaAloD0MIK6Im+rxTckCUhpRSlGgVTXgDaBZHQJ79MVclgMN1fZQoaAZoCWgPQwjcgTrlEUdwQJSGlFKUaBVN5gJoFkdAnwOXS4OMEXV9lChoBmgJaA9DCNjYJaq3+3BAlIaUUpRoFU2bA2gWR0CfBFOLiuMddX2UKGgGaAloD0MIayxhbUzFcUCUhpRSlGgVTfUCaBZHQJ8EyWVu76J1fZQoaAZoCWgPQwiIS447JVliQJSGlFKUaBVN6ANoFkdAnwaVZPl+3HV9lChoBmgJaA9DCK8FvTcGmmFAlIaUUpRoFU3oA2gWR0CfByJAdGRWdX2UKGgGaAloD0MIc4HLY02LZkCUhpRSlGgVTegDaBZHQJ8bnFaSs8x1fZQoaAZoCWgPQwgmyAioMJtxQJSGlFKUaBVNJQNoFkdAnx0r/GVAzHV9lChoBmgJaA9DCKmluRWCWnBAlIaUUpRoFU1+AWgWR0CfIfGsV+I/dX2UKGgGaAloD0MIKeyi6EFHcUCUhpRSlGgVS/ZoFkdAnyH9+1Bt13V9lChoBmgJaA9DCGagMv79C21AlIaUUpRoFU3LA2gWR0CfJJfnwG4adX2UKGgGaAloD0MIJeZZSSsNYkCUhpRSlGgVTegDaBZHQJ8k2PsAvL51fZQoaAZoCWgPQwji6Crd3fxmQJSGlFKUaBVN6ANoFkdAnyjvJ/5Ly3V9lChoBmgJaA9DCCFWf4RhdHBAlIaUUpRoFU1gAWgWR0CfKY+De0ojdX2UKGgGaAloD0MINe1imulEcECUhpRSlGgVTUsBaBZHQJ8rYtEofCB1fZQoaAZoCWgPQwhywK4mT6pwQJSGlFKUaBVNIQJoFkdAnyxvDLr5ZnV9lChoBmgJaA9DCGUXDK65hmVAlIaUUpRoFU3oA2gWR0CfLNxLkCFLdX2UKGgGaAloD0MI/0EkQw5RcECUhpRSlGgVTfwCaBZHQJ8tVQhwEQp1fZQoaAZoCWgPQwiZm29Et7pwQJSGlFKUaBVNrQNoFkdAnzDfjS5RTHV9lChoBmgJaA9DCJaX/E/+NHFAlIaUUpRoFU1/AWgWR0CfOUDst03gdX2UKGgGaAloD0MIcqWeBWGWckCUhpRSlGgVTUkBaBZHQJ85X4k/r0J1fZQoaAZoCWgPQwj7A+W2/a5yQJSGlFKUaBVNAwNoFkdAnzo5NO/L1XV9lChoBmgJaA9DCFqD91W5fXJAlIaUUpRoFU2fAWgWR0CfOsgam4y5dX2UKGgGaAloD0MI1ZKOcrCXckCUhpRSlGgVTQ0CaBZHQJ864PPLPld1fZQoaAZoCWgPQwhmwcQfxZVxQJSGlFKUaBVNDgFoFkdAnzxEyP+4snV9lChoBmgJaA9DCGH+CpkrXnJAlIaUUpRoFU0fAWgWR0CfPMlWwNb1dX2UKGgGaAloD0MI8Q7wpEVkcECUhpRSlGgVTaUCaBZHQJ8+FJmNBGB1fZQoaAZoCWgPQwj+DG/WYP5xQJSGlFKUaBVNNwFoFkdAnz5dMj/uLXV9lChoBmgJaA9DCDApPj6hx2xAlIaUUpRoFU1qAWgWR0CfPx8UVSGbdX2UKGgGaAloD0MIuCHGa15qb0CUhpRSlGgVTbMBaBZHQJ9AzXjENvx1fZQoaAZoCWgPQwjBcoQMZMZtQJSGlFKUaBVN2QFoFkdAn0HL7oB7u3V9lChoBmgJaA9DCFgAUwYOzVRAlIaUUpRoFUvHaBZHQJ9CiFWXC0p1fZQoaAZoCWgPQwgjaqLPh0lxQJSGlFKUaBVNVQNoFkdAn0LIRujynXV9lChoBmgJaA9DCOHSMeeZZ3FAlIaUUpRoFU0ZAWgWR0CfRCo9LYf5dX2UKGgGaAloD0MIIVor2pxKcECUhpRSlGgVTTMDaBZHQJ9En876pHZ1fZQoaAZoCWgPQwiOPuYDAnNRQJSGlFKUaBVNBQFoFkdAn0Ze4smOVHV9lChoBmgJaA9DCG743XTLxm9AlIaUUpRoFU1QAWgWR0CfR8elbeMydX2UKGgGaAloD0MIfbPNjWnWbkCUhpRSlGgVTZMBaBZHQJ9MmowVTJh1fZQoaAZoCWgPQwiJm1PJwK5xQJSGlFKUaBVNDgFoFkdAn2ClYuCf6HV9lChoBmgJaA9DCC8xlulXznBAlIaUUpRoFU0zA2gWR0CfYdrsSkCWdX2UKGgGaAloD0MIJ1DEIgYtbUCUhpRSlGgVTYYBaBZHQJ9h/C53C9B1fZQoaAZoCWgPQwgMVwdA3NlvQJSGlFKUaBVNiwJoFkdAn2MMJpnHvXV9lChoBmgJaA9DCFth+l5DVVVAlIaUUpRoFUuuaBZHQJ9k/dl/Yrd1fZQoaAZoCWgPQwg0K9uHPCBwQJSGlFKUaBVNmQFoFkdAn2UPVZs9CHV9lChoBmgJaA9DCLPw9bVuzHFAlIaUUpRoFU0sAmgWR0CfZc6reZXudX2UKGgGaAloD0MIPnYXKGlFckCUhpRSlGgVTZYBaBZHQJ9ngjcEeQx1fZQoaAZoCWgPQwgUe2gfK9dwQJSGlFKUaBVNWAJoFkdAn2lsHGCI13V9lChoBmgJaA9DCBi0kIBRc3FAlIaUUpRoFU2CAWgWR0CfaaKvFFUidX2UKGgGaAloD0MIHlTiOoagc0CUhpRSlGgVTZYBaBZHQJ9qUDgZTAF1fZQoaAZoCWgPQwj6eyk86JRyQJSGlFKUaBVNiQFoFkdAn2zuRDCxeXV9lChoBmgJaA9DCGLYYUx6AXFAlIaUUpRoFU2XAWgWR0CfbQkKu0TldX2UKGgGaAloD0MIb4Jvmv4YckCUhpRSlGgVTaYBaBZHQJ9w7Mr3Cbd1fZQoaAZoCWgPQwiWJM/1fVlyQJSGlFKUaBVNJwFoFkdAn3K1PacqfHV9lChoBmgJaA9DCBqH+l3YZnFAlIaUUpRoFU0nAWgWR0CfdUfgaWHDdX2UKGgGaAloD0MIu9QI/UwBcECUhpRSlGgVTYABaBZHQJ94IAq/dqN1fZQoaAZoCWgPQwgJibSNf4FyQJSGlFKUaBVNcQFoFkdAn3jJ13dKunV9lChoBmgJaA9DCL1zKEPVHHBAlIaUUpRoFU18AWgWR0CfedjpcHGCdX2UKGgGaAloD0MIB+xq8pRlcUCUhpRSlGgVTXIBaBZHQJ99EymALAp1fZQoaAZoCWgPQwjyQjo8BKNvQJSGlFKUaBVNiQNoFkdAn3242jwhGHV9lChoBmgJaA9DCMeePZdponFAlIaUUpRoFU3TAWgWR0CfgKysS00FdX2UKGgGaAloD0MICoLHt/fTcECUhpRSlGgVTTIBaBZHQJ+BJTUAks11fZQoaAZoCWgPQwh7Mv/oGy1wQJSGlFKUaBVNBQJoFkdAn4Fo2S+xnnV9lChoBmgJaA9DCGWp9X7jWXBAlIaUUpRoFU3mAWgWR0CfgZ6zE74jdX2UKGgGaAloD0MIp7Io7CIMbUCUhpRSlGgVTakBaBZHQJ+Bnp8neBR1fZQoaAZoCWgPQwiN0M/U655wQJSGlFKUaBVNagFoFkdAn4TmqxTsIHV9lChoBmgJaA9DCOpYpfRM10ZAlIaUUpRoFUvWaBZHQJ+FonJDE3t1fZQoaAZoCWgPQwgIyQImcP5uQJSGlFKUaBVNRQFoFkdAn4XId+5OJ3V9lChoBmgJaA9DCFwBhXq6LnBAlIaUUpRoFU1JAWgWR0Cfh0ouPFNtdX2UKGgGaAloD0MI+UuL+qQjcUCUhpRSlGgVTREBaBZHQJ+LfVtoBaN1fZQoaAZoCWgPQwiqudxgqB9uQJSGlFKUaBVNaQNoFkdAn4uJTyauwHV9lChoBmgJaA9DCL5QwHawiG9AlIaUUpRoFU2xAmgWR0Cfi7NliBoVdX2UKGgGaAloD0MIBYnt7gHPb0CUhpRSlGgVTQ0BaBZHQJ+L0NH6Mzd1fZQoaAZoCWgPQwh5QNmUq5pxQJSGlFKUaBVNkgFoFkdAn42B+z+m33V9lChoBmgJaA9DCOxph7+mC2hAlIaUUpRoFU3oA2gWR0Cfj19/jKgadX2UKGgGaAloD0MI9Pxpo7ricUCUhpRSlGgVS/poFkdAn49rHuJDV3V9lChoBmgJaA9DCK8nui58WGZAlIaUUpRoFU3oA2gWR0Cfj8EYwZfldWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:032fbb9cc92cca0e8738619ec3642a917fe72db0f11b013afd5540444a9ee173
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ddc858dd67bd8d1547da83f4b88cb009aaf57e38dacfc95bdead4aca8d4e75fd
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (203 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.6523859951275, "std_reward": 21.81297022615664, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-04T00:27:49.392624"}
|